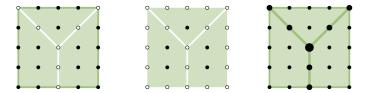
Pruned inside-out polytopes, combinatorial reciprocity theorems, and generalized permutahedra

Sophie Rehberg, joint work (in progress) with Matthias Beck

Geometry meets Combinatorics in Bielefeld 2022

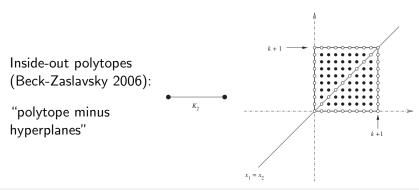


Motivation

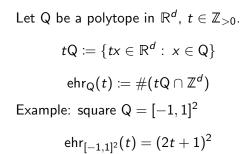
Stanley (1973): For a graph g, $m \in \mathbb{Z}_{>0}$ $\chi_g(m) \coloneqq \#$ proper m-colorings of g

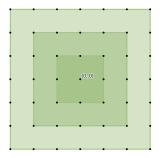
is a polynomial in m and

 $(-1)^d \chi_g(-m) = \#$ pairs of compatible *m*-colorings and acyclic orientations.



Ehrhart theory



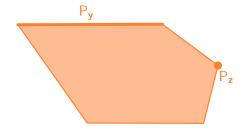


Theorem (Ehrhart, 1962)

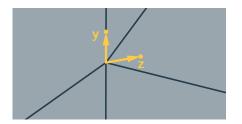
For Q an integer polytope $ehr_Q(t)$ agrees with a polynomial of degree dim(Q).

Theorem (Ehrhart-Macdonald reciprocity, 1971) $(-1)^{\dim(Q)} \operatorname{ehr}_{Q}(-t) = \operatorname{ehr}_{Q^{\circ}}(t).$

Polytopes and fans



polytope P in \mathbb{R}^d P_y maximal face P_z maximal vertex



normal fan $\mathcal{N}(\mathsf{P})$ in $(\mathbb{R}^d)^*$ $\mathbf{y} \in (\mathbb{R}^d)^*$ a direction $\mathbf{z} \in (\mathbb{R}^d)^*$ a generic direction

$$N_{\mathsf{P}}(F) \coloneqq \{ y \in (\mathbb{R}^d)^* : \mathsf{P}_y \supseteq F \}$$

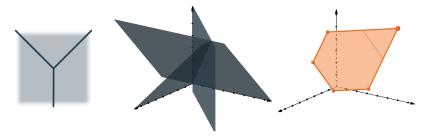
Polyhedral fans

For a complete fan \mathcal{N} in \mathbb{R}^d define the **codimension-one fan** \mathcal{N}^{col}

$$\mathcal{N}^{\operatorname{col}} := \{ N \in \mathcal{N} : \operatorname{codim} N \ge 1 \}$$
$$= \{ N \in \mathcal{N} : \operatorname{dim} N \le d - 1 \}.$$

For a normal fan $\mathcal{N}(\mathsf{P})$ we get

 $\mathcal{N}^{\operatorname{col}}(\mathsf{P}) = \{N_{\mathsf{P}}(F) : F \text{ a face of } \mathsf{P} \text{ with } \dim(F) \ge 1\}.$

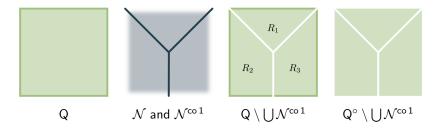


Pruned inside-out polytopes

For a polytope $\mathsf{Q} \subset \mathbb{R}^d$ and a complete fan \mathcal{N} in \mathbb{R}^d we call

$$\mathsf{Q} \setminus \left(\bigcup \mathcal{N}^{\mathsf{co}\,\mathsf{1}}\right) = \biguplus_{\substack{\mathsf{N} \in \mathcal{N}, \\ \mathsf{N} \text{ full-dimensional}}} (\mathsf{Q} \cap \mathsf{N}^{\circ})$$

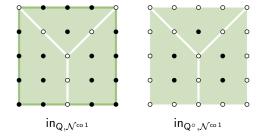
a pruned inside-out polytope and we call the connected components in $Q \setminus (\bigcup \mathcal{N}^{co1})$ regions.



Pruned inside-out counting

For $t \in \mathbb{Z}_{>0}$ define the inner pruned Ehrhart function as

$$\mathsf{in}_{\mathsf{Q},\mathcal{N}^{\mathsf{co}\,1}}(t) \coloneqq \# \left(t \cdot \left(\mathsf{Q} \setminus \bigcup \mathcal{N}^{\mathsf{co}\,1} \right) \cap \mathbb{Z}^d \right)$$



Note:

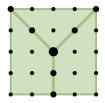
$$\mathsf{in}_{\mathsf{Q}^\circ,\mathcal{N}^{\mathsf{co}\,1}}(t) = \sum_{i=1}^{\kappa} \mathsf{ehr}_{\mathcal{R}_i^\circ}(t)$$

and it is a polynomial if regions R_i are integral.

Pruned inside-out counting

Define the cumulative pruned Ehrhart function for $t \in \mathbb{Z}_{>0}$ as

$$\mathsf{cu}_{\mathsf{Q},\mathcal{N}^{\mathrm{col}}}(t) \coloneqq \sum_{y \in t \mathsf{Q} \cap \mathbb{Z}^d} \# \left(\mathsf{N} \in \mathcal{N}, \ \mathsf{N} \ \mathsf{full.dim.,} \ y \in \mathsf{N}
ight) \,.$$



Note:

$$\mathsf{cu}_{\mathsf{Q},\mathcal{N}^{\mathrm{co}\,1}}(t) = \sum_{i=1}^k \mathsf{ehr}_{\overline{R}_i}(t)$$

and it is a polynomial if regions R_i are is integral.

 $cu_{Q,\mathcal{N}^{co\,1}}$

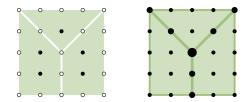
Pruned inside-out reciprocity

Theorem

For a polytope $\mathsf{Q} \subset \mathbb{R}^d$ and a complete fan \mathcal{N} in \mathbb{R}^d we have

$$(-1)^{\dim \mathsf{Q}} \operatorname{in}_{\mathsf{Q}^\circ,\mathcal{N}^{\operatorname{col}}}(-t) = \operatorname{cu}_{\mathsf{Q},\mathcal{N}^{\operatorname{col}}}(t).$$

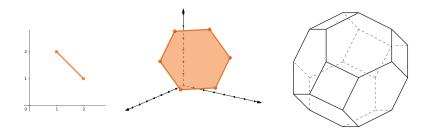
Proof.



$$(-1)^d \operatorname{in}_{\mathsf{Q}^\circ,\mathcal{N}^{\circ 1}}(-t) = \sum_{i=1}^k (-1)^d \operatorname{ehr}_{R_i^\circ}(-t) = \sum_{i=1}^k \operatorname{ehr}_{\overline{R}_i}(t) = \operatorname{cu}_{\mathsf{Q},\mathcal{N}^{\circ 1}}(t).$$

Matthias Beck, Sophie Rehberg

Standard permutahedra (in type A)



The **standard permutahedron** π_d is the convex hull of d! vertices, namely, all the permutations of the point $(1, \ldots, d)$.

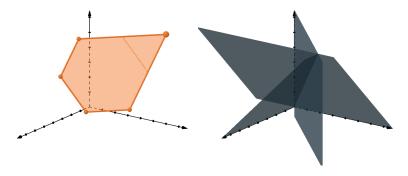
Piop's, reciprocity, & applications

Braid fan and standard permutahedron (in type A)

The **braid arrangement** \mathcal{B}_d is the set of hyperplanes $H_{i,j} := \{x \in (\mathbb{R}^d)^* : x_i = x_j\}$. The **braid fan** is the fan induced by \mathcal{B}_d .

Generalized Permutahedra (in type A)

A polytope $P \subset \mathbb{R}^d$ is a **generalized permutahedron** if its normal fan $\mathcal{N}(P)$ is a coarsening of the braid fan.

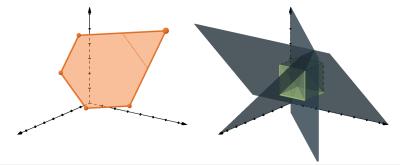


Graphically: all deformations of standard permutahedron by translating facets.

Reciprocity for generalized permutahedra (in type A)

Theorem (Aguiar, Ardila 2017; Billera, Jia, Reiner 2009) For generalized permutahedra $P \subset \mathbb{R}^d$, $m \in \mathbb{Z}_{>0}$

 $\chi_d(\mathsf{P})(m) := \# \left(\mathsf{P}\text{-generic directions } y \in (\mathbb{R}^d)^* \text{ with } y \in [m]^d\right)$ agrees with a polynomial in *m* of degree *d*.

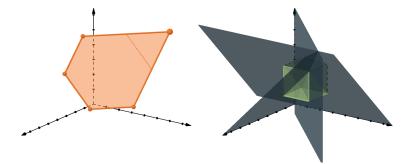


Reciprocity for generalized permutahedra (in type A)

Theorem (Aguiar, Ardila 2017; Billera, Jia, Reiner 2009) For generalized permutahedra $P \subset \mathbb{R}^d$, $m \in \mathbb{Z}_{>0}$

 $\chi_d(\mathsf{P})(m) := \# \left(\mathsf{P}\text{-generic directions } y \in (\mathbb{R}^d)^* \text{ with } y \in [m]^d\right)$ agrees with a polynomial in *m* of degree *d*. Moreover,

$$(-1)^d \chi_d(\mathsf{P})(-m) = \sum_{y \in [m]^d} \# (\text{vertices of } \mathsf{P}_y) \;.$$



Reciprocity for generalized permutahedra (in type A)

Theorem (Aguiar, Ardila 2017; Billera, Jia, Reiner 2009) For generalized permutahedra $P \subset \mathbb{R}^d$, $m \in \mathbb{Z}_{>0}$

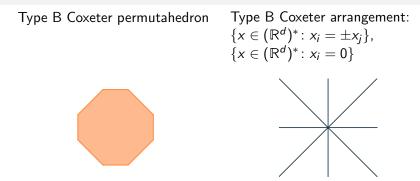
 $\chi_d(\mathsf{P})(m) := \# \left(\mathsf{P}\text{-generic directions } y \in (\mathbb{R}^d)^* \text{ with } y \in [m]^d\right)$ agrees with a polynomial in *m* of degree *d*. Moreover, $(-1)^d \chi_1(\mathsf{P})(-m) = \sum_{i=1}^d \# (\text{vorticos of } \mathsf{P}_i)$

$$(-1)^d \chi_d(\mathsf{P})(-m) = \sum_{y \in [m]^d} \# (\text{vertices of } \mathsf{P}_y) \;.$$

Special cases:

- Stanley's reciprocity theorem for graphs, Billera-Jia-Reiner's reciprocity theorem for matroids, Stanley's reciprocity theorem for posets, Bergman polynomial reciprocity for matroids (Aguiar, Ardila 2017)
- Aval-Karaboghossian-Tanasa's reciprocity theorem for hypergraphs (S.R. 2021+)

Type B generalized Coxeter permutahedra



Type B generalized Coxeter permutahedra:

Reciprocity in type B

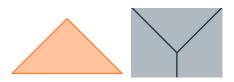
Theorem

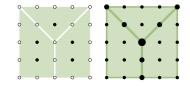
For type B generalized Coxeter permutahedra $\mathsf{P} \subset \mathbb{R}^d$, $m \in \mathbb{Z}_{>0}$

$$\chi_d(\mathsf{P})(m) \coloneqq \# \left(\mathsf{P}\text{-generic directions } y \in (\mathbb{R}^d)^* \$$

with $y \in \{-m, \dots, -1, 0, 1, \dots, m\}^d \right)$
agrees with a polynomial in m of degree d . Moreover,

$$(-1)^d \chi_d(\mathsf{P})(-m) = \sum_{y \in \{-m+1,...,-1,0,1,...,m-1\}^d} \# (\text{vertices of } \mathsf{P}_y) \;.$$





Final Remarks

- Ongoing work: Minkowski sums of certain faces of the crosspolytope and combinatorial interpretation as some hypergraphic structure
- Other combinatorial descriptions/applications?
- more general set-up possible \rightarrow applications?

Final Remarks

- Ongoing work: Minkowski sums of certain faces of the crosspolytope and combinatorial interpretation as some hypergraphic structure
- Other combinatorial descriptions/applications?
- more general set-up possible → applications?

Thank you for your attention!

