Abgabe: Do, 13.4.06

2. Übung zur Vorlesung Lineare Algebra 2

I. Hausaufgaben

Aufgabe 1. Die symmetrische, nicht-ausgeartete Bilinearform β auf \mathbb{R}^3 sei gegeben durch

$$\beta(x,y) = x_1y_1 + x_3y_3 + x_1y_2 + x_2y_1 + x_2y_3 + x_3y_2.$$

Bestimmen Sie eine Sylvesterbasis von \mathbb{R}^3 für β .

Aufgabe 2. Sei K ein Körper mit $char(K) \neq 2$. Sei V ein 2-dimensionaler Vektorraum und β eine symmetrische, nicht-ausgeartete Bilinearform auf V mit zugehöriger quadratischer Form q(v): $= \beta(v, v)$. Zeigen Sie, dass die folgenden Bedingungen äquivalent sind:

- (i) Es gibt ein $v \in V \{0\}$ mit q(v) = 0.
- (ii) Es gibt eine Basis (v_1, v_2) von V mit

$$M_{(v_1,v_2)}(\beta) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

(iii) Es gibt eine Basis (w_1, w_2) von V mit $q(w_1) = q(w_2) = 0$ und $\beta(w_1, w_2) = 1$.

Aufgabe 3. Zeigen Sie: Auf $M(n \times n, \mathbb{R})$ definiert

$$\beta(A, B)$$
: = Spur(AB)

eine symmetrische, nicht-ausgeartete Bilinearform. Bestimmen Sie die Signatur und den Positivitätsindex von β .

Erinnerung: Die Spur einer quadratischen Matrix ist die Summe der Diagonaleinträge.

Aufgabe 4. Sei V ein n-dimensionaler reeller Vektorraum und β eine symmetrische, nicht-ausgeartete Bilinearform auf V mit Positivitätsindex n-1. Sei C: = $\{v \in V \mid \beta(v,v) < 0\}$. Zeigen Sie:

- (a) $\beta(v, w) \neq 0$ für alle $v, w \in C$.
- (b) Seien $u, v, w \in C$. Ist $\beta(v, w) < 0$, so gilt: $\beta(u, v)\beta(u, w) > 0$.
- (c) Auf C definiert

$$v \sim w : \iff \beta(v, w) < 0$$

eine Äquivalenz
relation mit zwei Äquivalenzklassen (Vergangenheit und Zukunft).

II. Tutoriumsaufgaben

Aufgabe 5. Sei β eine symmetrische Bilinearform auf \mathbb{R}^n , so dass $\beta(e_i, e_j) > 0$ für alle $i, j \in \{1, \ldots, n\}$ (dabei ist (e_1, \ldots, e_n) die Standardbasis des \mathbb{R}^n). Folgt dann, dass β positiv definit ist?

Aufgabe 6. Sei β eine symmetrische Bilinearform auf dem rellen Vektorraum V mit zugehöriger quadratischen Form q, so dass q(v) = 0 für alle $v \in V$. Folgt dann $\beta = 0$?

Aufgabe 7. Sei K ein Körper. Zeigen Sie, dass die folgenden Relationen Äquivalenzrelationen auf $M(m \times n, K)$ sind:

(a)
$$A \sim_1 B$$
 : $\iff \exists X \in Gl_n(K), Y \in Gl_m(K) : XAY = B$.

(b)
$$A \sim_2 B$$
 : \iff $\exists X \in Gl_n(K) : XA = B$.

Sei M eine Menge und \sim eine Äquivalenzrelation auf M. Eine Teilmenge $R \subset M$ heisst Repräsentantensystem der Äquivalenzrelation, wenn für jedes $x \in M$ genau ein $r \in R$ existiert mit $x \sim r$.

Aufgabe 8. Bestimmen Sie Repräsentantensysteme der Äquivalenzrelationen \sim_1 und \sim_2 .