Abgabe: Do, 27.5.10

5. Übung zur Vorlesung Algebra 1

Sommersemester 2010

Aufgabe 1. Sei K ein Körper und K[[X]] der Ring der formalen Potenzreihen über R (Elemente von K[[X]] sind unendliche Reihen $\sum_{n=0}^{\infty} a_n X^n$ mit $a_n \in K$ für alle $n \in \mathbb{N}_0$. Zwei formale Potenzreihen $f = \sum_{n=0}^{\infty} a_n X^n$ und $g = \sum_{n=0}^{\infty} b_n X^n$ werden wie folgt addiert und multipliziert:

$$f + g$$
: $= \sum_{n=0}^{\infty} (a_n + b_n) X^n$, $f \cdot g$: $= \sum_{n=0}^{\infty} c_n X^n$

mit $c_n = \sum_{i+j=n} a_i b_j$.

Zeigen Sie:

(a) Der Quotientenkörper von K[[X]] ist der Körper der formalen Laurentreihen

$$K((X)) \colon = \{ f(X) = \sum_{n=-N}^{\infty} a_n X^n \mid N \in \mathbb{N}_0, a_n \in K \text{ für alle } n \ge -N \}$$

(b) K[[X]] ist ein Bewertungsring.

Aufgabe 2. Sei R ein noetherscher Integritätsbereich. Zeigen Sie:

- (a) Jedes Element $a \in R \{0\}$, dass keine Einheit ist, ist ein Produkt von irreduziblen Elementen.
- (b) Ist jedes maximale Ideal von R ein Hauptideal, so ist R faktoriell.
- (c) Ist jedes maximale Ideal von R ein Hauptideal, so ist R ein Hauptidealring (*Hinweis*: Zeigen Sie zunächst, dass für das von zwei teilerfremde Elemente a, b erzeugte Ideal gilt (a, b) = R. Schliessen Sie, dass für beliebige Elemente $a, b \in R$ gilt (a, b) = (ggT(a, b)).

Aufgabe 3. (a) Sei R ein faktorieller Ring und $a, b, c \in R - \{0\}$. Zeigen Sie:

$$ggT(ca, cb) = c ggT(a, b).$$

- (b) Beweisen Sie, dass der ggT zweier Polynome $f, g \in \mathbb{Q}[X]$ derselbe ist wie ihr ggT in $\mathbb{C}[X]$.
- (c) Berechnen Sie den ggT der Polynome $2X^3+9X^2+10X+3$ und X^2-X-2 in $\mathbb{Q}[X]$ und $(\mathbb{Z}/5\mathbb{Z})[X]$
- (d) Berechnen Sie den ggT von 5 + i und 1 + 3i in $\mathbb{Z}[i]$.
- **Aufgabe 4.** (a) Sei R ein faktorieller Ring und $K = \operatorname{Quot}(R)$ sein Quotientenkörper. Sei $f(X) = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in R[X]$ ein normiertes Polynom und $a = \frac{p}{q} \in K$ (mit $p, q \in R$ teilerfremd) eine Nullstelle von f. Zeigen Sie, dass p ein Teiler von a_0 und q ein Teiler von a_n ist.
- (b) Bestimmen Sie alle rationalen Nullstellen von $3x^4 + 4x^3 12x^2 + 4x 15$.