Übungen zu Mathematik 1 für NWI

Wintersemester 2006/07

Universität Bielefeld Frøyshov/Spieß Blatt 10

Abgabe: Fr, 19.01.07

Aufgabe 1. (i) Sei $f : [a, b) \to \mathbb{R}$ differenzierbar in a und $K_1 < f'(a) < K_2$. Zeigen Sie: Es gibt ein $\delta > 0$, so dass

$$f(a) + hK_1 < f(a+h) < f(a) + hK_2$$

für alle $h \in [0, \delta)$.

(ii) Sei $u:[0,\infty)\to\mathbb{R}$ zweimal differenzierbar und

$$u'(0) = 0, \quad u''(0) > 0, \quad u'' \ge 0.$$

Zeigen Sie, dass

$$u(x) \to \infty$$
 für $x \to \infty$.

Aufgabe 2. Sei die Polynomfunktion

$$q(x) = 2x^5 - 10x + 3$$

definiert auf \mathbb{R} .

- (i) Auf welchen Intervallen ist q wachsend bzw. fallend?
- (ii) Wie viele Nullstellen hat q?

Aufgabe 3. (a) Stellen Sie die folgenden komplexen Zahlen in der Form x + yi mit $x, y \in \mathbb{R}$ explizit dar:

$$\frac{5-2i}{2-3i}$$
, $(1+i)^{-5}$, $\frac{i+i^2+i^3+i^4+i^5}{1+i}$.

(b) Berechnen Sie die Polarkoordinatendarstellung $z = r\cos(\phi) + r\sin(\phi)$, $r \in \mathbb{R}$ mit r > 0 und $\phi \in [0, 2\pi[$ der folgenden beiden komplexen Zahlen:

$$3-3i, \qquad \sqrt{3}+i$$

 $\mathbf{Aufgabe}\ \mathbf{4.}$ Bestimmen Sie alle komplexen Zahlen $z\in\mathbb{C}$ für die gilt:

- (a) $\Re(z^2) > 0$.
- (b) $\left| \frac{z-1}{z+1} \right| \le 1$.
- (c) $\left|\frac{z-i}{z+i}\right| \le 1$.