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Abstract. Square triangle tilings are relevant models for quasicrystals. We

introduce a new self-similar tile-substitution which yields the well-known non-
periodic square triangle tilings of Schlottmann. It is shown that the new tilings
are locally derivable from Schlottmann’s, but not vice versa, and that they are
mutually locally derivable with the undecorated square triangle tilings. Fur-

thermore, the role of the window (acceptance domain) for these tilings as a
fundamental domain of the hexagonal lattice is discussed.

1. Square Triangle Substitutions

Nonperiodic tilings, like Penrose tilings, are important models for physical qua-
sicrystals. Besides the three 3-dimensional tilings with icosahedral symmetry (see
for instance [1] and references therein) the most relevant models for physical qua-
sicrystals are those planar tilings with 5-fold (resp. 10-fold), 8-fold and 12-fold
symmetry. The celebrated Penrose tilings show statistical 10-fold symmetry (com-
pare [4]), and there are two particular Penrose tilings showing global 5-fold dihedral
symmetry [6]. The most prominent tilings with 8-fold symmetry are certainly the
Ammann-Beenker tilings, see Ammann’s P4 in [6]. These two (families of) tilings
use two different building blocks (prototiles) only, and both of them can be generated
by a tile-substitution. A tile-substitution is given by a set of prototiles T1, . . . , Tm,
a substitution factor λ, and a rule how to replace the enlarged prototiles λTi with
congruent copies of the prototiles. For an example, see Figure 1; see also [5] for
further details, precise definitions and a wealth of examples. A tile-substitution is
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Figure 1. A substitution rule by Martin Schlottmann for a square
triangle tiling.
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Figure 2. A patch of a square-triangle tiling, generated by the
tile-substitution shown in Figure 1 (after deleting colour and dec-
orations).

self-similar, if the enlarged prototiles are not only replaced by copies of T1, . . . , Tm,
but if the enlarged tiles λTi can be dissected into copies of T1, . . . , Tm. Figure 4
shows an example of a self-similar tile-substitution.
Whereas the 10-fold and 8-fold symmetric examples above can be generated by
a substitution rule with two prototiles, the situation is more different for 12-fold
symmetric tilings. There are nice examples of substitution tilings with three pro-
totiles which are 12-fold symmetric, for instance Socolar’s square rhomb hexagon
tilings, or Gähler’s shield tilings (see for instance [5]). On the other hand, there
are several 12-fold symmetric tilings by squares and triangles, but they cannot be
generated by a simple substitution rule. The first substitution rule yielding square
triangle tilings with 12-fold symmetry known to the author aware of was found by
Schlottmann and is published for instance in [7]. This tile-substitution is shown in
Figure 1. Note that it is not self-similar: for instance, a triangle is not replaced
by a triangular patch of tiles (a patch is any finite collection of tiles), but by a
slightly larger patch. Nevertheless, the construction ensures that the overlapping
parts coincide exactly. Schlottmann’s substitution does not work with one kind of
triangle and one kind of square. He introduces three different kinds of triangles,
and two different kinds of squares, which are distinguished by colour and markings
in Figure 1. Thus in fact we have five prototiles in this case.
Iterating the substitution rule for the marked tiles, one can produce arbitrary large
tilings by marked squares and triangles. After deleting the markings one obtains a
plain square triangle tiling as in Figure 2. In this way, one obtains a quasiperiodic
tiling with statistical 12-fold symmetry. (There is no precise definition of ‘quasiperi-
odic’ agreed on today. For a discussion of possible definitions of quasiperiodicity,
compare [1].) The unmarked square triangle tiling and the square triangle tiling
with markings are mutually locally derivable (mld), which means: one can be ob-
tained from the other by local rules. In particular, the following construction can
serve as such a rule: In the square triangle without markings, the ‘supertiles’ can
be found in a unique way, see Figure 3. Comparison with the rule in Figure 1 then



Figure 3. The same patch as in Figure 2, with the ‘supertiles’
indicated.

yields the markings of each individual tile, depending on the type of supertile which
contains it. These considerations yield the following result.

Theorem 1. Schlottmann’s square triangle tilings are mld with the plain square
triangle tilings in Figure 2.

It is easy to see that there can’t be a square triangle tiling with perfect 12-fold
symmetry: there is no local constellation with 12-fold symmetry. The best one can
hope for is a tiling with 12-fold symmetry apart from some finite part in its centre.
However, by a general result in [4], all tilings considered in the present paper show
statistical 12-fold symmetry. Roughly spoken, this means that each orientation
occurs with the same frequency throughout the tiling.
There are some reasons for requiring the substitution rule to be self-similar. For
instance, the frequencies and the areas of the prototiles can be read off from the
substitution matrix in this case. (In fact, to obtain the frequencies, one needs only
that the rule is non-overlapping.) Here we present for the first time a substitution
rule producing Schlottmann’s square triangle tilings which is self-similar. This rule
is shown in Figure 4.
In order to achieve self-similarity, one has to divide each equilateral triangle in
Schlottmann’s rule into two right-angled triangles, and each square in Schlottmann’s
rule into four smaller squares. Triangles of type 1 (resp. 2) in Figure 1 are divided
into two triangles of type 1 (resp. 2) in Figure 4. Triangles of type 3 in Figure 1
can be divided into two right-angled triangles in two different ways: Either into
two triangles of type 3 in Figure 4, or into one triangle of type 4 and one of type 7
in Figure 4 (regarding whether it is divided along its vertical mirror axis, or along
another axis).
Squares of type 4 in Figure 1 are divided into two squares of type 5 and two squares
of type 6 in Figure 4. Squares of type 5 in Figure 1 are divided into one square of
type 5, one of type 6, one of type 8 and one of type 9 in Figure 4. (Figure 5 gives
an idea how the smaller tiles fit together to yield the larger squares and triangles.)
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Figure 4. A self-similar tile-substitution rule for a square triangle
tiling.

Theorem 2. The self-similar substitution in Figure 4 yields the same plain square
triangle tilings as Schlottmann’s substitution in Figure 1.

This is achieved just by gluing four pairwise adjacent squares into one square,
gluing together two right-angled triangles along the longer cathetus, and delete all
decorations (colours and points).
Nevertheless, let us emphasise that Schlottmann’s square triangle tilings and our
square triangle tilings are not mld.

Theorem 3. Schlottmann’s square triangle tilings are locally derivable from our
square triangle tilings, but not vice versa.

By Theorem 1, Theorem 3 implies Theorem 2. One part — Schlottmann’s tilings
are locally derivable from our’s — is clear from the construction.

Figure 5. A part of a tiling generated by the rule in Figure 4.



Let us phrase the other directions as follows: Our square triangle tilings just fail
slightly to be mutually locally derivable with Schlottmann’s square triangle tilings.
In most cases it is clear how to divide Schlottmann’s tiles into our prototiles. The
only ambiguity is caused by Schlottmann’s prototile 3. Depending on the surround-
ing, it can be divided into two of our prototiles of type 3, or into one of type 4 and
one of type 7. Usually, the next order supertile tells us in which one out of the two
ways to divide. The only situation where this fails is if the considered Schlottmann
prototile of type 3 is contained in a supertile of type 3, which again is contained in a
second order supertile of type 3, which again is contained in a third order supertile
of type 3, and so on. Altogether, many of our square triangle tilings are mld with
the corresponding ones of Schlottmann, but not all of them.

A Fractal with 12-fold Symmetry

Many interesting non-periodic tilings can be obtained by projection from high di-
mensional lattices, via a so-called cut-and-project scheme (CPS), see for instance
[1] and references therein. A CPS for our square triangle tilings is given as follows.
In the following diagram, let Λ be a lattice of full rank in R4, let π1, π2 projections
such that π1|Λ is injective, and π2(Λ) is dense in R2. Let W be a compact set
of positive Lebesgue measure — the so-called window — such that the Lebesgue
measure of its boundary is zero.

(1)
R2 π1←− R4 π2−→ R2

∪ ∪ ∪
V Λ W

Then the set V = {π1(x) |x ∈ Λ, π2(x) ∈ W} is called a model set (or a cut-
and-project set). To be precise, this defines a regular model set. Without the
requirement that the boundary of W has Lebesgue measure zero, V is still called a
model set, but not a regular one.
Obviously, V is a set of points in R2, not a tiling. We can translate V into a tiling
by joining points in V with a certain appropriate distance by an edge. Any tiling
obtained in such a way is called a cut-and-project tiling.
We ask whether our plain square triangle tiling is a cut-and-project tiling. So we
go the opposite direction: Our plain square triangle tiling yields a point set V
by considering its vertex set. (Then we obtain the tiling back from V by joining
all vertex pairs with distance 1.) There is a standard method to obtain Λ from
V , see for instance [3]. With V and Λ we know also π1. Then π2 can be chosen
orthogonally to π1. Taking a large finite part of V then yields an approximation of
W , just by mapping each point x of (the finite part of) V to π2(π

−1
1 (x)). (Recall

that π1 is injective.) Such an approximation of W is shown in Figure 6. This
approximation used the fifth iteration of our substitution rule on prototile 5, which
yields 131.044 vertices of the plain square triangle tiling. Let us mention that this
window has been computed before, see for instance [2].
The statistical 12-fold symmetry of the tilings imply the perfect 12-fold symmetry
of the window. This is visible in the figure. Moreover, the image implies that the
window is a fractal set. This is plausible, since the expanding self-similarity of the
tiling results in a contracting self-similarity of the window, in other words: There
is an iterated function system of which the window is the unique compact solution.
In general, such solutions tend to be of fractal appearance.



Figure 6. The window of the square triangle tiling in Figure 2.

Figure 7. The window is possibly a fundamental domain for the
hexagonal lattice.

The window has a further very interesting property: It is probably a fundamental
domain of the hexagonal lattice, even though it has a larger (12-fold) symmetry
than the point group of the hexagonal lattice (6-fold). For details, we refer to future
work.
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