4. Übung zur Vorlesung Lineare Algebra 2

Abgabe: Do, 4.5.06

I. Hausaufgaben

Aufgabe 1. Sei V ein endlichdimensionaler \mathbb{C} -Vektorraum und ϕ ein Automorphismus von V so, dass $\phi^n = \operatorname{id}$ für ein $n \geq 1$. Zeigen Sie: Es gibt eine Zerlegung $V = V_1 \oplus \ldots \oplus V_n$ so, dass $\phi_j := \phi|_{V_j} : V_j \to V_j$ und $\phi_j(v) = e^{2\pi i j/n} \cdot v$ für alle $v \in V_j$.

Aufgabe 2. Berechnen Sie charakteristisches Polynom, Eigenwerte und Minimalpolynom der Matrizen

$$A = \begin{pmatrix} 3 & 2 & 1 & 0 \\ 0 & 3 & -1 & -2 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 2 \end{pmatrix} \text{ und } B = \begin{pmatrix} 2 & 0 & 7 & 3 \\ 0 & 2 & 17 & -42 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Ist A diagonalisierbar? Ist B diagonalisierbar?

Aufgabe 3. Sei $A \in M(n \times n, \mathbb{R})$ so, dass $A^2 = A$. Zeigen Sie: A ist diagonalisierbar.

Aufgabe 4. Sei f ein Endomorphismus des K-Vektorraums V. V besitze eine Zerlegung in eine direkte Summe $V = U_1 \oplus \ldots \oplus U_k$ derart, dass $f(U_i) \subseteq U_i$ für alle $i = 1, \ldots, k$. Zeigen Sie, dass f genau dann diagonalisierbar ist, wenn jedes $f_i := f|_{U_i} : U_i \to U_i$ diagonalisierbar ist.

II. Tutoriumsaufgaben

Aufgabe 5. Finden Sie eine (2×2) -Matrix A mit ganzzahligen Koeffizienten so, dass $A^3 = E_2$, aber $A \neq E_2$.

Aufgabe 6. Sei K ein Körper und A, $B \in M(n \times n, K)$. Zeigen Sie: Falls A ähnlich zu B ist, gilt $\chi_A = \chi_B$. Zeigen Sie ausserdem, dass die Umkehrung nicht gilt.

Aufgabe 7. Sei $A \in M(2 \times 2, \mathbb{R})$, mit $A \neq E_2$ und $A^3 = E_2$. Zeigen Sie, dass SpurA = -1 gilt. Geben Sie ein Beweis oder finden Sie ein Gegenbeispiel für die Behauptung:

Ist $A \in M(n \times n, \mathbb{R})$ mit $A \neq E_n$ und $A^{n+1} = E_n$, so gilt SpurA = -1.

1