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The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v .

For example, d(u, v) = 2.
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The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The (combinatorial) diameter of P is the maximum distance
among its vertices:

diam(P) = max{d(u, v) : u, v ∈ V (P)}.
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The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

diam(P) ≤ n − d .

polytope facets dimension n − d diameter
cube 6 3 3 3
dodecahedron 12 3 9 5
octahedron 8 3 5 2
k -prism k + 2 3 k − 1 bk/2c+ 1
n-cube 2n n n n

3



The Hirsch Conjecture Prismatoids Topological prismatoids

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

diam(P) ≤ n − d .

polytope facets dimension n − d diameter
cube 6 3 3 3
dodecahedron 12 3 9 5
octahedron 8 3 5 2
k -prism k + 2 3 k − 1 bk/2c+ 1
n-cube 2n n n n

3



The Hirsch Conjecture Prismatoids Topological prismatoids

Brief history of the conjecture

1 Communicated by W. M. Hirsch to G. Dantzig in 1957.
Dantzig had recently invented the simplex method for LP.

2 Several special cases have been proved: d ≤ 3, n− d ≤ 6,
0/1-polytopes, . . .

3 But in the general case we do not even know of a
polynomial bound for diam(P) in terms of n and d .

4 In 1967, Klee and Walkup found an unbounded
counter-example.

5 In 2012 I disproved the bounded case. The original
counter-example had n = 86 and d = 43. With Matschke
and Weibel (2015) we found smaller counter-examples
(n = 40, d = 20).
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Polynomial Hirsch conjecture

Counter-examples can be iterated/combined; this gives
arbitrarily large polytopes with diameter (1 + ε)(n − d). Current
best epsilon is ε = 1/20.
The current constructions do not produce polytopes whose
diameter is more than that: a (small) constant times the Hirsch
bound.

For the implications in linear programming , more important
than the standard Hirsch conjecture is the following “polynomial
version” of it:

Polynomial Hirsch Conjecture
Let H(n,d) denote the maximum diameter of d-polyhedra with
n facets. There is a k ∈ N such that:

H(n,d) ≤ nk , ∀n,d .
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Some known cases

Hirsch conjecture holds for
d ≤ 3: [Klee 1966].
n − d ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = H(12,5) = 7 [Bremner et al. 2012].
0-1 polytopes [Naddef 1989]
Flag polytopes (and flag normal simplicial complexes)
[Adiprasito-Benedetti, 2014]
Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997], totally unimodular [Dyer-Frieze 1994],
problems with bounded minors [Bonifas et al. 2014],
Gaussianly perturbed polytopes [Spelman-Teng 2001] ...
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The two best general bounds

Let H(n,d) := max. diameter of a d-polyhedron with n facets.

Theorem [Kalai-Kleitman 1992], “quasi-polynomial”

H(n,d) ≤ nlog2 d+2, ∀n,d .

Theorem [Barnette 1967, Larman 1970], “linear in fixed d”

H(n,d) ≤ n2d−3, ∀n,d .

The proofs of both are surprisingly simple and valid for objects
much more general than polytopes.
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From polytopes to simplicial complexes

Definition
A d-polytope/polyhedron is simple if at every vertex exactly d
facets meet. (' facet-defining hyperplanes are “in general
position”).
A d-polytope is simplicial if every facet has exactly d vertices.
That is, if every proper face is a simplex. (' vertices are “in
general position”).

The (polar) dual of a simple polytope is simplicial, and
vice-versa.

Lemma (Klee 1964)
For every n and d the maximum diameter of d-polytopes /
d-polyhedra with n facets is attained at some simple one.
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From polytopes to simplicial complexes

This suggests to pose the problem in the dual setting, for
simplicial polytopes: We want to travel from one facet to
another of a (simplicial) polytope Q along the “dual graph”,
whose edges correspond to ridges of Q.

Regarded in this way the Hirsch question can be stated for
more general objects, in various degrees of generality (from
“simplicial spheres” to arbitrary “pure complexes”)
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Normal simplicial complexes

In fact, both the Kalai-Kleitman bund and the Barnette-Larman
bound hold for the following class of complexes:

Definition
A pure simplicial complex is called normal if the dual graph of
every link is connected. (That is: you can go from any facet σ to
any facet τ visiting only facets that contain σ ∩ τ )

Conjecture
The combinatorial diameter of every normal simplicial complex
is polynomial on its number of vertices.
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The importance of being normal

One may be tempted to extend the conjecture to arbitrary pure
complexes, but it is relatively easy to find counter-examples.

In fact, we know very precisely the maximum diameter among
all simplicial d-complexes with n vertices:

Theorem (Bohman-Newman 2022+)
Let Hc(n,d) denote the maximum diameter among all pure
d-complexes with n vertices. Then, for every d we have

Hc(n,d) ∼
nd

d(d + 1)!
∼ 1

d

(
n

d + 1

)
Observe that this is (except for a factor of d), the maximum
possible number of facets in a d-complex.
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Why is n − d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. Then

· · · ≤ H(2k − 1, k − 1) ≤ H(2k , k) = H(2k + 1, k + 1) = · · ·
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Wedging, a.k.a. one-point-suspension

P’

P

F f
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Wedging, a.k.a. one-point-suspension

v

d(u’, v’)=2

d(u, v)=2

u

F f

P’

P

u’

v’
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The counter-examples

The construction of counter-examples to the Hirsch conjecture
has two ingredients:

1 A strong d-step theorem for prismatoids.
2 The construction of a prismatoid of dimension 5 and

“width” 6.
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Prismatoids

Definition
A prismatoid is a polytope Q with two (parallel) facets Q+ and
Q− containing all vertices.

Q+

Q−

Q

Definition
The width of a
prismatoid is the
dual-graph
distance from Q+

to Q−.

Exercise
3-prismatoids have
width ≤ 3.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width δ. Then there is another prismatoid Q′ of dimension
d + 1, with n + 1 vertices and width δ + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d .

Corollary
In particular, if a prismatoid Q has width > d then there is
another prismatoid Q′ (of dimension n − d, with 2n − 2d vertices, and
width ≥ δ + n − 2d > n − d) that violates (the dual of) the Hirsch
conjecture.
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d-step theorem for prismatoids

Proof.

Q ⊂ R2

Q+

Q−
Q̃−

Q̃ ⊂ R3

Q̃+

w

Q̃− := opsv(Q−)

Q+

w

opsv(Q) ⊂ R3

v

u

u
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d . Its number
of vertices and facets is irrelevant...

Question
Do they exist?

3-prismatoids have width at most 3 (exercise).
4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].
5-prismatoids exist of width 6 [S., 2012] and of arbitrarily
large width [Matschke-S.-Weibel 2015].
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A 5-prismatoid of width > 5

Theorem (S. 2012)

The following prismatoid, of dimension 5 and with 48 vertices,
has width six.
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A 5-prismatoid of width > 5

Theorem (S. 2012)

The following prismatoid, of dimension 5 and with 48 vertices,
has width six.

Q := conv





x1 x2 x3 x4 x5
±18 0 0 0 1

0 ±18 0 0 1
0 0 ±45 0 1
0 0 0 ±45 1

±15 ±15 0 0 1
0 0 ±30 ±30 1
0 ±10 ±40 0 1

±10 0 0 ±40 1





x1 x2 x3 x4 x5
0 0 0 ±18 −1
0 0 ±18 0 −1

±45 0 0 0 −1
0 ±45 0 0 −1
0 0 ±15 ±15 −1

±30 ±30 0 0 −1
±40 0 ±10 0 −1

0 ±40 0 ±10 −1
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A 5-prismatoid of width > 5

Theorem (S. 2012)

The following prismatoid, of dimension 5 and with 48 vertices,
has width six.

Corollary
There is a 43-dimensional polytope with 86 facets and diameter
(at least) 44.
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Smaller 5-prismatoids of width > 5

With the same ideas

Theorem (Matschke-S.-Weibel, 2015)
The following prismatoid of dimension 5 and with 28 vertices
has width 6.

Q := conv




x1 x2 x3 x4 x5

±18 0 0 0 1
0 0 ±30 0 1
0 0 0 ±30 1
0 ±5 0 ±25 1
0 0 ±18 ±18 1




x1 x2 x3 x4 x5
0 0 ±18 0 −1
0 ±30 0 0 −1

±30 0 0 0 −1
±25 0 0 ±5 −1
±18 ±18 0 0 −1





Corollary
There is a non-Hirsch polytope of dimension 23 with 46 facets.
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Smaller 5-prismatoids of width > 5

And with some more work:

Theorem (Matschke-Santos-Weibel, 2015)
There is a 5-prismatoid with 25 vertices and of width 6.

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36,442 vertices,
and diameter 21.
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Topological prismatoids

Definition
A (d − 1)-dimensional topological prismatoid is a pure
simplicial complex C homeomorphic to Sd−2 × [0,1], such that:

All vertices lie on the boundary Sd−2 × {0,1} = B+ ∪ B−.
The two boundary components B+ and B− are induced
subcomplexes.

The width of C is two plus the minimum distance from a facet
incident to B+ to a facet incident to B−.

For technical reasons we need to assume that the two bases of our
topological prismatoids are polytopal. Let us call a topological prismatoid with
polytopal bases semipolytopal.
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Theorem (Strong d-step theorem for topological
prismatoids)
Let C be a semipolytopal prismatoid of dimension d − 1, with
n > 2d vertices and width δ. Then there is another prismatoid C̃
of dimension d, with n + 1 vertices and width δ + 1.

That is: we can increase the dimension, width and number of
vertices of a semipolytopal prismatoid, all by one, until n = 2d .

Corollary
From any semipolytopal (d − 1)-prismatoid C of width > d one
can construct a simplicial sphere (of dimension n − d − 1, with
2n − 2d vertices, and width ≥ δ + n − 2d > n − d) that violates the
Hirsch bound.
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d-step theorem for prismatoids

Proof.

C

B+

B−
S−

C̃

S+

w

S− := opsv(B−)

B+

w

opsv(C)

v

u

u
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The technical difficulty

The first step in the proof (the one-point suspension on the
“facet” B−) works without problem, since ops is a topological
operation.
For the second step, we need to increase the dimension of the
“facet” B+ adding no vertices. That is, we need that boundary
component of the prismatoid (which is a d − 2-sphere) to be
embedded in a simplicial (d − 1)-sphere without new vertices.

Question (“0-point suspension of spheres”)
Can every simplicial k -sphere with more than k + 2 vertices be
embedded in a (k + 1)-sphere with no extra vertices?

If the k -sphere is polytopal then the answer is clearly yes. In
general, we do not know.
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d-step theorem for prismatoids

Topological perspective.
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Flipping in simplicial manifolds

Definition

A bistellar flip in a simplicial d − 1-manifold C is a pair (f , l) of
pairwise disjoint subsets of vertices such that f is a face, l is a
minimal nonface, and lkC(f ) = ∂(l) (this implies |f |+ |l | = d +2).

The result of the flip is the complex

C′ = C \ stC(f ) ∪ (l ∗ ∂(f )).
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Flips in prismatoids

Observe that a bistellar flip can remove a vertex (if f is a single
vertex) or insert a vertex (if l is empty and f is a facet).

In a topological prismatoid we can do two types of flips:

1 Interior flips, defined just as above, with the requirement
that l intersects the two boundary components of C (so that
after the flip the boundary components are still induced
subcomplees).

2 Boundary flips: these are flips in one of the boundary
components (which is itself a manifold). We now require all
facets of stC(f ) = f ∗ ∂(l) to be coned to the same vertex,
and after the flip we cone l ∗ ∂(f ) to that same vertex.
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Simulated annealing

Flips allow us to explore the “space” of non-Hirsch topological
prismatoids: starting with one of the non-Hirsch (polytopal)
prismatoids of dimension four we do random flips and check
whether the new prismatoids are still non-Hirsch.

In order to (try to) get smaller prsimatoids we flip with a
simulated annealing strategy, that favours flips “in the right
direction”.

Favoring only flips that remove vertices is not a good strategy:
most prismatoids do not have such flips.

What we do is to use as cost function a generalized mean of
the number of neighbors of all vertices in the prismatoid, trying
to produce vertices with few neighbors. Vertex-removing flips
happen exactly one a vertex has only d + 1 neighbors.
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The result

We ran our algorithm for three days. We completed 4093 runs,
all starting with a prismatoid with 28 vertices. This gave us
4093 non-Hirsch topological 4-prismatoids, with number of
vertices ranging between 14 and 28:

Top: number of
prismatoids by
nbr. of vertices.

Bottom: distri-
bution of ver-
tices vs. facets
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The result

In particular, we obtained four 4-dimensional non-Hirsch
topological prismatoids with 14 (=7+7) vertices. Thus:

Theorem
There exist 8-dimensional spheres with 18 vertices that violate
the Hirsch bound.

We have checked that these four are shellable, but Pfeifle
(2020+) and Gouveia-Macchia-Thomas (2023) have proved
that they are not polytopal.

In fact, they have found non-polytopality certificates also for all
our prismatoids with 15 vertices, and for some with more
vertices.
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The result

For the record, here is a non-Hirsch topological prismatoid with
14 vertices:TOPOLOGICAL PRISMATOIDS AND SMALL NON-HIRSCH SPHERES 19

0256g
0245f

1256g

1245f
0234e

0123d

1234e
0126d

0156g
0145f

0134e

126cg
015bg

015bf

014ae
013ae

013ad

016cd
016cg

014bf
014ad

014cd

014bc

123ae
124af

123af

123bf
123bg

123cd

123cg
026bg

026cd

026ce
026be

126cd

025af
025bg

024af

024ae
025ae

025be

125bg
125bf

023ce

023cd
124ae

14abf
13abf

13acd

13acg
13abg

06bce

04abd
04bcd

14bcg
14abg

14acg

14acd

26abf
26ace

26abe

05abf
03ace

05ace

03acd
05acd

05cde

05bde
05abd

04abf

25abf
25abe

01bcg

06bcg
26bcg

23bcg

23bcf
23acf

23ace

26bcf
26acf

5acde
5abde

3bcfg

3acfg
3abfg

0bcde

6bcef
6acef

6abef
4abcg

4abcd

Table 2. Prismatoid #1039

0126d

0123d
0134e

0234e

1234e
0145f

0245f

1245f
0156g

0256g

1256g

014ae

024ae
013ae

014af

024af
025af

025ae

124af
013af

016bd

026bd
013bd

023bd

123bd
023be

026be

123be
124be

124bd

016bg
013bg

126cd

124cd
124ac

126cg

125cg
125cf

015cf

013cf
015cg

025cg

025ce
026cg

026ce

013cg

14abe

24abe
24abd

25abe

25abd
13abe

03abe

06abe
03abf

06abf

13abg
14abg

24acd

12acf
25acf

25acd

05acf
05ace

06ace

06acf
13acf

16bcd

14bcd
26bcd

25bcd

25bce
26bce

13acg

14acg
16bcg

06bcg

06bcf
03bcf

14bcg

03bcg

5abde

6abef
3abfg

5acde

6acef
4abcd

5bcde

6bcef
3acfg

4abcg

3bcfg

Table 3. Prismatoid #1963

0156g
0256g

1256g

0123d
0126d

0134e

1234e
0234a

0145f
0245f

1245f

023ad
013ad

026ad

013ae
034ae

234ae
123ae

124ae

026bg
025bg

125bg

016cg

126cg
015cg

016cd

126cd
123cd

123cg

123ag
124ag

124bg
015cd

015ad

015ae

024af
026af

026bf

025bf
125bf

124bf

015bf
015be

014bf

014be

24abg
23abg

13acg

14acg
13acd

23acd
26acd

06acd

14acd
05acd

05ace

06ace

06bcg
26bcg

23bcg

05bcg
15bcg

14bcg

14bcd
15bcd

05bce
06bce

24abf

23abf

04abf
04abe

06abe

14abe
14abd

15abd

15abe
06abf

23acf

26acf
23bcf

26bcf

5abde
5acde

5bcde

4abcg
4abcd

3abfg
6abef

3acfg

6acef
3bcfg

6bcef

Table 4. Prismatoid #2669

0156g

0256g
1256g

0134e

0234e
1234e

0126d

0123d
0145f

0245f

1245f

015ag

025bg
125bg

026bg

126bg
016bg

016bd

026bd
025bd

015af

014af
014ag

014bg

024af
024ae

124af

124ae
123ae

025af

025ae
123af

125bf

126bf
014bc

014ce

013ce
023ce

025ce

025cd
023cd

013cd

123cd
126cd

126cf

123cf

04abg

05abg
15abg

05abd

04abd
15abf

25abf

25abe
26abf

26abe

13abf
13abg

14bcg

14acg
14ace

04ace

05ace
13ace

13acg

13bcg
23ace

05acd

04acd
01bcd

04bcd

16bcd
26bcd

25bcd

25bce
26bce

26ace

26acf
23acf

16bcf

13bcf

5abde

3abfg
6abef

4abcg

4abcd
5acde

5bcde

3acfg
3bcfg

6acef

6bcef

Table 5. Prismatoid #3513
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For more details see

Francisco Criado, Francisco Santos.
Topological Prismatoids and Small Simplicial Spheres of Large Diameter.
Experimental Mathematics, 31:2 (2022), 461–473.
DOI: 10.1080/10586458.2019.1641766.
arXiv:1807.03030

T H A N K Y O U

35


	The Hirsch Conjecture
	Polytopes

	Prismatoids
	Spindles and prismatoids

	Topological prismatoids
	Topological prismatoids


