Abgabe: Do, 1.6.06

7. Übung zur Vorlesung Lineare Algebra 2

I. Hausaufgaben

Aufgabe 1. Sei

$$A \colon = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right).$$

Bestimmen Sie eine Matrix $X \in O(3)$, so dass X^tAX eine Diagonalmatrix ist

Aufgabe 2. Sei (V, <, >) ein euklidischer oder unitärer Vektorraum und $f \in \text{End}(V)$ selbstadjungiert mit kleinstem Eigenwert λ und grössten Eigenwert μ . Zeigen Sie, dass für alle $v \in V - \{0\}$ gilt:

$$\lambda \le \frac{< f(v), v >}{< v, v >} \le \mu$$

Für welche $v \in V$ steht links oder rechts Gleichheit?

Aufgabe 3. Sei V unitärer Vektorraum und $f \in \text{End}(V)$. Zeigen Sie, dass es eine Orthonormalbasis (v_1, \ldots, v_n) von V gibt, so dass die Darstellungsmatrix A von f bezüglich dieser Basis eine obere Dreiecksmatrix ist. Kann man (v_1, \ldots, v_n) so wählen, dass A die Jordansche Normalform von f ist?

Aufgabe 4. Sei (V, <, >) ein euklidischer oder unitärer Vektorraum und $f \in \text{End}(V)$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- (a) f ist selbstadjungiert.
- (b) Es gibt $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ und orthogonale Projektionen $p_1, \ldots, p_r \in \text{End}(V)$ mit den Eigenschaften:
- (i) $p_1 + \ldots + p_r = \operatorname{Id}_V$, (ii) $\lambda_1 p_1 + \ldots + \lambda_r p_r = f$, (iii) $p_i \circ p_j = p_j \circ p_i = 0$ für alle $i \neq j$.

II. Tutoriumsaufgaben

Aufgabe 5. Gegeben sei A: = $\begin{pmatrix} -\cos(\phi) & \sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix}$. Finden Sie eine Matrix $X \in O(2)$ mit

$$X^t A X = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

(b) Finden Sie Matrizen $S, T \in U(2)$, so dass die Matrizen $S^H \begin{pmatrix} 0 & 1+i \\ 1-i & 0 \end{pmatrix} S$ und $T^H \begin{pmatrix} 0 & 1+i \\ -1+i & 0 \end{pmatrix} T$ Diagonalgestalt haben.

Im Folgenden ist (V, <, >) ein euklidischer oder unitärer Vektorraum.

Aufgabe 6. Sei $f \in \text{End}(V)$ selbstadjungiert und $v \in V$. Zeigen Sie:

$$f^k(v) = 0$$
 für ein $k \in \mathbb{N}, k \ge 1$ \Longrightarrow $f(v) = 0$.

Aufgabe 7. Ein Endomorphismus f von V heisst Spiegelung, wenn es ein $w \in V$ gibt mit $f(v) = s_w(v)$: $= v - 2 \frac{\langle v, w \rangle}{\langle w, w \rangle} w$ für alle $v \in V$. Zeigen Sie:

- (a) Spiegelungen sind selbstadjungiert und unitär.
- (b) Orthogonalprojektionen sind selbstadjungiert, aber i.A. nicht unitär.

Aufgabe 8. $f \in \text{End}(V)$ heisst involutorisch, wenn $f \circ f = \text{Id}_V$. Zeigen Sie: Hat $f \in \text{End}(V)$ zwei der drei Eigenschaften selbstadjungiert, unitär, involutorisch, so hat es auch die dritte.