1. Übung zur Vorlesung Algebra 3

Sommersemester 2011

Abgabe: Do, 19.4.2011

Aufgabe 1. Bestimmen Sie $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z}$ und $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}$.

Aufgabe 2. (a) Sei $\phi : A \to B$ ein Ringhomomorphismus und \mathfrak{p} ein Primideal in B. Zeigen Sie, dass das Urbild $\phi^{-1}(\mathfrak{p})$ ein Primideal in A ist.

- (b) Geben Sie ein Beispiel für ein Ringhomomorphismus $\phi: A \to B$ und ein maximales Ideal \mathfrak{m} in B an, dessen Urbild $\phi^{-1}(\mathfrak{m})$ kein maximales Ideal in A ist.
- (c) Sei k ein Körper und $\phi: A \to B$ ein Homomorphismus von endlich erzeugten k-Algebren. Zeigen Sie, dass das Urbild $\phi^{-1}(\mathfrak{m})$ eines maximales Ideal $\mathfrak{m} \subseteq B$ ein maximales Ideal ist.

Aufgabe 3. Seien $A \subseteq B \subseteq C$ Ringerweiterungen, so dass B endlich erzeugte A-Algebra und C endlich erzeugte B-Algebra ist. Zeigen Sie, dass C eine endlich erzeugte A-Algebra ist.

Aufgabe 4. Sei k ein algebraisch abgeschlossener Körper, sei R eine endlich erzeugte k-Algebra und sei \mathfrak{a} ein Ideal von R. Zeigen Sie, dass das Radikal $\sqrt{\mathfrak{a}}$ der Durchschnitt aller maximalen Ideal von R ist, die \mathfrak{a} enthalten. (Hinweis: Benutzen Sie den Hilbertschen Nullstellensatz).

Aufgabe 5. Sei k ein algebraisch abgeschlossener Körper.

- (a) Seien $F, G \in k[X, Y]$ relativ prime Polynome. Zeigen Sie, dass die Nullstellenmenge $V(F, G) = \{a \in k^2 \mid F(a) = G(a) = 0\}$ endlich ist. (Hinweis: Benutzen Sie das Gausssche Lemma um zunächst zu zeigen, dass es Polynome $P_1, Q_1, P_2, Q_2 \in k[X, Y]$ gibt, so dass $P_1(X, Y)F(X, Y) + Q_1(X, Y)G(X, Y) = H_1(X)$ ein Polynom $\neq 0$ in der Unbestimmten X und $P_2(X, Y)F(X, Y) + Q_2(X, Y)G(X, Y) = H_2(Y)$ ein Polynom $\neq 0$ in der Unbestimmten Y ist).
- (b) Zeigen Sie, dass k[X,Y] nur die folgenden Primideale besitzt (i) (0); (ii) (F) wobei $F \in k[X,Y]$ ein irreduzibles Polynom ist; (iii) (X-a,Y-b) mit $a,b \in k$.