9. Übung zur Vorlesung Algebra 2

Wintersemester 2007/08

Di, 18.12.07

Aufgabe 1. Sei X ein topologischer Raum und \mathfrak{B} eine Basis der Topologie auf X. Seien \mathcal{F} und \mathcal{G} Garben von abelschen Gruppen auf X und sei

$$(\alpha_U: \mathcal{F}(U) \to \mathcal{G}(U))_{U \in \mathfrak{B}}$$

eine Familie von Homomorphismen, die verträglich mit den Restriktionsabbildungen ist. Zeigen Sie:

- (a) Es gibt genau einen Homomorphismus von Garben $\alpha: \mathcal{F} \to \mathcal{G}$ mit $\alpha(U) = \alpha_U$ für alle $U \in \mathfrak{B}$.
- (b) Ist α_U injektiv (bzw. surjektiv) für alle $U \in \mathfrak{B}$, so ist α injektiv (bzw. surjektiv).

Aufgabe 2. (a) Sei R ein Ring und $\mathfrak{p} \in \operatorname{Spec} R$. Zeigen Sie, dass es einen natürlichen Ringisomorphismus

$$\lim_{\stackrel{\longrightarrow}{f \in (R-\mathfrak{p})}} R_f \quad \cong \quad R_{\mathfrak{p}}$$

gibt.

(b) Sei $A = \bigoplus_{n \geq 0} A_n$ ein graduierter Ring und $\mathfrak{p} \subseteq A$ ein homogenes Primideal mit $\mathfrak{p} \not\supseteq A_+$: $= \bigoplus_{n \geq 1} A_n$. Zeigen Sie, dass es einen natürlichen Ringisomorphismus

$$\lim_{\stackrel{\longrightarrow}{f}} A_{(f)} \cong A_{(\mathfrak{p})}$$

gibt, wobei f alle homogenen Elemente von $A_+ - \mathfrak{p}$ durchläuft.

Aufgabe 3. Sei (X, \mathcal{O}_X) ein Schema. Zeigen Sie, dass X genau dann quasikompakt ist, wenn X eine endliche offene Überdeckung $X = U_1 \cup \ldots \cup U_n$ besitzt, mit $(U_i, \mathcal{O}_X \mid_{U_i})$ affin für alle $i = 1, \ldots, n$.

Aufgabe 4. Sei R ein Ring und $f \in R$. Zeigen Sie, dass es einen kanonischen Isomorphismus

$$(D(f), \mathcal{O}_{\operatorname{Spec} R} \mid_{D(f)}) \cong (\operatorname{Spec} R_f, \mathcal{O}_{\operatorname{Spec} R_f})$$

von lokal-geringten Räumen gibt.

 $\bf Aufgabe~5.$ Sei Xein Schema und Rein Ring. Zeigen Sie, dass die Abbildung

$$\operatorname{Hom}(X,\operatorname{Spec} R) \longrightarrow \operatorname{Hom}(R,\mathcal{O}_X(X)), (f,f^{\sharp}) \mapsto f^{\sharp}(X)$$

bijektiv ist.