Abgabe: Do, 1.7.10

9. Übung zur Vorlesung Algebra 1

Sommersemester 2010

Aufgabe 1. Sei K/k eine endliche galoissche Körpererweiterung, deren Galoisgruppe isomorph zur symmetrischen Gruppe S_3 ist. Zeigen Sie, dass K Zerfällungskörper eines irreduziblen Polynoms $f \in k[X]$ vom Grad 3 ist.

Aufgabe 2. Sei K Zerfällungskörper des Polynoms $f = (X^2 - 2)(X^2 - 3) \in \mathbb{Q}[X]$. Bestimmen Sie die Galoisgruppe $\operatorname{Gal}(K/\mathbb{Q})$, ihre Untergruppen und die zugehörigen Fixkörper in K.

Aufgabe 3. (a) Sei K/k eine endliche Körpererweiterung vom Grad n = [K:k]. Für $\alpha \in K$ gebe es n Körperautomorphismen $\sigma_1, \ldots, \sigma_n \in \operatorname{Aut}_k(K)$ mit $\sigma_i(\alpha) \neq \sigma_j(\alpha)$ für $i \neq j$. Zeigen Sie, dass dann $K = k(\alpha)$ gilt.

- (b) Sei $K = \mathbb{Q}(\sqrt[4]{3}, i)$. Zeigen Sie, dass K/\mathbb{Q} galoissch ist und bestimmen Sie alle Elemente von $Gal(K/\mathbb{Q})$ und den Grad $[K:\mathbb{Q}]$.
- (c) Zeigen Sie, dass gilt $\mathbb{Q}(\sqrt[4]{3}+i)=K$.

Aufgabe 4. Sei k ein Körper und $f \in k[X]$ ein irreduzibles separables Polynom mit abelscher Galoisgruppe. Zeigen Sie, dass jede Nullstelle von f ein erzeugendes Element des Zerfällungskörpers von f ist.

.