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ABSTRACT. Let E be a modular elliptic curve over a totally real number
field F. We prove the weak exceptional zero conjecture which links a
(higher) derivative of the p-adic L-function attached to E to certain p-
adic periods attached to the corresponding Hilbert modular form at the
places above p where E has split multiplicative reduction. Under some
mild restrictions on p and the conductor of E¥ we deduce the exceptional
zero conjecture in the strong form (i.e. where the automorphic p-adic
periods are replaced by the L-invariants of E defined in terms of Tate
periods) from a special case proved earlier by Mok. Crucial for our
method is a new construction of the p-adic L-function of E in terms of
local data.
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INTRODUCTION

Let E be a modular elliptic curve over a totally real number field F
and let p be a prime number and such that F has either good ordinary
or multiplicative reduction at all places p above p. Attached to E are the
(Hasse-Weil) L-function L(E,s) (a function in the complex variable s) and
a p-adic L-function L,(F,s) (here s € Zy). Both are linked by the interpo-
lation property which expresses the p-adic measure associated to L,(FE, s) in
terms of twisted special L-values L(E, x,1). A special case is the formula

Ly(E,0) = ][] e(ap,1) - L(E, 1).
plp

Here e(ayp, 1) is certain Euler factor defined in terms of the reduction of £
at p (see Prop. 4.10 for its definition). It is = 0 if and only if E has split
multiplicative reduction at p. Let S; be the set of primes p of F' above p
where E has split multiplicative reduction, let S, be the set of all primes
above p and let Sy = S, — S;. Thus we have L,(E,0) = 0if S; # (. In [17]
it has been conjectured that

(1) ords—o Lp(E,s) > r: = §(51);
(2) %LP(E,SMSZO =7l ] &(®) - ] eloy, 1) - L(E, D).
peS) pPES:

Here the L-invariant Ly(FE) is defined as Ly(E) = 4y(qr/F,))/ op(dE/F,)
where qg/F, is the Tate period of E/F,, £, = log, oNFE, /g, and 0y = ordy is
the normalized additive valuation of Fj,.
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In this paper we prove (1) unconditionally and (2) under the following
assumptions (see Theorem 5.10): (i) p > 5 is unramified in F; (ii) E has
multiplicative reduction at a prime q t p, or r is odd, or the sign w(E) of
the functional equation for L(E, s) (i.e. the root number of F) is = —1.

The statements (1) and (2) are known as exceptional zero conjecture. In
the case ' = Q it was formulated by Mazur, Tate and Teitelbaum [20] and
proved by Greenberg and Stevens [15] and independently by Kato, Kuri-
hara and Tsuji. In the case r = 1, (2) was proved by Mok [21] under the
assumption (i), by extending the method of [15].

To explain our proof let 7 be the automorphic representation of GLy(AF)
associated to E. Thus 7 has trivial central character and the local factor
my is discrete series of weight 2 at all archimedean places v. The Hasse-Weil
L-function of E is then equal to the automorphic L-function L(s — i, 7).
Moreover L,(E, s) is solely defined in terms of 7 (thus we write Ly (s, m) for

L,(E,s)).

In section 5.1 we shall introduce a second type of L-invariant L,(m). It
is defined in terms of the cohomology of (S,-)arithmetic groups. We show
that L,(m) does not change under certain quadratic twists, i.e. we have
Ly(m ® x) = Ly(m) for any quadratic character x of the idele class group
I/F* of F such that the local components x, of x at infinite places and at
v = p are trivial. We prove an analogue of (2) above (unconditionally) with
the arithmetic £-invariants £, (E) replaced by the automorphic £-invariants
Ly(m), i.e. we show

(3) o Ly(smlmo = 1t T] L) - T elap1) - Lk,

peST pPESL

In the case F' = Q these L-invariants have been introduced by Darmon ([9],
section 3.2). He showed that they are invariant under twists and also proved
(3). Also if the narrow class number of F' is = 1 a different construction of
Ly () has been given in [13].

To deduce (2) from (3) it is therefore enough to show L,(7m) = L,(E) for
all p € S1. In future work [14] we plan to give an unconditional proof of it
(and thus of (2)) by comparing £,() to the (similarly defined) L-invariant
of an automorphic representation 7’ of a totally definite quaternion algebra
— which corresponds to 7w under Jacquet-Langlands functoriality — and by
using p-adic uniformization of Shimura curves (compare also [2] where a
similar proof has been given in the case F' = Q under certain assumptions
on ).

However if p satisfies the conditions (i) above and E satisfies (ii) then we
can deduce the equality L,(m) = L,(F) for fixed p € Si by comparing the
formulas (2) and (3) in the case r = 1 for certain quadratic twists of £ and
7. More precisely, by a result of Waldspurger [29], we can choose a quadratic
character x such that the arithmetic and automorphic L-invariants at p do
not change under twisting with x, L(, 7 ® x) does not vanish and p is the
only place above p where the twisted elliptic curve E has split multiplicative
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reduction. Then by Mok’s result and (3) we can express both £,(F) and
Ly(m) by the same formula.

The p-adic L-function attached to 7 is the I'-transform of a certain canon-
ical measure pr on the Galois group G, of the maximal abelian extension of
F which is unramified outside p and oo, i.e. it is given by

Ly(s,m) = / (7 ()

p

(for the definition of (y)* see section 3.3).

Crucial for the proof of (1) and (3) is a new construction of u,'. We
shall briefly explain it (for details see 4.6). Heuristically, we define p, as the
z 0
01
map I = FJ x I — G, of class field theory. Here the first factor pur, is the
product distribution on Fj = Hpe Sy Fy of certain canonical distributions sy,

direct image of the distribution g, x WP d*z under the reciprocity

on F; attached to each local factors my, p € Sp. Moreover d*x denotes the
Haar measure on the group of S,-ideles I’ = H;pr E; (i.e. the group of ideles
with components outside of Sp,) and WP is a certain Whittaker function of
P = ®;@ 7y (it is the product of local Whittaker functions).

To put this construction on a sound foundation consider the map ¢, given
by

P 0
Ox(U,aP) = D pir, (CU) WP (CO 1)
CEF*
where the first argument U is a compact open subset of F; and the second
an idele zP € IP. Then ¢, (CU, (xP) = ¢ (U, x) for all ¢ € F*. Thus if we set
ou(xp, 2P): = ¢r(a,U, 2P) then ¢y can be viewed as a function on the idele
class group I/F* (so the map U + ¢y is a distribution on F; with values
in a certain space of functions on I/F™*).

For a locally constant map f : G, — C there exists a compact open
subgroup U C U, = Hpesp Op C F, such that fop: I/F* — C factors
through I/F*(U x UP) (here p : I/F* — G, denotes the reciprocity map).
Then fgp F(v) pr(dy) is given by

@ () = [0, V) [ f(pla))ou(a) da.
Gp I/F*
By using properties of the cohomology groups of arithmetic subgroups of
GLy(F') we show that u, is bounded (i.e. it is a p-adic measure in the sense
of section 1.2 below) and so any continuous map G, — C, can be integrated

against it.

One way to describe the local distribution p, for p € S, is that it is
the image of a certain Whittaker functional of m, under a canonical map —
denoted by ¢ — from the dual of m, to the space of distributions on Fy. We
will give the definition of J in the case p € S, or equivalently, when 7, is

"n principle our construction is related to Manin’s [19]. However in our set-up the
measure (i, is build in a simple manner from local distributions p, at each place v of F’
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the Steinberg representation St (i.e. 7, is isomorphic to the space of locally
constant functions P!(F,) — C modulo constants). For ¢ € Hom(St, C) we

define §(c) by pr f(z)d(c)(dx) = ¢(f). Here for a locally constant map with
compact support f : F, — C we define f: PY(F,) — C by f(oo) = 0 and

f([z : 1]) = f(z). Thus in the case m, = St, the target of ¢ is the space of
distributions on Fj,.

In particular the local contribution p, of u, at p € S is actually a
distribution on F, (and not only on F}). Therefore, allowed as first argument
in ¢ (U,zP) are not only compact open subsets U of F; but also of the
larger space Hpe s, Fp ¥ Hpe s, Fyy - This fact is crucial for our proof that the
vanishing order L,(s,m) at s = 0 is > . The map § and distributions s,
will be introduced in sections 2.5 and 2.6 respectively.

Chapter 3 is the technical heart of this paper. It provides an axiomatic
approach to study trivial zeros of p-adic L-function which can be applied
in other situations as well (e.g. to the case of p-adic L-functions of totally
real number fields [26], [11]). We consider an arbitrary two-variable function
¢ (U,2P) = ¢(U,2") (U C [Ipes, Fy xIlyes, £y compact open and z¥ € 17)
satisfying certain axioms and attach a p-adic distribution ;1 on G, as above.
By "integrating away” the infinite places we obtain a certain cohomology
class k € HY(F*,9) associated to ¢ (where d = [F : Q] — 1, F} denotes
the group of totally positive elements of F' and & is a certain space of
distributions on the adelic space [[,cg Fp X [[,eg, Fy X H;ﬂ(poo FY) and the
distribution g can be defined solely in terms of k. The space Z contains a
canonical subspace 2° (consisting — in a certain sense — of p-adic measures)
and p is a p-adic measure provided that « lies in the image of H d(Fj;, P —

HY(F},9) (see section 3.4).

In this case we define Ly(s, ) as the I'-transform of ;1 and show that
L,(s,¢) has a zero of order > r at s = 0. Furthermore we give a descrip-
tion of the r-th derivative %Lp(s, ®)|s=0 as a certain cap-product. More
precisely, we associate to any continuous homomorphism ¢ : Fp* — C, a co-
homology class ¢, € H'(F}, Ce(Fp, Cp)) (for its definition and the notation
see 3.4). If S; = {p1,...,p,} we will show

d" r
(4) —Ly(s.9)lm0 = ()G 1l (kU e, U Ucy,) N
Here 9 is essentially the fundamental class of the quotient M /F} where
M is a certain d + r-dimensional manifold on which F7} acts freely (see
section 3.2). If Uy = [[peq, Op % [lyes, O and ¢o(z): = ¢(x,Up, 2P) for
r = (wp,2P) € Fy x IP =1, we will also prove

T

(5) / go(@)d*z = (-1)&) 1l (kUco, U...Ucq, )N 7.
I/F* P1 P

In chapter 4 we will verify that the theory developed in the previous chap-
ter can be applied in the case ¢ = ¢,. The difficult part is to show that the
cohomology class k. attached to ¢, comes from a class in H d(Fj;, 2"). This
is achieved by showing that it lies in the image of a specific cohomology class
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Rr € HY(PGLy(F),«) under a canonical map A, : HY(PGLy(F), ) —
HY(F*,2) (for the definition of the coefficients &7 and the map A, we refer
to section 4.4 and 4.5). The fact that any arithmetic subgroup of PGLy(F)
has the finiteness property (VFL) (introduced by Serre in [24]) implies that
A, factors through H(F, 2°).

In the last chapter 5 we will introduce the automorphic L-invariant Ly ()
and deduce (3) from (4) and (5). The cohomology group H¥(PGLy(F), o)
carries an action of a Hecke algebra and k. lies in the w-isotypic component
HYPGLy(F), o). Using the fact that the classes ¢, “come” from certain
PGL2 cohomology classes as well (they will be introduced in section 2.7)
and the fact that HY(PGLy(F), %), is one-dimensional (a results due to
Harder [16]) we show that the cup products x U ¢y, and kU ¢, differ by a
factor L, (m) which is defined in terms of the cohomology of PGLy(F).

Acknowledgement. 1 thank Vytautas Paskunas for several helpful conversa-
tions and Kumar Murty for providing me with the reference [12]. I am
grateful to H. Deppe, L. Gehrmann, S. Molina and M. Seveso for useful
comments on an earlier draft. Also the referee suggested several useful im-
provements.

Notation. The following notations are valid throughout this paper. A list
with further notations will be given at the beginning of chapters 2 and 3.

Unless otherwise stated all rings are commutative with unit.

We fix a prime number p and embeddings
loo : Q = C, Lp:@<—>Cp.

We let ord, denote the valuation on C, and Q (via ¢,) normalized so that
ord,(p) = 1. The valuation ring of Q with respect to ord, will be denoted
by O.

If X and Y are topological spaces then C(X,Y’) denotes the set of con-
tinuous maps X — Y. If we consider Y with the discrete topology then
we shall also write C°(X,Y) instead of C(X,Y). If Y = R is a topological
ring then C.(X, R) is the submodule of C(X, R) of continuous maps with
compact support. If we consider R with the discrete topology then we shall
also write C?(X, R) instead of C.(X, R).

Put G: = PGLo, and let B be the subgroup of upper triangular matrices

(modulo the center Z of GLg), T = {(S 2) } /Z be the maximal torus

of G in B. We write elements of GG often simply as matrices (and

b
d
neglect the fact that we consider them only modulo the center of GLa). We
t 0
0 1

determinant induces a homomorphism det : G(R) — R*/(R*).

identift G, with T via the isomorphism ¢ +— ( ) If R is a ring the
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1. GENERALITIES ON DISTRIBUTIONS AND MEASURES

1.1. Distributions and measures. Let X be a totally disconnected o-
locally compact topological space (in practice X will be a profinite set like
an infinite Galois group or a certain space of adeles). For a topological
Hausdorff ring R we denote by Co(X, R) the subring of C(X, R) consisting
of maps f : X — R with f(x) — 0 as z — oo (equivalently by setting
f(oc0) = 0 the map f extends continuously to the one-point compactification
of X). We have CO(X, R) C C.(X,R) C Cs(X,R) C C(X, R). Note that if
X = X x Xy where X} and Xy are o-locally compact and if f; € Co(AX1, R),
fa € Co(X1, R) then the map (f1 ® f2)(g1,92): = fi(g1) - f2(g2) lies in
Co(X, R).

Let M be an R-module. Recall that an M-valued distribution on X is a
homomorphism i : CO(X,Z) — M. It extends to an R-linear map

(6) CY%X,R) — M, f’—>/de,U,.

We shall denote the R-module of M-valued distributions on X’ by Dist(X, M).
If X = X x X, p € Dist(X, M) and fi € C2(X1, R) then fo > [ fi® fo du
is an M-valued distribution on X5 which will be denoted by [ X, fidu ie.
we have a pairing

(7)  Dist(X, M) x C%(Xy, R) — Dist(Xo, M), (i, f1) — [ fidu.
Xy

Next we introduce the notion of a measure on X with values in a p-adic
Banach space. Assume that R = K is a p-adic field. By that we mean
that K is a field of characteristic 0 which is equipped with a p-adic absolute
value, i.e. a nonarchimedian absolute value | | : K — R whose restriction to
Q is the usual p-adic value and such K is complete with respect to | |. We
denote a p-adic value often as | |, and the corresponding valuation ring by
Ok.

A norm on a K-vector space V' is a function || || : V' — R such that (i)
Jav] = laly ol (i) o+ w] < max(fol], Jw]) and (i) o]l > 0 with equality
iff v =0forallae K, v,we V. Two norms || |1, || ||2 are equivalent if

there exists C1,Cy € Ry with Ciljv|2 < [Jv|l1 < Caljv||2 for all v € V. A
normed K-vector space (V|| ||) is a (K-) Banach spaceif V' is complete with
respect to || ||. Recall that any finite-dimensional K-vector space admits a
norm, any two norms are equivalent and it is complete. The K-vector space
Co(X, K) with the supremum norm || f||cc = sup,ex |f(7)[p is a K-Banach
space.

Let V be a K-vector space. Recall that an Og-submodule L C V is a
lattice if J,cg- al =V and (,cg- aL = {0}. For a given lattice L C V
the function pr(v): = infyeqr |alp is @ norm on V. If || || is another norm
then py, is equivalent to || || if and only if L is open and bounded in (V|| ||)-
A lattice L C V is complete if V is complete with respect to pr. Finally a
torsion free Og-module L is said to be complete if L is a complete lattice in
L ®p, K. For example the Og-dual of a free module is a complete torsion
free Ox-module.



8 BY MICHAEL SPIESS

Let (V| ||) be a Banach space. An element p € Dist(X, V) is a measure
(or bounded distribution) if u is continuous with respect to the supremum
norm, i.e. if there exists C' € R, C' > 0 such that || [, f du|| < C| f|l« for
all f € CY(X, K). We will denote the space of V-valued measures on X by
Dist®(X, V). If L C V is an open and bounded lattice then Dist®(X, V) is
the image of the canonical inclusion Dist(X, L) ®o, K — Dist(X,V). An
element ;1 € Distb(/'\,’ , V) can be integrated not only against locally constant
functions but against any f € C,(X, K). In fact since CO(X, K) is dense in
the Banach space (Co(X, K),|| |loo) the functional (6) extends uniquely to
a continuous functional

(8) Co(X,K) —V, f»—>/fdu.

If X = &) x Xy then we obtain as a refinement of the bilinear map (7) a
pairing

(9)  Dist®(X,V) x Co(Xy, K) — Dist®(Xo, V), (u, f1) = [ frdp.
Xy

1.2. p-adic measures. Given p € Dist(X,C) we want to clarify what do
we mean by saying that p is a p-adic measure. For simplicity assume that
X is compact. The distribution p extends to a Cp-linear map

(10) c%(x,C,) — C, ®gC, fi—>/f du

and we denote its image by V), so that we can view p as an element of
Dist(X,V,). It is called a p-adic measure if V), is a finitely generated Cp-
vector space and if p € Dist®(X, Vy.). Equivalently, the image of u (consid-
ered as a map C%(X,Z) — C) is contained in a finitely generated O-module.
So if p € Dist(X,C) is a p-adic measure (10) extends to continuous func-
tional C(X,Cp) — V,,, f— [ f du.

2. LOCAL DISTRIBUTIONS ATTACHED TO ORDINARY REPRESENTATIONS

2.1. Gauss sums. Throughout this chapter F' denotes a finite extension of
Qp, O = O its ring of integers and p the maximal ideal of O. We denote
by U the group of units of @ and put U™ = {z € U| z =1 mod p"}. Let
q denote the number of elements of O/p. We fix an (additive) character
¢ : F — Q" such that Ker(y)) = O and a generator w of p. We denote by
|z| the modulus of x € F* (i.e. || = ¢~ !) and by ord = ordr the additive
valuation (normalized by ord(w) = 1). The normalized Haar measure on F
will be denoted by dz (normalized by [, dz =1). We put d*z = (1—1)-ldz

q’ |zl
so that fU d*x =1.

Lemma 2.1. Let X C {z € F* | ord(z) < —2} be a compact open subset
such for all a € X there exists n € Z, 1 < n < —ord(a) — 1 such that

aU™ C X. Then,
/ P(x)d*x = 0.
X
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Proof. Tt is enough to consider the case X = aU™ with 1 < n <
—ord(a) — 1. Choose b € F* with ord(b) + ord(a) = —1. Hence v (ab) # 1
and ord(b) > n and therefore

(/ s@de = [ wa@e= [ @l +ba)d*a

U U
= Y(ax)(abr)d™ x.
Un)
Since ord(abr —ab) = —1+ord(z —1) > n—1 > 0, we have ¥ (abx) = ¢(ab)
for all z € UM™. Tt follows

/d) P (ab) o Y(az)d Y(ab) / U(x
hence [y ¥ (x)d*x = 0. O

Recall that the conductor ¢(x) of a quasicharacter x : F* — C* is the
largest ideal p™ of O such that U™ C Ker(y).

Lemma 2.2. Let x : F* — C* be a quasicharacter of conductor p™,n > 1
and let a € F* with ord(a) # —n. Then we have

/zpax = 0.

Proof. 1. case ord(a) > —n: Choose b € F* with max(—ord(a),0) <
ord(b) <n,1+beU and x(1+40b) # 1. Then,

/ Y(ax)x(x)d*z = / Y(ax(14+0))x(z(1+b))d*x =
U U
::xu+w/¢mmwwmﬂwwx
U
zxﬂ+QAMwhmdm

hence f;; ¥(ax)x(x)d*z = 0.
2. case ord(a) < —n: By 2.1 above we have

/ Y(azx)x > x) /a o Y(x)d*z = 0.

bU ) U /U ()

We recall the definition of the Gauss sum of a quasicharacter (with respect
to the fixed choice of 9).

Definition 2.3. Let x : F* — C* be a quasicharacter with conductor p",
n >0 and a € F* with ord(a) = —n. We define the Gauss sum of x by

) =700y) =[U:UM)] /U Y(x)x(z)d*x
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For a quasicharacter x : F* — C* we define

(11) /*X(az)z/)(x)da:: = lim x(z)Y(z)dz.

n—=+00 Jyep+ ,—n<ord(z)<n

Lemma 2.4. Let x : F* — C* be a quasicharacter with conductor p7.
Assume that |x(w)| < q. Then the integral (11) converges and we have

_ 2B =0
| @@z~ {;(;S IR,

Proof. Firstly, we remark

1 if ord(a) > 0;
(12) [ wtandra = { —iky it orda) = -1
v 0 if ord(a) < —2;
for all a € F*. Since (1 — 1/q)d*x = ‘dﬁ, we obtain
[ = 3 a-vge [ @i

If f > 0 then by Lemma 2.2 we have

| x@u@iz == vad [ s = 0.

w—fU
On the other hand if f = 0 then by (12) we get

_ _ _# = w —1\n

| x@v@iz = a 1/q>< T 2 >>
1 - x(w)™"
1—x(@)g "

2.2. Ordinary representations of PGLy(F). We introduce more nota-
tion. Let K = G(O). For an ideal ¢ C O let Ky(¢) € K denote the
subgroup of matrices A (modulo Z) which are upper triangular modulo c.
Let 7 : G(F) — GL(V) be an irreducible admissible infinite-dimensional
representation (where V' is a C-vector space). Recall [8] that there exists
a largest ideal ¢(m) — the conductor of = — such that Vo) = {4 ¢ V|
m(k)v =v VEk € Ko(c)} # 0. In this case V50(9) is one-dimensional.

The representation m is called tamely ramified if the conductor divides
p. This holds if and only if 7 = w(x ™!, x) for an unramified quasicharacter
X : F* — C* (see e.g. [5], Ch. IV). More precisely if the conductor is Op,
then 7 is spherical hence a principal series representation 7(x !, x) where
x : F* — C* is an unramified quasicharacter with x2 # |-|. If ¢(7) = p, then
7 is a special representation m(x 7!, x) where x is unramified with x? = | -|.
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Definition 2.5. Assume that m = w(x~1, x) is tamely ramified. Then 7 is
called ordinary if either x*> = | - | or if ® is spherical and tempered and if
x(@)q"/? is a p-adic unit (i.e. it lies in O ).

Thus if 7 = 7(x "1, x) is tamely ramified and if we put a: = x(w)q'/? € C
then 7 is ordinary if either o« = +1 or if &« € @ and |a| = ¢'/2. Note that o
determines 7 uniquely, i.e. there exists a one-to-one correspondence between
the set (of isomorphism classes) of ordinary representations of G(F') and the
set {a € O] o = +1or |a = ¢"/?}. We will call an element of the latter
set an ordinary parameter. We will denote the class corresponding to a by
7o and define xq(z): = 9@ (thus 7o = 7(x5' - |72, xal - |V/?)). If
a = +1 (resp. @ # £1) then 7, is special (resp. spherical). If & = 1 then
To = St is the Steinberg representation.

2.3. Bruhat-Tits tree. In the next section we recall the well-known con-
struction of models of the spherical principal series representations and spe-
cial representations of G(F') in terms of the Bruhat-Tits tree 7 of G(F') (see
e.g. [1]). In fact we will work over an arbitrary ring R rather than C. Here
we recall a few facts regarding the tree T (see e.g. [25]). The set of vertices
V = V(T) of T is the set of homothety classes of lattices in F2. For any two
vertices vy, ve of 7 denote d(v1, v2) the distance between v, and ve. A vertex
v is even or odd if its distance to the standard vertex vy = [0?] is even or
odd. The set of even (resp. odd) vertices will be denoted by Veven (resp.
Vodd). The group G(F) operates on T by g[L] = [gL] (where g € GLo(F)
is a lift of g € G(F)). Let € = E(T) (resp. € = E(T)) denote the set of ori-
ented (resp. unoriented) edges of T. For e € & let o(e) (resp. t(e)) denote the
origin (resp. target) of e and let € be the same edge as e but with opposite
orientation as e. Given e € £ the set of ends U(e) of e is an open compact
subset of P!'(F). We recall its definition. For (z,y) € F? let {(, , denote the

/
linear form F? — F,(2',y') > det i ”;j, . Given P = [z : y] € PY(F) and

representatives L; and Lo of o(e) and t(e) respectively with cwlq C Lo C Ly
we have P € Ule) iff £(;,)(L2) S £(3,)(L1). For e € E(T) and g € G(F)
we get U(e) = PY(F) — U(e) and gU(e) = U(ge) for all. For n € Z put
v, = [O @ p"]. The set {v, | n € Z} determines the standard apartment
A of T. The edge of A with origin v, 1 and target v, will be denoted by
en. One easily checks that Ul(e,) = p~" C PY(F), so ), Ule,) = {0} and
M, U(€én) = {00} so the sequence {ey}nez is the geodesic from oo to 0.
Following [1] we define the height h(v) € Z of v € V as follows. The
geodesic ray from v to oo has a non-empty intersection with A. If v, is any

point in the intersection we define h(v) =n — d(v, vy,). It is independent of
the choice of v, and satisfies h(v,) = n. We need the following simple

Lemma 2.6. (a) For all e € £(T) we have

e))+1 ifoceUle),
e)) — 1 otherwise.

) ={ o
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(b) For all a,b € Fya#0 and v € V(T) we have

h <(g Z{) v> — _ord(a) + h(v).

Proof. (a) follows immediately from the definition. For (b) it suffices to
consider the case v = vy since the group B(F) acts transitively on V(7).

Put e = (g l;) ep. Since 0o € b+ a0 = U(e) we obtain

h ((g l{) m) — h(t(e)) = h(o(e)) — 1 = h ((‘“”01 ’1’> vo) Y

If b # 0 we have for n € N with n > ord(a) — ord(b) and m = ord(a)
b b 0
(G 1)) = (T 3)m) = (57 ) ) o
a 0
= h <<0 1) v0> = h(v_p) = —m.

2.4. Representations of PGLy(F) attached to the Bruhat-Tits tree.
Let R be an arbitrary ring. For an R-module M let C(V, M) denote
the R-module of maps ¢ : V(T) — M and C(£, M) the R-module of
maps ¢ : £(T) — M. Moreover we denote by CE(£, M) C C(E, M) the
submodule of ¢ € C(€, M) with c(€) = Fc(e) for all e € E(T). Both
C(V, M) and C(€, M) are left G(F)-modules via (g¢)(v): = ¢(g ' v) and
(gc)(e) = c(g~te) and CH(E,M),C~(E,M) C C(E,M) are G(F)-stable
submodules. We let C.(V,M) C C(V, M) (resp. C.(,M) C C(E, M),
CF(E,M) C C*(E,M)) be the submodule of ¢ € C(V, M) with ¢(v) = 0
for almost all v (resp. ¢ € C*(E, M) with c(e) = 0 for almost all e). We
define pairings

(13) (, ):C(V.R) x C(V, M) = M, (¢1,92): = ey ¢1(v)d2(v)
(14) (, V:CEHE,R) x CT(E, M) — M, {(c1,c2): = Y ece c1(e)ca(e)

(note that in the second pairing the summand c;(e)ca(e) does not depend
on the choice of orientation of e). Define maps

§:C(E, M) — C(V, M), 5(c)(v): =Dy cle),
55 : C(V, M) — CF(E, M), &L(d)(e): = o(t(e)) F ¢(o(e)).

They are adjoint with respect to (13), (14), i.e. we have (6(c), ¢) = (¢, 0% (¢))
for all ¢ € C(E,R),¢ € C(V, M) (by abuse of notation we denote the
restriction of § to any submodule of C(€, M) also by ¢ and similarly for 7 ).

For the function 74 € C(V, R) defined by 74 (v) = (£1)4v0v) = (41)m®)
for v € V we consider the map

(+,74) 1 CcV,R) — R, ¢ = (pm)= > o) > ¢(v).

V€ Veven vevodd
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One readily verifies that the sequence of R-modules

<’ 7Ti>

R 0

0 —— C£(E,R) —— C.(V,R)
is exact. Dually we have an exact sequence

6*
m—T+m +

0 M CV,M) —— C*(&,M) —— 0.
In particular the restriction 61 = (61)|c,v,r) : Cc(V,R) — CE(E,R) is
injective.
The kernel of § : CH(E, M) — C(V, M) is the set of harmonic cocycles

—

Char (T, M), i.e. the set of maps ¢ : E(T) — M such that c¢(e) = —c(e) for

all e € E(T) and 3, c(e) = 0 for all v € V(T). We recall the relation
between harmonic cocycles and boundary distributions on P*(F). The map

Coker (0% : Co(V,R) — CH(E,R)) — C°(PY(F),R)/R
given by ¢ = > - ce(ry c(€)ly(e) is an isomorphism (note that c(e)ly ) =

c(€)1ye) mod R — i.e. modulo constant functions). Thus (14) induces a
pairing

(15)  COPUE), R)/R X Crax (T, M) > M, (f,c) = | f(P)pic(dP)
P1(F)

i.e. a map Char (T, M) — Dist(PY(F), M), c+ pe so that u. has total mass

= 0. For f =1y, e € E(T) we have fIP’l(F) Ly(e)(P)pe(dP) = c(e).

The Hecke operator T : C(V, M) — C(V,M) is defined by (T'¢)(v) =
2o(e)=v @(t(€)). By ([1], Thm. 10) the R[T]-module Cc(V, R) is free. Thus
for a € R the map T'—a : Co(V, R) — C.(V, R) is injective. If a # +(q+1)
we define %B,(F, R) to be the cokernel so that there exists a short exact
sequence

(16) 0 —— C.(V,R) C.(V,R) —— B4(F,R) —— 0
of R[G(F)]-modules. Note that %,(F, R) is free as an R-module.

For a = £(q+1) we have (-, 71+)o(T—a) = 0 since (T'¢p, 71) = (¢, T'14) =
a{¢p, 1) for all ¢ € C.(V,R). We put %, (F,R) = Ker({-,74))/Im(T — a),
so that the sequence

T—aid
E—

(7%)

(17) 0 = Bu(F, R) — Coker(T —a : C.(V,R) = C.(V,R)) "5’ R—0

is exact. It is easy to see that %, (F, R) is again an R[G(F')]-module which
is free as an R-module. Since 6 0 0% = (¢+ 1)id £7 we see that § induces a
map CE(&,R) — B+ (q+1)(F, R) such that

6*
(18) 0 —— C.(V,R) —— CF(E,R) —— Bo(gsy(F.R) —— 0
is an exact sequence of R[G(F)]-modules.
Dually, for a € R we define B%(F, M) as follows. If a # £(¢ + 1) we let
PB*(F, M) be the kernel of T'—a : C(V, M) — C(V,M). If a = £(g+1) then
T — a maps the submodule 7+ M = {74 - m | m € M} to zero so it induces

an endomorphism of the quotient C(V, M)/7+ M and we define B*(F, M)
to be its kernel.
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Since T : C.(V,R) — C.(V,R) and T : C(V,M) — C(V, M) are adjoint
with respect to (13) we obtain a pairing

(19) (,):BuF,R) x B (F,M)— M
which induces an isomorphism 2#%(F, M) — Hompg(%,.(F, R), M).

For € = £1 let as before y.(z) = €”4(*). We can view y. as a character
of F*/(F*)? and so x.(det(g)) is defined for g € G(F). Since T(7+ - ¢) =
+T(¢) - 7+ the isomorphism C.(V,R) — C.(V,R),¢ — ¢ - 7+ induces an

isomorphism
(20) T, : Bu(F,R) — PBeo(F, R)

which satisfies x(det(g))%Tro.(gp) = gZw(¢) for all ¢ € B,(F,R) and g €
G(F). If ¢ = +1 then Trw, is of course the identity. In general we have
Tw, o T, = id. The operators (20) will be used in section 5.1 in order to
show that certain L-invariants do not change under quadratic twists.

We want to reinterpret the sequences (16) and (18) in terms of the in-

duced representation Indf((F) R and Ind%ﬁ}

induction). Since G(F) acts transitively on V(7) and £(7) and the stabi-
lizer of vy and eg is K and Ky(p) respectively we have C.(V, R) & Indi(p) R

and C,(,R) = mdS") R. The element W = (0 1) € G(F) normalizes

Ko(p) w 0

Ko(p) hence induces an involution W : Ind[G(gI&)) R — Ind%l(?) R W(¢)(g): =
#(Wg) and CF (&, R) is mapped onto (Indf(ffg) R)"W=71 under the above iso-

morphism. Hence we have exact sequences of R[G(F')]-modules

)R (here we consider compact

21) 00— mdS" R = md§" R —— B.(F,R) — 0

fora€ R, a# £(¢+1) and

(F)

G(F G
(22) 0 — Indi™ R — (Ind\)

R)W=F' — By (1) (F,R) — 0.

If R=Canda= a+gq/afor some o € C*, o # +1 (resp. a« = +1) then it
is well-known that %, (F,C) is a model of the principal series representation
(resp. special representation) w(x5 | - |72, xa| - |/?) (see e.g. [25], or [1]).
In particular %,(F, C) admits a (up to scalar) unique Whittaker functional,
i.e. a nontrivial linear map A : %,(F,C) — C such that

(o 1)¢) = veno

for all x € F and ¢ € %,(F,C). This fact will be used in section 2.6.

2.5. Distributions attached to elements of #(F, M). Givenp € C(V, R)
define R-linear maps

3y C(E, M) — C(V, M), 5,(c)(v): = 30—y plole))c(e),
57 : C(V, M) — CH(E, M), 5°(6)(e): = p(o(e))(t(e)) — p(t(e))d(o(e)).
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They are adjoint with respect to (13), (14), i.e. we have <gp(c), @) = (c,0°(9))
for all c € CF(E,R),¢ € C(V, M). For the constant function p = 1 we have

6t = &%,61 = 6. Note that for p1, p2 € C(V, R) and ¢ € C(V, M) we have
(23) (81 ©8”)(#) = T(p1 - p2) - & = p2- T(p1 - ).
Hence for a € R and p € #°%(F, R) the maps gp and 6” induce R-linear maps

gp : CO(PY(F), R)/R = Coker(8% : Co(V, R) = CH(E,R)) — Bu(F, R),
6P+ B (F,M) —s Ker(6 : CT(E, M) = C(V,M)) = Char(T, M).
In fact by applying (23) to p1 =1 and pz = p (resp. p1 = p and py = 1) we
see that 6 maps Ker(7T —a) into Ker(9) (resp. d, induces a map Coker(§) —
Coker(T — a)).
ord(z)

Let « € R* and put a = a+¢/a and x4 : F* — R*, 2 — xo(z) = « .
In the following we assume that ¢ = « is not a zero-divisor in R so that
a = +1 if and only if a = +(¢ + 1). One easily checks that the function

p(v): = aM?) lies in B°(F, R). Put 0, := 6, and 0% := 6, so
da : CO(PL(F),R)/R — Bu(F,R), & : B"(F,M) — Char(T, M)
are adjoint with respect to (15) and (19).

Lemma 2.7. (a) We have ga(gf) = Xa(a)*lgga(f) for all g = <g l{) €
B(F) and f € CO(PY(F),R)/R.
(b) If @ = 1 then by : CO(PX(F), R)/R — B4(F, R) is an isomorphism.
(c) If a # £1 then

0 —s COPL(F), R)/R — B,(F.R) 22 r 0
18 exact.

Proof. (a) follows immediately from p ((8 ll)) v) = Xala)"1p(v) by

Lemma 2.6 and the simple proof of (b) will be left to the reader.

For (c) consider the commutative diagram

6*
0 —— C.(V,R) —— C}HE R) —— CO(PY(F),R)/R —— 0

| e 5. 5.
0 —— C.(W,R) “4 0 Cc.V,R) ——  B(F,R) —— 0
where the first vertical map is the isomorphism
(24) Ce(V,R) — Ce(V, R), ¢ (v ¢(v)p(v)).
So it remains to prove that the upper row of the diagram

0 —— CF(E,R) =y C,(V,R) 2292 R 0

l (25) J{ (24) lid

0 —— CHER) ——s Cu(v,R) 229, R 0
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is exact where (25) is the isomorphism
(25) Cl(E,R) — CL(E,R), ¢ (e ce)g(t(e))d(o(e)))-

However the lower row is exact. O

We define R-linear maps

(26) 0o : Co(F*,R) — Bu(F.R) ifa#1,
0o : Ce(FyR) — HBu(F,R) ifa=1.

as follows. If @ # 1 and f € C.(F*,R) we define 0,(f) by extending
Xo(2) f(z) by zero to PL(F) and then applying dq. If @ = 1 and f € C.(F, R)
we extend f by zero to P!(F) and then apply 6. We let F* act on C.(F*, R)
and C.(F,R) by (a- f)(z) = f(a"'z). It induces a T(F)-action via the
isomorphism T = G,,. If M is a F*-module we also define a F* operation
on Dist(F, M) and Dist(F™*, M) by

[ 1@ an)an) =a( [ Homian ).

for all f € C.(F*,R) resp. in f € C.(F, R) and a € F*. The following result
is an immediate consequence of Lemma 2.7 (a).

Lemma 2.8. The map 4, is T(F)-equivariant.

Let H be a subgroup of G(F') and M a R[H]-module (in the applications
in chapter 4 both H and M will be of "global nature”). We define a H-
action on B%(F, M) by requiring that (¢, h-A) = h-(h™1¢,\) for all h € H,
¢ € Bo(F,R) and ¢ € $°(F, M). By passing to duals we get (T'(F) N H)-

equivariant homomorphisms

Dist(F*, M) if o # 1,

0% BUE M) — {Dist(F,M) if o =1

characterized by

. f@) N (dz) if a#1,
27 N = { A alt

2.6. Local distributions. In this section we assume R = C. Let a €
O" be an ordinary parameter, i.c. & = +1 or la| = ¢'/2. Define pq: =
Y(x)xa(r)dr € Dist(F*,C) (resp. € Dist(F,C) if a = 1). We call it the
local distribution associated to m, (the justification for this terminology will
become apparent in section 4.6). u, is the image of a Whittaker functional
under (27) (see Prop. 2.10 below).

Proposition 2.9. Let y : F* — C* be a quasicharacter with conductor p7.
Assume that |x(w)| < ¢*/2. Then the integral S X(2) pia(d) converges and
we have

| X@haldo) = r00)ela L0} 70 )
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where
(1—ax(w)™) if f=0,a==+1;
e(a,x) = 1—@) (1—%) if f=0,0#+1;
af if f>0.

Proof. Recall that for the local L-factors we have L(s, ma®x) = 1if f >0
and

L(s,ma @ x) = (1 = x(@)ag” /D)7
ifa=41,f=0and
L(s,ma®x) = L(s,xxa'l-17*)L(s, xxal - '?)
= (1= x(@a g 721 = x(@)ag T2
if @ # +1, f = 0. Thus the assertion follows from Lemma 2.4. O

Proposition 2.10. (a) There exists a unique Whittaker functional A = A\,
for Bo(F,C) such that 6*(\s) = fta-

(b) Let W, = W(my) denote the Whittaker model of mo. If o # 1 (resp.
a = 1) then for any f € C.(F*,C) (resp. f € C.(F,C)) there exists W =

W} € Wa such that
[ e =w (3 )

for all a € F* (resp. [ (af)(x) pa(dz) =W <8 (1)>)

(c) Let H be an open subgroup of U and put Wy = Wi,,. Then, for any
f € CYUF*,C) we have

: z 0) x
. f(z)pa(dx) = [U : H] . fx) Wy <0 1> d*x.

Proof. (a) We let the (additive) group F' act on the Schwartz space
C.(F,C) as usual by (z- f)(y): = f(y — x). Thus the functional

A:C.(F,C) — C, fn—>/Ff(a:)¢(:1:)da:

satisfies A(zf) = ¥ (z)A(f) for all x € F and f € C.(F,C). Also we let F’

act on CO(P!(F),C)/C as z¢: = ((1] :f

(28)  CU(PY(F),C)/C — Ce(F,C), ¢+ f(x): = ([z: 1]) — p(c0)

is an F-equivariant isomorphism. Thus the composite

) ¢ so that

(29) St(F,C) = (P (F),C)/C ¥ c.(F,C) A

is a Whittaker functional of the Steinberg representation. It follows from
Lemma 2.7 (a), (b) that for @ = £1 the composition

N: Ba(F,C) % oo (F), )/ P o (F ey s
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is a Whittaker functional.
Assume now a # £1 and let A : %, (F,C) — C be a Whittaker functional.

Since (ug, p) = (d,up) = (¢,p) for all ¢ € B,(F,C) and u = <(1) T)

the map (-,p) : Bu(F,C) — C, ¢ — (¢,p) is not a Whittaker func-

tional. Therefore by Lemma 2.7 (a), (¢) the map Ao d, : St(F,C) =
CO(PY(F),C)/C — PB4(F,C) — C is a Whittaker functional of St(F,C)
so — after replacing A by a scalar multiple — we may assume that A o ga is
equal to the Whittaker functional (29). Then §*(A\)(f) = (Ao da)(Xa - f) =
A(Xa : f) = fF* f(.%‘) Xa(fﬂ)@b(lv) dr = ,Ua(f) for all f S CC(F*7(C)

(b) By (a) the function W(g): = A(g - da(f)) lies in W,, and we have

[ tan@ e = xeatarn =2 (5 1) antn) =w (5 9)-

(c) It is enough to consider the case f = 1,y for a € F*. Then

[ rwattn) = [ (@@t = wa (G )

—m 1H(9&)WH<QO$ ?)dxsczm f(m)WH<g ?)dxx
F* F*

with m = [U : H]. O

2.7. Extensions of the Steinberg representation. In this section we as-
sume that R is a topological Hausdorff ring. We consider certain extensions
of the R[G(F)]-module St(F, R) = C(P!(F), R)/R associated to a contin-
uous homomorphism ¢ from F* to the additive group of R (for a related
construction see [3], 2.1). Let

m:G(F) — PY(F), g= <CCL Z) — goo = [a: ]
be the canonical G(F')-equivariant projection. Note that

5: Co(F,R) —> St(R), s 8(f)(P) = { g(f”) - Ei: 1,
is an isomorphism of R[T'(F')]-modules (its inverse § ! is given by 6 ~1(¢)(x) =
&([z : 1])—p(00)). Define &(¢) as the R-module of pairs (f,y) € C(G(F), R)x

R with
o(a- (4 1)) =oto) +tr/ea

for all t1,to € F*, u € F and g € G(F). We denote by g(ﬂ)g >~ R the
submodule consisting of pairs (¢,0) with ¢ : G(F') — R constant and put

&) = £0)) E(0)o. The left G(F)-action on &(¢) given by g - (¢(h),y) =
(¢(g~'h),y) induces a G(F)-action on &(¢).



ON SPECIAL ZEROS OF p-ADIC L-FUNCTIONS OF HILBERT MODULAR FORMS 19

Lemma 2.11. (a) Let € : &) — R be given by e(¢,y) = y. Then the
sequence of R|G(F)]-modules

(30) 0 —— sy(FR) 22O,

18 exact.
(b) Let * : HY(G(F),St(F,R)) — H'(F*,C,s(F, R)) be the homomorphism

induced by the maps G,, =T C G,z — (3 (1)> and 6§71, let [£(0)] denote
the cohomology class of the extension (30) and let ¢, € HY(F*,Cy(F, R)) be

the class of the cocycle

EW) —— R 0

) st -t 10 { e L oo font 20

Then, §*([&(£)]) = 2¢y.

(¢c) If ¢t =ordp : F — Z — R and the topology on R is discrete then (30) is
isomorphic to (17).

Proof. (a) It suffices to show that &(¢) — R, (¢,y) — y is surjective.
Define
a? .
¢0<<a b)) B 0 5z ) iford(a) < ord(c),
- 2
¢ d (zd=s ) ord(a) = ord(c)

so ¢>o<<i Z)) =/ (#fm) +2l(c/a)l.o(a) if a,c # 0. One easily checks
that (¢o,1) € &(0).

(b) Note that W(f _01) =[r:1] and 7 <(1) (1]) = 00. Thus for a € F* let

g (1)> ¢o — ¢g. Then for x € F' we have

o = o6 ) +(6 )
o((c )-o(( )

= ((z*/a) + 2(a/x)1ao(x) — £(1/a) — (¢(z®) + 2((1/x)1o(x))
= 2(x)(1lo(z) — leo(z)) + 2l(a)lo(x) = 2z4(a)(x).
(c) Note that if ¢ = ord then ¢g(k) = 0 for all £k € K. Hence for g =

k- (1 1) €GF) = KB(F) and h € K we have (- 60)(g) = do(h~"k) +

2
ord(t1/ta) = ord(t1/t2) = ¢o(g), ie. (¢o,1) is K-invariant. By Frobe-
nius reciprocity we obtain a homomorphism ¥ : C.(V, R) = Indg(F) R —
&(¢). One can easily verify that U induces an isomorphism Coker(§ o
6%) = Coker(T — (¢ + 1)id) = &(¢) and that the sequence C (&, R) N

C.(V,R) ©% R — 0 is exact, so the assertion follows. O

¢ € St(R) be given by ¢pom = (
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2.8. Semi-local theory. We briefly discuss how to generalize some of the
previous constructions to the semi-local case. Let Fi,..., F},, be finite ex-
tensions of @, and let ¢; be the number of elements of the residue field
of Fj fori = 1,...,m. We put F' = F| x ... x Fy;, and Fg = [[;cq Fi
for a subset S C {1,...,m}. Let R be a ring and ay,...,a, € R put
a = (ai,...,an) and define the R[G(F')]-module %,(F, R) as the tensor
product of #,,(F1,R), ..., Ba,,(Fm, R)

By(F,R) = (X) B, (F,, R).
R
To define the semi-local analogues of the maps (26) let a1, ..., a;, € R* and
assume a; = o; + qi/a; fori =1,...,m. Let S ={i € {1,...,m}|a; = 1}

and Sy = S{: ={1,...,m} — Si. It is easy to see that

(32) Q) CUF,R)® Q) CUF.R) — C(Fs, x F&,, R),

1€51 1€S52
QR fiew @ fi = ((g)iz1mm = [ ] fi9)
1€851 1€S2 i=1

is an isomorphism. We define the R[T(F')]-linear map
(33) So : C2(Fs, x F§,,R) — %B,(F,R)
as the composite of the inverse of (32) and @,;_; __,, da,-
For a R-module M we define %(F, M) = Homp(%.(F, R), M) and let
(34) (, ):BuF,R) x BYF,M) — M

be the evaluation pairing. If H is a subgroup of G(F') and M a H-module
then we define an H-action on 2%(F, M) as before by (¢, h-c) = h-(h~1¢,c)
forhe H, ¢ € B.(F,R) and c € #4(F, M). By passing in (33) to duals we
get a (T'(F) N H)-linear map

5% : B%F,M) —» Dist(Fs, x F,, M).
Note that BL(F, M) = $%(Fg, B%(Fse, M)) for any subset S of {1,...,m}.
Note also that we have a canonical map #%(F,R) g M — PB4 F,M). In

particular we get a map @/, B%(F,,R) — B (Fy,, Q1" #%(F;, R))
and by iterating this construction we get a homomorphism

(35) é) B%(F;,R) — %#%F,R).

i=1

Finally, we introduce the semi-local analogues of the maps (20). Let
x : F* — R* be an unramified quadratic homomorphism, i.e. for each
i=1,...,m the restriction x; of x to the factor Fj is unramified and x2 = 1.
Put € = (e1,...,em) = (X1(@1), -, Xm(wm)) € {£1}" so that x; = xe, in
the notation of section 2.4. Define

(36) Ty = (X) T, : Bo(F, R) — Beo(F, R).
i=1,....m
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Again x(det(g)) Tw,(g¢) = g%, (¢) holds for all ¢ € G(F) and ¢ €
Bo(F, R). Also for a subgroup H of G(F') and a R[H]-module M the iso-
morphism (36) induces an isomorphism of R-modules

Tho, : BL(F, M) — B(F, M)

which is adjoint to (36) with respect to the pairing (34) and satisfies h%to, (c)
= x(det(h))Zro, (he) for all h € H and ¢ € B4(F, M).

3. SPECIAL ZEROS OF p-ADIC L-FUNCTIONS

Notation. We introduce the following notation which will be used throughout
the rest of this paper. I’ denotes a totally real number field of degree d + 1
over Q with ring of integers Op. For a non-zero ideal a C Op we set
N(a) = §(Op/a). We denote by Pr the set of all places of F' and by P
(resp. Sx) the subset of finite (resp. infinite) places. For a prime number ¢,
we shall write Sy for the set of places above £. We denote by oy, ..., 04 the
different embeddings of F' into R and let oog, ..., o004 be the corresponding
archimedian places of F'. Elements of Pr will be denoted by v,w or also
by p,q if they are finite. If p € P%, we denote the corresponding prime
ideal of Of also by p. For v € Pp, we denote by F, the completion of
F at v. If v is finite then O, denotes the valuation ring of F,, and ord,
the corresponding normalized (additive) valuation on F), (so ord,(w) = 1
if w € O, is a local uniformizer at v). Also for v € Pp we let | - |, be
the associated normalized multiplicative valuation on F,. Thus if v € S
corresponds to the embedding o : F' — R then |z|, = |o(z)| and if v = q is
finite then |z|q = N(q)~ %@, For v € Pp we put U, = R* if v is infinite
and U, = O}, if v is finite. Moreover if v = p is finite and n > 0, then we
also put U™ = {z € Uy| ordy(z — 1) > n}.

Let A = Ap be the adele ring of F and I = Ip the group of ideles.
Let | - | : Ir — R* be the absolute modulus, i.e. [(xy),| = [], |zv|o for
(7y)y € Ip. For a finite subset S C Pr we let A (resp. I¥) denote the S-
adeles (resp. S-ideles) and put Fg = [], g F\,. We also define U® = [Togs Uv
and Us = [[,eqUv. For T C Pg = {2,3,5,...,00} and S = {v € Pp |
vlg € T} we often write Fr, AT 17 etc. for Fg, A%, I° etc. We also
write U?, U, UpS, Up ete. for U}, Upy USYS | 75US= ete. and use a
similar notation for adeles and ideles. Thus for example for a finite subset
S of PR, I denotes the set of S U Sac-ideles and for ¢ € Pg we have
Fr=F®Q=]],cq, Fo-

We fix an (additive) character ¢ : A — C* which is trivial on F. For
v € Pp let ¢, denote the restriction of ¢ to F, — A. For convenience
we choose 1) so that Ker(yy) = O, for all p € S,. Let dx (resp. dz,)
denote the associated self-dual Haar measure on A (resp. on F,). Thus
dr = [],dz,. For v € Pr we define a normalized Haar measure dz; on
Fy by dz) = mvéﬁ where m, = (1 — ﬁ)*l if v € P and m, = 1 if
v € So. For a character x : I/F* — C* and v € Pp we denote by x, its
v-component, i.e. x, : Ff — I X5 C*. The Gauss sum T(x) = 7(x, ) of x
is then defined as 7(x) = [ I,y 7(xp)-
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We denote by F} the totally positive elements of F and by G(F)" (resp.
G(F)™") the subgroup of G(F) (resp. G(Fx)) of elements with totally pos-
itive determinant. The subgroups B(F)* C B(F) and T(F)* C T(F) are
defined similarly. Furthermore we define subgroups K, C Ko, C G(Fx) as
the image of O(2)Hom(FR) € GLy(F.) and SO(2)Ho™(FR) ynder the projec-
tion GL2(Fu) = G(Fx) (thus K = Koo N G(Fxo)™).

There is a canonical G(F)"-action on HY! where H: = {2z € C |
Im(z) > 0}; the embeddings oy, ...,04 allow us to identify G(F)t with
(G(R)*Y)¥! and the latter group acts on H*! through linear transforma-
tions factor-by-factor. For g = (go,...,94) € G(Fx)" and z = (29, ...,24) €
H! we define j(g,z) = ngoj(gl,,zl,) where j(v,2) = det(y)"V?(cz + d)

if y = <CC‘ Z) € GR)*, z € H.

Let n be a non-zero ideal of Op. For v € P¥ we put Ky(n), = {4 €
*

GOy A= (0 :) mod nO,} and set Ko(n) = HUGP%O Ko(n),. If S C
P we also put Ko(n)® = HveP%LS Ko(n)y.

3.1. Rings of functions on ideles and adeles.

The module C%(F,, K). Let v be a finite place of F' and let K be a Haus-
dorff topological field (in the application v will be a place above p and K a
p-adic field). We identify C.(F;, K) with the submodule {f € C.(F,, K) |
f =0near 0} of C.(F,, K) and define

C’(Fy,K) = C%F,,K)+ C.(F*, K).

Both C.(F*, K) and C’(F,, K) are F-submodules of C.(F,, K). For f
C.(F¥,K)Y and x € F the infinite sum

O- @ @)= fl@ ")
n=0 n=0

is finite and one easily checks that Fif — K, x — (3,7, @"f)(z) extends to
a function in C%(F,, K) which will be denoted by (1—w)~!f. For example if
f =1y, then (1—w)~1f = 1p,. Thus we obtain a F*-equivariant K-linear
monomorphism

(37) CF' K)Y" — CYUF,,K), fr (1—wm)"Lf.

Its image is CY(F,, K)U». Hence if we consider the following two-step filtra-
tion F* on C%(F,, K)

(38) F)=CUF, K), Fy=CXF,K)%, Fl=0
then we have for the associated graded F;-modules gr’z = F'/ Frtl

ColF} K)[Co( LK)V ifn =0,
(39) gy, = S Co(Fi K)V ifn=1,
0 otherwise.



ON SPECIAL ZEROS OF p-ADIC L-FUNCTIONS OF HILBERT MODULAR FORMS 23

Note also that
(40) Co(Fy LK) = Cu(F /U, K) = Indj} K,
Co(Fy K)/Co(Fy LK)V 2 Ind(f (Co(Uy, K)/K).
The module %’(S,So, K). Consider now two (possibly empty) disjoint
subsets S1, 52 of S, and let R be a topological Hausdorff ring. We define
%(Sl,SQ,R) = C(FSl X FS*Q X Ip’oo/lﬂn’oo7 ),
%o R) = Co(Fs x Fg, x I"® /U™, R),
Ce(51,52,R) = C.(Fs, x Fg, x I /UP> R)
¢ R) = C°(Fs, x F§, x "> /UP> R).

)

We have
€2 (51,52, R) € %.(S1, 592, R) C 6o(S1, 52, R) C €(S1, 52, R).
Note that if R carries the discrete topology the first three rings are all equal.

Assume now S U Sy = Sp and assume that K = R is a field. We define
the submodule €2 (S, Sz, K) of €,(S1, Sz, K) as the image of the embedding
Q) Co(Fy, K) @ Co(I2° JUP™ K) — %,(S1, 52, K).

VEST
We have €2(S1, 82, K) C %.(S1,52,K) C %.(S1,52,K). The filtrations
(38) on C3(F,, K) for all v € Sy induce a filtration F* on € (51, S2, K). For
n = (Ny)ves, € Z% put |n| =3, ny. Then F™C2(F,, K) is defined as the
image of

B | R FCURK) | @ C.AS®/UP® K) — €S, Sa, K).

ﬂeZSlJﬂ‘:m 'UESl

We get for the associated graded quotients gr't = F™/ Frtl

(41) af = D | Qu | ©CA5=/Ur= K).

|ﬂ|:m ’UGSl

Let E4 be the group of totally positive units of Op. We fix a splitting of the
exact sequence 1 = Fy — Ff —T': = Fi/E, — 1, i.e. we fix a subgroup
T C F} such that Ff = E; x T.

Proposition 3.1. €°(S1, Sy, K) is a free K[T]|-module.

Proof. It is enough to prove that each graded quotient gr'’? and therefore
each summand in (41) is a free K[T]-module. Since
ISI.oo

Co(I°/UP>® K) = Indjs, o Co(US>°/UP™ K)

we deduce using (39) and (40) that each summand in (41) is isomorphic to
a K[I™]-module of the form Indlw V for some K[U]-module V. Hence it
is free a K[T]-module. Indeed, since by assumption 7 N U = 1 we have
Indlo vV = @?:1 Ind] 2;V (as T-modules) where {z1,..., 2z} is a set of
representatives of I°°/U>T =1 /U*F7 (cf. [4], Prop. 5.6, p. 69). O



24 BY MICHAEL SPIESS
3.2. Computation of 9((log, oN)¥) for k=0,...,r.

Definition of 0. Assume again that S;US2 = S, and that R is a topological
Hausdorff ring. Let G, = Gal(M/F) be the Galois group of the maximal
abelian extension M /F which is unramified outside p and co. We shall now
construct a canonical homomorphism

(42) 0:C(Gp, R) — Hy(F7, (51,52, R)).
Firstly, there exists an isomorphism
(43) C(Gps R) — Ho(F}/Ey, H(E+,%.(0, S, R)))

defined as follows. Let E+ be the closure of E in U, and let pr : I®°/UP> —
I®°/(E, x UP*°) denote the projection. The map

C.(I®/(E4 x UP™®),R) — H (B4, C.(I®°JUP™, R)), f+ fopr

is an isomorphism. Hence its inverse induces an isomorphism
(44) _
Ho(F?/ By HO(Ey, Co(I® [UP™,R))) 2 Ho(Fy./ By Co(1 /(B X UP),R)).
The reciprocity map of class field theory p : I/F* — G, induces a surjection
p:I°/(E4 x UP™) — G, whose kernel is discrete and = 7 /E,. It follows
that the map
(45) Pt Ho(Fr/Ey, Co(I®/(E4 x UP™), R)) — C(Gp, R)
defined by p*([f])(p(z)) = ZceFi/E+ f(Czx) is an isomorphism as well. The
map (43) is the composite of (44) with (45).

Let A be any F}-module. Next we construct a homomorphism
(46) Ho(F;/Ey, H'(Ey, A)) — Hy(F%, A)

Since £, = Z¢ we have Hy(E,,7Z) = 7. Choose a generator 1 of Hy(E,,7Z).
Since the action of F}/E, on Hg(E,,Z) is trivial, taking the cap product
with 7 yields an Ff /E4-equivariant map H(E,, A) — Hy(E4, A) hence

(47) HO(Fi/EJrvHO(EJrvA)) _>H0(F—T-/E+7Hd(E+vA))
We define (46) as the composite of (47) with the edge morphism
(43) Ho(F} /By, Ha(Ey, A)) > H(F?, A)

of the Hochschild-Serre spectral sequence.

There is in fact a canonical choice for 7. Consider the action of E
on RITY = {(zq,...,24) € R Z?:o x; = 0} given by a - (zo,...,zq) =
(log(oo(a)) 4o, .. ., Jog(oa(a)) +24). The d-dimensional manifold RE™ /E.,
is oriented and compact. We chose n € Hy(E,Z) so that it corresponds
to the fundamental class under the canonical isomorphism Hy(FE4,7Z) =

Hy(RI/E,,Z) (thus n depends on our chosen ordering of the real places
of F).

Finally we define (42) is the composite of (43), (46) (for A = €.(0, Sp, R))
and the map Hq(F7,6.(0,Sp, R)) — Hy(F,%.(S1,52, R)) induced by the
inclusion 6(0, Sp, R) € 6.(51, 52, R).
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Fundamental homology classes. We put r = §(51), m = #(S,) and order
the places above p, so that S1 = {p1,...,p,} and So = {pri+1,..-,Pm}-
Beside n € Hy(E4,Z) we consider two more canonical homology classes 1
and p. To begin with we introduce the following F}-action on R R" and
I.S'l,oo/US1,oo

a-(xo,...,xq) = (log(oo(a))+ xg,...,log(oq(a)) + z4),
a-(yi,...,yr) = (ordp, (a)+yi1,...,ordp, (a)+y),
a- (To)ogsiUSee = (a%y)ogs U -

Let M be the submanifold of R¥! x R” x I91:%° /{751:%° defined by the equa-
tion
d r

S = | Y log(Np)ys | + | D, log(lzwls) | =0
7j=1

vZS1US o0

=0
and put M;: = R" x I91:°° /U791 We have

Ho(M,Z) = Ho(My,Z) = Co(I5>° /U, 7)
where the first isomorphism is induced by the projection M — M;j. The
group F7 (resp. I': = F}/E.) acts properly discontinuously on M (resp.
on M;) and the projection 7 : M/F{ — M;/T" is a fiber bundle with fiber
~ RH1/E, (in fact it is easy to see that it is trivial i.e. it is homeomorphic

to the trivial bundle M; /T x R*1/E, over M;/I"). The base M{/T is a
compact oriented r-dimensional manifold.

Definition of 4. Define ¥ as the image of the fundamental class under the
composition

Hyir(M/F?,Z) 2 Hyyr(FY, Ho(M, Z)) = Hy oy (FF, Co(IS0° /US> 7))
(49)  — Hyy, (F7, Co(I9°/UP® 7)) = Hyyr(FF, 6o(0, 52, Z))

where the last map is induced by the projection I51:%° /TP — 51,20 /{7 51,00,
If R is arbitrary topological Hausdorff ring, then — by abuse of notation —
we denote the image of ¥ under the canonical map Hgy,(F7,%.(0, S2,Z)) —
Hyyr(F5,6(0, S2, R)) also by 9.

Definition of p. Let 7 be any subgroup of F} such that 7 N E, = {1}
and T E, has finite index in F} (we are mainly interested in the case F7} =
E; x T) so that the group T acts properly discontinuously on M;. Let
o7 € H.(T,C.(I5°°/UP> 7)) be the image of the fundamental class of
the oriented r-dimensional compact manifold M;/7 under the canonical
map

Hr(Ml/T, Z)) = HT(T, Ho(Ml,Z)) & HT(T’ CC(ISLOO/USLOO,Z)
— H, (T, Co(I9>° /UP>, 7,))

Remarks 3.2. (a) If 7 and 7' are subgroups as above with 7/ C T then
we have res(o7) = o77.

(b) Let 71 = {z € T|ordq(x) = 0Vq & Si}, let T2 be a subgroup of
T with T = 71 x T3 and let F5 be a fundamental domain for the action
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of 75 on I91:°°/UP> such that Ug,F = F. Then C.(I5:°/UP>® 7) =
Indg:1 C(F2,Z) hence by Shapiro’s Lemma

(50) H,(T,C. (I /UP>® 7)) = H,(Ti,C(Fa, 7))

Let o1 € H,(T1,Z) = H,(R"/T1,Z) be the fundamental class of R"/7;. Then
01 ® 17, is mapped to g7 under

(50)
Ho(Ti,2)® C(Fo, )™ 25 H (T, C(Fo, Z)) = H,(T,Co(I50°°)UP> 7).

For a subgroup 7 C FY such that F} = E x T we shall explain the
relation between the homology classes o7, 7 and . Consider the Hochschild-
Serre spectral sequence

Bl = Hy(Ey, Hy(T,Co(I%° JUP>® 7)) = Hpyq(Fr, Co(I9°/UP>, 7).

Here we have qu =01if p > d or g > r (the latter follows from (50) above
since 77 is free-abelian of rank ). Thus we get an isomorphism Eg = Eqy,
ie.
(51)

Hy(Ey, Ho (T, Co(T5° /US> 7)) 2 Hyy (FL, Co(I9° /US> 7).

The next result follows easily from the definitions of 1, o7 and 9.
Lemma 3.3. o7 is mapped to ¥ under the composite

(52) H, (T, Co(T800 UP==, 2)) 2+ 0 Hy(B,, H, (T, C.(19 [UP=, 7))

(51)
> Hy, (Fr, Co(I51%° JUP, 7)),

Recall the definition of cohomology classes defined in 2.11 (b).

Definition 3.4. Let p € S, let R be a topological Hausdorff ring and
let £ : FY — R be a continuous homomorphism. We denote by ¢y €
Hl(Fp*,Cc(Fp,R)) the cohomology class of the 1-cocycle (31) (i.e. of the
cocycle zy(a): = (1 —a)({ - 1p,) fora € F}).

By abuse of notation we shall write ¢, instead of res(c,) € H*(H, Ce(Fp,
R)) for any subgroup H of F;. We are interested in the case H = F7,
R = C, and either £ = ordy or £ = log,oNp, g, and will derive a formula
for (Cgpl U...Ucg, ) NY in both cases.

We begin with the first case. Let H: = {z € F}| ordy(z) =0V p € S1},
Hi: ={x € Ff|ordpy(z) =0V p € Sy} and let F; denote a fundamental
domain for the action of Hy/E; on IP>®/UP*>. Put X: = [[,cq Op ¥
[lpes, Op X F1 C Fg, x Fg, x IP"*>°/UP*°. The characteristic function of
X clearly lies in HO(Ey,6°(S1,S2,7Z)), hence defines an element [1y] €
Ho(F{/Ey, H(E+, (1,52, 2))).

Proposition 3.5. Forp € S, put ¢y = cora, € H*(F,CO(Fy,Z)). We have

e(12]) = (-G (¢, U...Ug,) NV
Here € denotes the map (46) for A = €°(S1, S2,Z).
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Proof. Similar as above we denote by 01 € H,(F}/H,Z) the homology
class which corresponds to the fundamental class of R"/F7} under the natural
isomorphism H,(F}/H,Z) = H,.(R"/F},Z). By taking the cap product
with 7 we can identify C,(I51>°/U5v>°, Z)F+ with Hy(Ey, C.(19>° /U
Z)). Note that F: = {1} x F1 C F§ /Us, x IP®/UP>® = I91: /7 51,0
is a fundamental domain for the action of H = H/E;. Hence if D: =
Co (19020 /U1 7) then Ho(H,D) = Ho(H,Ind? C(F,Z)) = C(F,Z) and
Hq(ﬁ, D) = 0 for ¢ > 0. Consider the Hochschild-Serre spectral sequence

E}, = Hy(F}/Ef, Hy(E',D)) = Epyq = Hpyo(Fi,D).
We have qu =0if¢>dand Egd ~ H,(F}/E;,D) = Hy(F}/H,Hy(H,D))
=0if p > r. It follows Eg,, = Efd. Define
* N * ~ *
(53)  H.(F;/E+,D) ™5 H,(F /B, HiEY,D)) = Hyy, (F,D)
49
N Hy (P2, 600, S5, 2)).
Using Lemma 3.3 it is easy to see that [1r] ® o1 is mapped to ¥ under
H(F:/H, Hy(H,D)) ® H.(F}/H,Z) % H,(F*/H, Hy(H, D))
53
~ H,(F: /B, D) %2 Hyy (F2 6.0, 5, 72)).
Note that we can view ¢, = Corq, as an element of H'(F}/H,C2(F,, Z)").
The assertion thus follows from
(-1 (e, U Uen) N o1 = [log,] € Ho(F}/H,CO(F,, 7))
where Og, = Hpe 5 Oy. For that put zp = zoq, for p € S1 and choose gener-
ators ty, ...,t, € I’{ /H such that ordy, (;) = 1 and ordy, (t;) = 0 for all j # 1,
1 < j <r. Note that zoq,, (i) = tilo,, and zorq,, (tj) = 0 for j # 4. Since
the fundamental class of R"/(t1, ..., t,) is the cross product of the fundamen-

tal classes of R/(t1),...,R/(t;) the r-cycle ) s sign(o) [ty [to(r)] is
a representative of o1 (see [18], Ch. VIII, 8.8). Hence

Z sign(o) zp, (to(1)) @ to(1)2p2 (to(2)) @ - D to(1y - - - to(r—1)2p, (to(r))
O’ES’/‘

.
= ()@ @z, (t) = [[ti-log,
=1

is a representative of (—1)(;) (cpy U...Ucp,)Nor1. O

We consider (42) for R = C,, i.e. 0 : C(Gp, Cp) — Hy(F'f,6.(51,52,Cp)).
Let N': G, — Z,, be defined by v¢ = (N for all p-power roots of unity (.
The following proposition is the key computation of this paper.

Proposition 3.6. For p € S1 put £,: =log,oNp, g, : Fy — Cp. We have
(a) ((log, oN)*) =0 for all k =0,1,...,r — 1.
(b) 8((log, oN)") = (=)&) (cp U... U ) N
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Proof. We choose again a subgroup 7 C F'} such that I’} = E x 7. We
denote by £ : I — Q, the composite

lo
126, N 2,

and for a place v of F' let £, : F, — Ip i> Qp be the v-component of /.
Note that for z = (x,) € Ir we have ¢,(z,) = 0 for almost all v and

Ux) =Y Ly(wy).
q

Let F C I*°/UP**> be a compact open fundamental domain for the action
of T such that U,F = F. The function (log, oN)* is mapped under the
inverse of (43) to the class of £*1%.

Since z,(a) = (1 —a)(£-1p,) is a 1-cocycle with values in C(Fy,Cp) we
can view ¢g, as an element of H*(FJ, C’(Fy,Cp)). Therefore the right hand
side of (b) can be viewed as an element of Hy(Ft, 6. (S1, S, Cp)). Note also
that ¢*17 lies in H(E4,%?(S1,S2,Cp)). Therefore it suffices to show that
the class [(*17] € Ho(T, H'(Ey,€(S1,S2,C,))) is mapped to 0 (resp. to
(—1)(2)(@1 U...Ugc,)) under

46 .
Ho(T, HY(Ey, 62 (S1, 55, Cp))) &3 Ha(F7,€2(S1, 52, C,))
for k=0,...,r —1 (resp. for k =r).
After this preliminary remark we prove (a). Consider the commutative
diagram

HO(Ta HO(E+7cgcb(Sl> 527([:17))) - HO(E+7 HO(Ta Cgcb(slv S2acp)))

| a0 o

Hy(F3,62(S1, 52,Cp)) —2 Hy(E., Ho(T,62(S1, S, Cp)))

where the upper horizontal arrow is the canonical map induced by the in-
clusion H(E,,%?(S1,Sa,Cp)) < €.(S1, S, Cp). By Prop. 3.1 the coinfla-
tion He(F%, 62 (S1,S2,Cp)) — He(Ey, Ho(T,%.(S1,S2,Cp))) is an isomor-
phism. Hence it remains to prove that the image of [¢*1£] under the upper
horizontal map vanishes, i.e. we have
(54) 1y € I(T)6)(S1,82,Cp)  forallk=0,1,...,7r —1
where I(7) C C,[T] denotes the augmentation ideal.

We may shrink 7. In fact if 7/ C T is a subgroup of finite index then it fol-
lows from Prop. 3.1 that res : Ho(T, %€ (S1, S, Cp)) — Ho(T",€.(S1, S, Cp))

is injective and if F/ C I°°/UP"* is a fundamental domain for the action of
T then we have res([(*17]) = [¥17].

Hence we may assume that
(55) T=T,xTP and  Tp=(t1,....tm)

with ordy, (¢;) > 0 and ordq(t;) = 0 = ordy, (¢) for all i € {1,...,m}, t € TP
and all finite places q # p;. Put F;: = F},,, O;: = Op, and F;: = O; —t;0; for
i=1,...,m. Let FP C I»*°/UP**° be a fundamental domain for the action
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of TP. Then F: = [[;%, F; x FP C I*°/UP> is a fundamental domain for
the T-action.

r l
We also denote by ¢, resp. ¢ the map £, : Ip RN Fy = Ip — Qp resp.

oIy 25 I < Ip N Qp so that ¢ = £, + (P and £, = > ", ¢; where
b =ty for i = 1,...,m. We will show

(56) *1r € I(T,)6.(51,5,Cp)  forallk=0,1,...,r —1

where I(7,) C C,[T,] denote the augmentation ideal. Since t /¥ = ¢? for all
t € T, this implies

(57) by (Y 17 € I(T,) €. (51, 52,Cp) € I(T)%2(S1,52,Cy)
for all k,j > 0 with £ <r — 1 and therefore (54).
For 2 C {1,...,r} we set

52:HO¢X H./_"ZX ﬁ ]—"ix]-"p

i€= icze i=r+1
where Z¢ denotes the complement of Z in {1,...,r}. For n = (n1,...,ny)
€ N with n; = 0 for all ¢ € Z we let A(E,n): = ([[%, 6) - 1 €

%€2(S1, 59, Cp) i.e. A\(E,n) is given by

m (A Y p,00 .
- pooy | Ty Lis) if (z1,...,%m,2P>) € Fz;
AE n) (1, ... 2, 2P = { 0 otherwise.

Put |n|: =", n; and n! : = [, n;!. Then,

(58) Glr= ) k’—iA(@,@).

n!
In|=k =
Thus (56) follows from

Lemma 3.7. If £(Z) + |n| < r then \(Z,n) € I(T,)6.(S1,S2,Cp).

Proof. We first remark that for two functions f,g : I*°/UP*° — C, and
t € F* we have

A=0)(f-9)=(A=0)f)- g+ (A=t)g) = (A =1)f) (1 =1)g).
For n,n’ € NJ' write n’ < n if n] < n; for all i and n’ # n. By using
(1 —t)€;)(x) = £i(x) — £;(t7'2) = £;(t) one can easily show that we have

/

(59 a-o e =Y o I 4
=1 =1

n'<n
for some a,y € Cp. In fact if n’ € Nj' with n’ < n and |n/| = |n| — 1 and if
ie{l,...,m} with n} =n; — 1 then
(60) an = nil;(t).

We prove the assertion by induction on |n|. Assume first that n = 0 =
(0,...,0). Let i € 2¢ (¢ # 0 since §(E) < r). Then

AE,0) = (1 - t)AEU {i},0) € I(T,)€(S1. 52, C).
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Now assume that |[n| > 0. Since §(E) + > ;.= n; < #(E) + |n| < 7, there
exists j € Z¢ with n; = 0. Put Z’': = ZU {j}. Modulo I(7,)%”(S1, Sa,C))

we obtain

61) AEn) = [[61==]]6" 0—t)ix,
=1 =1
= 1=t)AEn) = (-t [T &) 1 + (-t ] 6 - 1
=1 =1

—(@ =t ] &) 1m + (=) ][] €)1
=1 =1

y (59) and the induction hypothesis we have

((1 —tj)ﬁ () ry, € Y CAE 1) CI(T,)%.(S1,5,Cp)
i=1 n'<n
and
(-] 10 € 3 CAG) € IT)E(S1,5,C,)
i=1 n'<n
hence A\(Z,n) € I(7,)%?(S1,Sa, Cp). O

™ 0 17 — modulo I(T)€?(S1, S2,C,) — as a
linear combination of a particular subset of {\(E,n)| 4(£) + |n| = r} (this
will be used in the proof of Prop. 3.6 (b) below). For that we need to
introduce more notation.

For = C {1,...,r} and a map f : £ — {1,...,m} we let n(f): =
(B(F1), ..., 8(f~1(m))) € N2 If in particular f : = — {1,...,m} is
the inclusion we write n(=) rather than n(f). We define

= AEn(@) = ([ &) - 17

€S

Next we want to write (3 ;-

A

[1

Note that Az = []..= A; where for i € {1,...,7} we have

€2

Nit = Ay = b LFoc([Ta s 09X QT Fi) TP
Lemma 3.8. Modulo 1(T)%(S1,S2,C,) we have

A+ fl(tl)A@ 2 (tz)A@ e fl(tr)/\@
m lo(t1)A Ao+ la(ta)Ny ... Lo(t)A
(3 61y = rtdet 2( %) 0 2 ?( 2)Ag ' 2( ') 0
im1 : : . :
£, (tl)A@ Er(tg)/\@ R fr(tr)A@

Proof. For 2 C {1,...,r} we denote by M(Z) C Maps (E,{ m}) the

set of maps f:ZE — {1,...,m} with f(S) € S for all S C 75(2)
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Let n € NJ* with #(Z) 4 |n| = r. Firstly, we show that modulo I(7)%(S1,
Sa,C,) we have

(62) AE, n)

n! Z (—1)lntf)] (H ff(i)(tz‘)) Aze_y

(1, f) €Y
where the sum runs through all pairs (Y, f) with Y C =€ and f € M(Y)
such that n(f) +n(E°—-7T) =n.

In the case n; > 0 for all i € Z¢ we show that both sides of (62) are
= Azc. Since |n| > $(E°) = r — () = |n| we have n = n(E°) hence
A(E,n) = Azc. On the other hand if Y CE°and f: T — {1,...,m} is a
map with n(f) +n(2° - T) = n, then n(f) = n(2°) - n(2° - T) = n(Y)
and therefore f(Y) = T, hence T = ). Consequently, the left hand side of
(62) consists of only one summand Azc.

Suppose nj = 0 for some j € =°. By Lemma 3.7, (59), (60), (61) we get

)‘(37@) = - ((1_tJ)H€?Z> '1-7:Eu{j}
=1
= - ) aw AEU{L)

n/<n,|n'|=|n|-1

= =) npp b () AEU G} )
(fm')

where the last sum runs through all pairs (f,n') with f € M({j}) and
n(f) +n' =n. Now (62) can be easily deduced by induction on £(Z°).

By (58) and (62) (for = = ()) we have

63 O eyir = > (nEEN ST T Gt | A=
i=1

=EC{1,...,r} fEM(E€) i€Ee
On the other hand

A+ fl(tl)A@ 2 (tQ)A@ - gl(tr)/\@
ﬁg(tl)A@ Ao + fz(tQ)A@ - gg(tr)A@
det ; } . ) = az A=z
: ‘ h : 2C{1,...r}
Cr(t1)Ag Cr(t2) g ceo N0 () Ay
e’il (til) 67:1 (tZk)
where az = det (£i(t;)); jeze = det : : if 2¢ = {i1 <

i (i) oo Ly (t)
Note that > 1", £;(t;) = log,(Ng/q(ti)) = 0 since Ny q(t;) is a power of
p (for all i € {1,...,m}). The assertion follows from (63) and the following
result about determinants. U

Lemma 3.9. Let k < m be positive integers and let (aij),_y ;. iy, be

a k x m—matriz with entries in a commutative ring such that Z;"Zl aj; =0
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foralli=1,...,k. Then,
k
det (ai;); ;1 4 = (—1)* Z H @if (i)
f o=l

where the sum runs through all maps f : {1,...,k} — {1,...,m} with
f(S)Z S forall S C{1,...,k}, S#0.

Proof.?2 By replacing a;; with — D g Gij I Y g, sign(o) [T:2) aio;) and
expanding the sum we get

det (aij); =y = >, (=D " sign(o) [ aiwi) [] aige
(E,o.9) i€E i€=e
where the sum ranges over all triples (E,0,¢9) with & C {1,...,k}, o is a
permutation of = without fixed points and g is amap Z¢: = {1,... k} -2 —

{1,...,m} without fixed points.

Let f:{1,...,k} — {1,...,m} be a map without fixed points and let
= C{1,...,k} bethelargest subset with f(Z) = Z. If we decompose the per-

mutation f|z into disjoint cycles o1 - - - oy of length Iy, ...,1;, then it is easy
to see that the coefficient of [JF_, aippy is (1) H;Zl(l + sign(a;)(—=1)%).
Thus it is = 0 except when Z = (). O

Proof Prop. 3.6 (b) We first show
(64) ["17] = (-1)&) (e, U...Ucy ) Nor

in Ho(T,%.(S1,52,Cp)). As before if T’ is a subgroup of finite index of
T the injectivity of res : Ho(T,%”(S1,52,Cp)) — Ho(T',€.(S1,52,Cp))
together with res(o7) = o7 implies that in order to prove (64) we may
shrink 7 so we can assume that 7 is of the form (55).

By (57) we have modulo I(7,)%2(S1, S2,C,)

r

T r j r—j — yr - T
iy = (j)eg,(ep) N =61r = 6)1F
7=0 =1

so we may replace ¢"1x by (3%, £;)"1F on the left hand side of (64).

We will use the notation of the proof of part (a). Furthermore we put
Ti: = (tr,.. te), To: = (trg1,- . tm) X To and Fo: = [[2, | Fi x FP so
that 7 = T1 x T, F = H;:l Fi; x Fo and Foy is a Ti-stable fundamental
domain for the action of 75 on I91:%° /P>,

Since o1 € Hy(T1,Z) = H,(R"/T1,Z) can be represented by the r-cycle
> ses, Sign(o) [toyl - - - [ts(] (compare the proof of Prop. 3.5) together
with Remark 3.2 (b) we conclude that

> sign(o) 24, (to(1) @ to)2, (o)) @ - - @ tor) - - tor—1)26, (to(r) @ 17,
O'GST

2Due to V. Paskunas
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is a representative of (—1)(;) (co, U...Ucp,)No € Ho(T,€2(S1,S2,Cp)). We
have

2, (t5) = 0ililF, + i(tj)1lo, and  trze(tj) = 20, (1))
(modulo K -1g£,) for all ¢, 5,k € {1,...,r} with j # k. Hence by Lemma 3.7
we obtain

20, (to(1)) @ to(1) 26, (tr(2)) @ -+ - D to1) -+ - to(r—1) 20, (to(r) ® 17,
= (b1o0)11r + 0 (te1)1o) ® .. ® Groylrlr, + b(to)lo,) @ 17,
(modulo I(7)) for all o € S,. Now (64) follows from Lemma 3.8.
To finish the proof of Prop. 3.6 (b) consider the commutative diagram

No(res x id)

H'(F}, C(Fs,)) x H (T, Ce(I51% [UP>)) Er Ho(T, 62 (51,52))"+

No(id x (52)) A

Ha(F:,€2(S1,52))
where C2(Fs,) = C%(Fs,,Cp), Ce(I%:2°/UP®)) = C.(I51>° /UP> C,) etc.
and the maps res and coinf denote the restriction and coinflation with re-
spect to 7 < F'f (recall that the latter is an isomorphism by Prop. 3.1).
By (64) the image of the pair (¢, U...Ucy,, o7) under the composition of
the upper horizontal map, the right vertical map and the inverse of coinf is

(—1)(2)8((logp oN)"). On the other hand its image under the first vertical
map is (cg; U...Ucp, ) NY. O

Hy(E+,Ho(T, %2 (51, 52)))

Remark 3.10. For p € {£1} let e(u) € Z/27 be given by p = (—1)¢W),
Let ©: = {£1}9"1. We write elements of ¥ in the form pu = (ko, . . ., ftq)-
Define the pairing { , ): 3 x ¥ — {£1} by (i, v) = (—1)2i el Let
C be a field of characteristic zero. For a C[¥]-module V and p € ¥ we put
Vi={veV|vw=(v,pv Vv € X} sothat V=EP, 5 V. For v € V we
denote by v, € V, its projection to V). If p = (+1,7.. .,+1) we shall also
write vy instead of v,.

We identify F*/F} with ¥ via the isomorphism F*/F} = F} /Uy =
Hg:o R*/R% = ¥. Hence for any F*-module M we obtain an action of
¥ on Hy(Fi,M). Note that ¢ is Y-invariant (since ¥ acts trivially on
Hyir(F%, Co (1950 /U512 7)) as well as the cohomology classes defined in

Def. 3.4. Consequently, the cap-product (cg, U...Ucy, ) N for £, = ord,
or £, =log,oNF, g, is -invariant.

3.3. p-adic L-functions attached to cohomology classes. Let 51,55
be arbitrary (possibly empty) disjoint subsets of S,. For a ring R and an
R-module M put

P(S1, S, M)=Dist(Fs, x F§, x "> /UP*> M)=Hompg(%, (51,52, R), M).
It is easy to see that the functor M — 2(S1,S2, M) is exact. Let
(65) (, )i D(S1,8, M) x €2(S1,5,R) — M
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be the canonical (evaluation) pairing. Also for p € S by (7) we obtain a
pairing

P(S1,S2, M) x CY(Fy, R) — 2(S1 — {p}, Sa, M).
If H is a subgroup of I*® and M is an R[H]|-module we define a H-action
on 2(S1,S2, M) by requiring that (z\,zf) = z(¢, f) for all z € H, f €
%CO(Sl,Sg,R) and \ € 9(51,52,]\4).

If K is a p-adic field and V' a K-Banach space then we denote the subspace
of measures of Z(51,52,V) by

2"(S1,82,V) = Dist’(Fs, x F§, x I /UP>® V).

The pairing (65) when restricted to 2°(S1, S2, V) extends canonically to a
pairing

(66) (, ) 2°(S1,582,V) x (51,82, K) — V.
Also for p € Sy by (9) we obtain a pairing
(67) P°(S1, 52, V) x Co(Fy, K) — 2°(S1 — {p}, S, V).

Assume now that S U S = S,, H = F} and that F} acts trivially
on M. Again, we order the places above p so that S; = {pi1,...,p,} and
Sy ={pr+1,.-.,Pm}. The pairing (65) yields the bilinear map
(68)

N: HYF, 9(S1,Sa, M)) x Hy(Ft,€2(S1, 52, R)) — Ho(Fi, M) = M.

For k € HY(F}, 9(S1, 52, M)) define p,; € Dist(G,, M) by
(69) | s@mian = xnocs)
9

for all f € CY(G,, R).

Suppose now that R = K is a p-adic field and M = V a finite dimensional
K-vector space and let k € HY(F%, 2°(S1, S2,V)). By abuse of notation we
denote its image under HY(F}, 2°(S1,S2,V)) — HY(FF, 2(51,52,V)) also
by k. It is then easy to see that pu, is actually a measure. Thus we obtain
a map
(70) HYEY, 2°(S1,52,V)) — Dist®(G,, V), k= pts.

The integral C(Gy, K) — V,f — fgp fux admits also a description as a

cap-product. More precisely (69) holds more generally for all f € C(G,, K)
(where 0 denotes now the map (42) for R = K equipped with the topology
induced by | |, and the cap-product is induced by (66)).

Recall that N : G, — Z, is defined by v¢ = CN (™) for all p-power roots of
unity ¢. For s € Z, and v € G, we put (7)°: = exp,(slog,(N(7))).

Definition 3.11. Let K be a p-adic field and V a finite-dimensional K-
vector space. We define the p-adic L-function of k € Hd(Fj‘_, P°(81,52,V))
by

Lp(s k): = / (7)" s (dy).-

9p

The main result of this chapter is the following
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Theorem 3.12. Let r: = §(S1) and let k € HY(F:, 2°(S1, Sa,V)).
(a) Ly(s, k) is a locally analytic V -valued function on Z,. We have
ords—o Lp(s, k) > 7.
(b) Forp € Si put by: = log, oNp, g, : Iy — K. For the r-th derivative of

Ly(s,k) at s =0 we have

r

LO0,5) = (-1)&) 1l (kU UL Ve, )00,

Here the cup-product is induced by (67) and the cap-product by (66).
Proof. We have

L]()k) (0,k) = /g (log, oN)* e (dy) = kN d((log,, oN)F)

for all kK € N. Hence the assertion follows from Prop. 3.6. O

Remark 3.13. The group ¥ = F*/F} acts on HY(F},2(S1,52,M)) or
Hi(F;,2°(S1,52,V)). Let G be the Galois group of the maximal abelian
extension of F' which is unramified outside p. By class field theory we have
an exact sequence F*/F} = F% /Uy — G, — gp+ — 1, which yields an
action of ¥ on G,. It is easy to see that (70) is ¥-equivariant. The fact that
v = (y)* factors through G, — G/ implies that Ly (s, ) = Ly(s, k) for all
k € HYF?,2°(S1,52,V)). Also by Remark 3.10 we have & N (cep, U ... U
¢, ) NY = k4 N (e, U...Ucg, ) NY.

3.4. Integral cohomology classes. For a given cohomology class « €
HY(F7, (51,52, C)) we will introduce a condition — called integral — which
guarantees that p, is a p-adic measure (in the sense of section 1.2) and which
allows us to apply Theorem 3.12. To begin with we define the module of
periods of k.

Definition 3.14. Let k € HY(FF,2(51,52,C)) and let R be a subring of
C. The image of

Hd(Fi,%CO(Sl, S, R)) — H()(Fi, C) =C, r—kNz

will be denoted by Ly, g. If R C Q then it is called the R-module of periods
of k.
Lemma 3.15. Let R C Q be a Dedekind ring.
(a) If ' O R is a subring of C then L, r = R Ly R.
(b) If k # 0 then L, g # 0.

Proof. (a) Since €2(S1, 59, R') = €°(S1,52,R) ® R' and R’ is flat R-
algebra we have Hy(F,62(S1,52,R)) ® R’ = Hq(F%,62(S1, 52, R)).

(b) By (a) it is enough to show L, ¢ # 0. This follows from the fact that
the pairing (68) (for M = R = C) is nondegenerate. O
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Definition 3.16. A cohomology class k € HY(Ft,2(S51,52,C)), k # 0
is called integral (or more precisely p-integral) if there exists a Dedekind
ring R C O such that k lies in the image of HY(FF, 2(S1, 52, R)) ®p C —
HYFt,9(51,52,C)). If in addition there exists a finitely generated R-
submodule M C Hd(Fj;,.@(Sl,SQ,R)) of rank < 1 (i.e. rankg M /Moy < 1)
such that k lies in the image of M ®p C — HY(F*, 2(S1,S2,C)) then k is
called integral of rank < 1.

Proposition 3.17. Let k € Hd(Fjﬁ, 2(S1,S2,C)). The following conditions
are equivalent.

(i) k is integral (resp. integral of rank < 1).

(ii) There exists a Dedekind ring R C O such that L, r is a finitely generated
R-module (resp. Ly g is either =0 or an invertible R-module).

(iii) There erists a Dedekind ring R C O, a finitely generated R-module M
(resp. an invertible R-module M of rank 1) and an R-linear map f : M — C
such that k lies in the image of the induced map f. : HY(F, 2(S1, S2, M))
— Hd(Fi, @(Sl, Sa, (C))

Proof. We consider only the case of arbitrary rank and will leave the
necessary modifications to the rank < 1 case to the reader.

(i) = (ii) Let R be as in Definition 3.16. If we write x in the form x =
S Qg with k; € Im(HY(FY, 2(S1,52, R)) — HYF, 2(51,5:,C)))
and €2; € C then LK,R C RO+ ...+ RQ,.

(ii) = (iii) Consider the diagram

HY(F;, 2(S1, 52, Lu.r)) —— Homp(Hy(F;,62(S1, 52, R)), L, r)

l |

HYF},2(51,52,C)) —— Hompg(Ha(F;,%. (51,52, R)),C)

where the horizontal maps are induced by the cap-product and the vertical
maps by the inclusion L, r < C. By the universal coefficient theorem
the lower horizontal map is an isomorphism and the kernel and cokernel of
the upper horizontal map are R-torsion. Hence some multiple a - k with
a € R, a # 0 is contained in the image of the left vertical map. Define
f:Lgr—CQ— a Q.

(iii) = (i) We may assume that M = R" (for example replace M by f(M)
and f by the inclusion and then enlarge M if necessary). Let Q4,...,9Q, €
C"™ be the images of the standard basis under f. It follows

keIm(f) = Q- Tm(HY(FL, 2(S1,5, R)) - HY(F;, 2(S1,5,0))).
i=1
U

Corollary 3.18. Assume r € HY(F%, 9(S, S2,C)) is integral and let R C
O be as in Definition 8.16. Then,
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(a) wy is a p-adic measure.

(b) The map HY (%, P(S1, 52, Ly g)) ® Q — HI(F*, 2(S1, S2,C)) is injec-
tive and k lies in its image.

Proof. (a) The image of C°(G,,0) — C, f = [ f du, is contained in
L, 5. The assertion follows from Proposition 3.17.

(b) follows from the proof of (ii) = (iii) above. O

Let k, R be as above. By abuse of notation we define the p-adic L-
function of k by Ly(s,k): = fgp (7)1 (dy). Because of (b) we can view k
as an element of Hd(Fj, P(51,52, Ly Rr)) ®R Q. Put V,, = L. r®grC, and
let ¥ denote the image of k under the homomorphism
(1) HYFL, 2(S1, 52, Li,r)) @ Cp — HUFL, 7°(51,52, Vi)

induced by the obvious map Z(Si,S2, Ly r) — 2(51,52,Lsxr) ®r Cp —
2°(81, 82, V,.). Tt is easy to see that the & does not depend on the choice of
R. Since Ly(s,k) = Ly(s, k) we can apply Theorem 3.12.

Corollary 3.19. Assume k € Hd(Fj_, P(51,S2,C)) is integral. For p € Sy
put by =log,oNp, q,. Then,
(a) ords—g Ly(s, k) > r.

() LY (0,5) = (~1)&) 11 Ry Uey, U...Uc,, )N Y.

3.5. Another construction of distributions on G,. Let A(G,,) be the
space of smooth C-valued functions on I/F™* which are rapidly decreasing as
|z| = oo or |z| = 0 (ie. for f € A(G,,) and N > 0 there exists a constant
C > O such that | f(z)| < |z|~V for |z| > C and |f(x)| < |z|" for |z| < C~1).
Let S1, 52 be disjoint subsets of S, with S; U S = S,. We consider maps
¢ : €2(S1, S2,Z) x F*, — C with the following properties
(i) For 2o € FY, the map ¢(-,za0) : 62(S1,52,Z) = C, f = ¢(f, )
lies in Z(S51, 52, C).
(ii) For all f € €2(S1,S2,7Z) the function
I X FL —-C, z=(2%2x) ¢(x7f, )
lies in A(G,,). In particular we have ¢(f,£xs) = O(f,200) for all
e Fr.
We denote the space of all ¢ satisfying (i),(ii) by D(Gy,, S1). Note that the
map
CB<F51 X F§27Z) X CCO(IPQO/UP,OOvZ) — Cgco<‘s’17 SQ; Z)? (f7g) = f g
induces an isomorphism CQ(Fs, X Fg , Z)RCQ(IP>° JUP>, 7) = 62(S1, S, Z)
and that any element of C?(IP>°/UP*° 7Z) can be written as a finite sum of

the characteristic functions of elements of I?*°/UP*>°. Hence we can (and
will) view an element ¢ € D(G,,, S1) also as a map

(72)  ¢:CP(Fs, x F§,, Z) x I JUP™ — C, (f,2") = ¢(f, zP).
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For f € CO(Fs, x F§,,Z) we denote by ¢y € A(G,,) the map

I=F xIP = C, ¢s(xpa?): = d(x,f, ")
In particular for a compact open subset U of Fg, X F'g, we define ¢y € A(Gy,)
as ¢U = ¢1U'

Given ¢ € D(Gyp, S1), f € CO(I/F*,C) and s € C we define the integral
fI/F* f(@)|x]°p(dx™, 2o0)d* o as follows. By Lemma 3.20 below, there

exists an open subgroup U of U, such that f(zpu,aP) = f(xp,2?) for all
(wp,2P) € Fy x IP and u € U. We set

(73) f(@)|z¢(da™, woo)d" 200 = [Up : U]/ f@)z* ey (z)d”x.
I/F* I/F+

It is easy to see that the integral does not depend on the choice of U.
Moreover since ¢y is rapidly decreasing it is holomorphic in s. Hence there
exists a unique distribution p = pg on G, such that

[ omatin = [ sloteotany,a)aar
Gy I/F*

for all f € C°(G,,C) (here p: I/F* — G, denotes the reciprocity map).

Lemma 3.20. Let X be a set and f :1/F* — X be a locally constant map.
Then there exists an open subgroup U of I, such that f factors through
I/F*U.

Proof. Since Uso = [[,¢5.. R} is connected, f factors as I/F* — I/F*Ux

L X and since I/F*U,, is profinite, f factors through a finite quotient of
Ip/F*Us. O

We will construct now a cohomology class k = ks € HY(F%, 2(S1, S2,C))
such that pg = p,. Put SO = SO = Sy — {oog} = {o01,...,004} and
Ul = [Teso R We write elements of Fiog = Fig, X Fgo as pairs (zo, 20).
For ¢ € D(G,y, S1) we denote the function

€(S1,50,Z) x Flo — C, (f,2%) / 6(f, w0, 2%)d" 20
0

by [;° ¢ d*xg. It is easy to see that we have ([;° ¢ d*zo)(¢f,&a") =
(Jo° & d*z0)(f,2°) for all £ € Ff. Therefore we obtain a homomorphism

(T4) DG, S1) —> HUFL, D(S1, 85, C®(UL))), 6> /0 ~ ¢ d*ao.

Here C*°(UY,) denotes the ring of smooth C-valued functions on U2, (the
homeomorphism A : U% — R = R (z,) — (log(x,)) provides U2, with
the structure of a real manifold). Note that U2, carries the canonical d-form
d*zy...d"xq = Huesgo d*x, so we obtain a map

(75)  C®°UY) — QUUL,C), frs flxr,...,xq) d*x1...d"zq
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Define
(76) D(Gp, S1) — HYF}, P(S1,52,C)), ¢+ kg
as follows. Put C* : = 2(51, S2,Q°(UY,,C)). Since Uy, ~ R?, the complex
C* is a resolution of Z(S,52,C) and we have C* = 0 if i > d. The map
(76) is the composite of (74) with the map
(77) HY(F3,2(S1,S2,C*(UL))) — HY(F;,0% — HY(F:, 2(S, Ss,C))

where the first arrow is induced by (75) while the second is an edge morphism
of the spectral sequence

I HI(FY,CP) = EPT1 = HPYI(FY C%) = HPTI(F?, 9(S4, S5, C)).

Proposition 3.21. For ¢ € D(Gy,, S1) and k = ks € HY(F}, 2(51,55,C))
we have fLy = fik.

Proof. Define a pairing
(,):D(Gy,S1) x C*G,,C) — C
as the composite of the product of (74) and (43)with the map
(78) HO(F, (81,52, C*(Uy,))) x Ho(F}/Ey, H(Ey, %))
% Ho(F}/E, H(E,,C*(UY))) — Hy(F}/E;,C)=C

(where €: = €°(S1, S2,7Z)). Here the first map is induced by (65) and the
second by

(79)  H%E,,C>®UY)) = C, f+ f(zr,. .. xq)d ... d"zq.
US/E+

A simple computation shows that

f) :/g F(V)pg(dy).

for all f € C°(G,,C). Thus, we need to show 4 NA(f) = (¢, f), i.e. we have
to show that the diagram

(80) HO(Fi,@(Sl,SQ,COO(UO >< H() Fj:/E+7 E+7
(78)

/

Hd( .@(51752, XHd

(77)xe
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commutes. For that consider the commutative diagram

HO(FJ:J@(SDSQ?COO(U&)) X Ho(Fi/E+,HO(E+7<€)) — HO(Fi/E+7HO(E+7COO(UgO)))

i/id xXmn lﬂl
HO(F, (81,52, C®(UX))) x Ho(F{/Ey, Ha(Ey,€)) — Ho(F{/Ey, Ha(Ey,C=(UY,)))
¢/3><id \L4
HO(F;, 2(81,82,Q4(U%)) x Ho(F}/Ey, Ha(E,€)) — Ho(F}/E1, Ha(E+,Q%(U)))
ilid X5 ¢/6
HO(F, (51, 82,Q1(UL))) x Ha(F},€)) ————— Ha(F},24(U))

¢/7><id ¢/8

HY(FY, 7(S1,85,C)) x Ha(F7, %) Ho(F3,C) =C

Here the horizontal maps are cap-products induced by the pairings (65).
The maps 3 and 4 are induced by the map (75), the maps 5 and 6 are edge
morphisms in a Hochschild-Serre spectral sequence and 7 and 8 are edge
morphisms of a E'- (resp. Ej-) hyper(co-)homology spectral sequence for
the resolution 0 — C — Q°(U%) — QY (UY) — ...

The commutativity of (80) follows once we have shown that the com-
position of the right column of vertical maps is induced by the map (79).
However this can be easily deduced from the commutativity of the obvious
diagram

HY(Ey, C*(Ug)) —— HY(E4,QUUY)) —— HY(EL,C)

J{rm [ lrm

Hy(E4,C*(UY)) — Ha(E, QUUY)) — Ho(E+,C)

and the fact that the trace map Hfp (M) — C, [w] — [,,w for a d-dimen-
sional oriented manifold M corresponds under the canonical isomorphism
HE. (M) = HE (M) to the map = — x N7 where 7y denotes the funda-

sing

mental class of M. O

For ¢ € D(Gm, 51) put ¢o = du, where Uy = [[,cq, Op X [lyes, Op-

Corollary 3.22. For p € Sy let ¢y = coa, € H'(F},CL(Fy,Z)) be the
cohomology class of the 1-cocycle (31) for ¢ = ord,. Then we have

/ do(z)d*x = (—1)(2) (k4 Ucp U...Ucp,) N
I/F*
Here the cup-product is induced by (67) and the cap-product by (66).

Proof. We use the notation of Prop. 3.5. Note that F; C IP*°/UP* ig
a finite set and X = Up x F1 so we have 1y = Y _r2ly, (where F: =
{1} x F1, X = Up x {1} C F; x I /UP° = I /UP*°). Because of the
commutativity of (80) and Prop. 3.5 it is enough to prove that the pair
(Jo" ¢ d*xo, [1x]) is mapped to fI/F* ¢o(x)d*x under the pairing (78). In
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fact by definition of (78) the pair is mapped to
/ d(1x, 2oy xq)d*xo ... d 24
Uso/E+

Z / d(xlxy, oy, xq)d*xg ... d zg

zeF Y Us/Ext
= / po(x)d*z = / ¢o(z)d”z
Ry xXEXF Ry xEXUpxF
= ¢o(x)d*x
1/F*
where £ C Ugo is a fundamental domain for the action F,. O

4. p-ADIC L-FUNCTIONS OF HILBERT MODULAR FORMS

4.1. p-ordinary cuspidal automorphic representations. Let 7 = ®, m,
be a unitary cuspidal automorphic representation of G(A). Thus 7 is an
irreducible direct summand of the right regular representation of G(A) in
L% (G(F)\G(A)). If the archimedian local representations , are discrete
series then a p-adic L-function L,(s,m) for m can be defined. The first
construction under certain restrictions on 7 is due to Manin [19]; a con-
struction in most generality (based on earlier work of Panchishkin [23]) is

due to Dabrowski [10]; see ([10], sect. 12) for further references.

In this section we shall give another definition of L,(s, ) well-suited for
the proof of the weak exceptional zero conjecture. We assume that 7 has
parallel weight (2,...,2) and is p-ordinary. The first condition means that
7y = D(2) is the discrete series representation of G(R) of lowest weight 2 for
all v € S and the second that m, is ordinary for all p € S, in the sense of
section 2.2. We shall attach an element ¢, € D(G,,, S1) to 7, show that the
corresponding cohomology class kr = K, is integral and define Ly(s, ) as
the p-adic L-series associated to k. (here S; denotes the set of p € .S, with
mp = St).

We introduce some notation. Firstly, we denote by 2o(G,2) the set of all
unitary cuspidal automorphic representation m of G(A) of parallel weight
(2,...,2). For each p € S, we fix an ordinary parameter ¢, € O and put
ap = oy + N(p)/ay. As before we let m = §(S,) and r be the number of
p € Sp with oy = 1. We choose an ordering p1, ..., p,, of the places above p
so that ap, = ... = ap, = 1. We write F}, o; and a; instead of F,,, ap, and
ap, and put o = (a1,...,qy,) and a = (a1, ..., an). Moreover we denote by
2o (G, 2, ) the subset of m € Ao(G, 2) such that 7y, = 7w, fori =1,...,m.

For m € 2y(G, 2, a) and a finite set of places S of F' we put s = ®yes Ty
and 7 = @ugs Ty. We also write o, Tp oo, 7 ete. for ﬂsw,ﬂspusm,ﬂs"o
etc. For each finite place q of F' we denote by f(my) the conductor of 74 and
we set f(m): =[] f(mq). Thus the multiplicity ordy(f(7)) of p € S, in f()
is = 1 if ap = &1 and = 0 otherwise.
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4.2. Adelic Hilbert modular forms. In section 4.6 we shall define a cer-
tain element ¢, € D(G,y,, S1) for m € Ag(G, 2, ). Firstly, we need to recall
the notion of a Hilbert modular cusp form of parallel weight (2,...,2) (in the
adelic setting). It is a function ® : G(A) — C with the following properties

(i) For v € G(F') we have ®(vg) = ®(g).

(ii) For any g € G(A), keo € KL we have ®(gkoo) = j(koo, i) 2®(g).

(iii) For any g € G(A®), z € H*! define f5(z,9): = j(goo,1)*P(goos 9)
where goo € G(Fx)™ is such that gt = z (by (ii) fa(z,g) is well
defined). Then z — f3(2, g) is a holomorphic function on H+!,

(iv) There exists a compact open subgroup K of G(A>) such that ®(gk)
= ®(g) for all k € K and g € G(A).

(v) (Cuspidality) For any g € G(A) we have

Jow (0 D)o)ee=v

We denote by Ag(G, hol,2) the space of all functions ® satisfying (i) —
(v) above. It is a left G(A°)-module via the right action on G(A). For a
compact open subgroup K C G(A>) we set So(G, K) = Ag(G,hol, 2)%. If
K = Ky(n) for an ideal n of Op, we write S2(G,n) instead of S2(G, Ko(n)).

Let ® € Ao(G,hol,2) and let fp be as in (iii) above. We define

oo(P)
(81) / f‘I?‘(ZOazla'”aZd)g)dZO
o0(Q)
by integrating the function zy — fs (20, 21,...,24,9) along the geodesic in

H from o¢(Q) to o¢(P). Using the well-known fact that fs(z,g) for fixed
g € G(A™) rapidly decreases at the set of cusps P'(F) of H*! it is easy to
see that (81) is well-defined and that

oo(P) oo(R) oo(R)
/ fq;(Z(),...)dZo—i-/ f<I>(Z07---)dZO = / fq>(20,...)d2’0
o0(Q) oo(P) o0(Q)

for all P,Q, R € P}(F).

Let Div(P'(F)) be the free abelian group over P!(F) and let M =
Divo(P'(F)) be the subgroup of elements >y mil; € Div(P(F)) with
deg(>>%—; miF;) = >75_; m; = 0. The natural G(F)-action on PY(F) in-
duces a G(F')-action on M. For g € G(A*°) we obtain a homomorphism

M —>Oh01(Hd), m — / f¢,(z0,zl,...,zd,g)dzo
oo(m)
which coincides with (81) for m = P — . For m € M we define
/ we(g) = (/ ) f@(Zovzl,---,Zd,g)dZ()) dzy...dzq € ngl(Hd>'
m ao(m

We let the group G(F)* act on H? via the embedding G(F)* — (G(R)*)4,
vy (01(7),...,04(7)). A simple computation using (i) shows

(2) ¥ ( / ) wmg)) - [ wola)



ON SPECIAL ZEROS OF p-ADIC L-FUNCTIONS OF HILBERT MODULAR FORMS 43

for all y € G(F)*, g € G(A®) and m € M. The integral [ wg(g) will be
used in the construction of the Eichler-Shimura map (85) in section 4.5.

Definition 4.1. (a) We denote by Ao(G,hol,2,a) the C-vector space of
maps ® : G(AP) — BLF,,C) such that

(i) There exists a compact open subgroup K of G(AP>°) such that ®(gk)
= ®(g) for all k € K and g € G(AP).
(ii) For ¢ € B,(Fp,C) the map

(@,9) : G(A) = G(Fp) x G(AP) — C, (gp, ") = (gp - ¥, 2(g"))
lies in Ap(G,hol,2).

Ao(G,hol, 2, a) is a left G(AP>°)-module via the right action on G(AP>).

(b) For a compact open subgroup K C G(AP™) we set So(G,K,a) =
Ao(G,hol,2,a)X. If K = Ko(m)P where m is an ideal of O which is rela-
tively prime to pOp, we shall write So(G,m, a) instead of So(G, Ko(m)P, a).

Remarks 4.2. (a) Let m € (G, 2, a). It is easy to see that

Ag(G,hol,2) = Homg(r,) (Tee, L(G(F)\G(A))),
Ao(G,hol,2,a) = Homgp xr..) (Tpoo: Li(G(F)\G(A)))

as representations of G(A>) and G(AP*°) respectively.

(b) Assume that F' has narrow class number 1. Let n be a non-zero ideal
of Op and let T'y(n) be the subgroup of matrices A € SLo(QO) which are
upper triangular modulo n. Then S3(G,n) can be identified with the space
S2(To(n)) of usual Hilbert modular cusp forms of parallel weight (2,...,2)
on I'y(n). Moreover if the ideal m of OF is relatively prime to pOp and if n
is the product of m with all p € S, with o, = £1 then So(G, m, a) can be
identified with the subspace of f € Sy(I'g(n)) which satisfy (i) T,f = apf
for all p € S, with oy # 1, (ii) f is p-new and U, f = a,f for all p € S,
with o, = +1. Here, if p { n (resp. p | n) T, (resp. U,) denotes the Hecke
operator at p.

4.3. Hecke Algebra. We recall here a few facts about the Hecke algebra of
G(A?®) (a reference for what follows is e.g. ([5], 3.4 and 4.2) or ([6], 1.2-4)).
Fix a finite set of places S of F' containing So,. Let dg denote the Haar
measure on G(A®) normalized such that [, dg =1 for K = [logs G(Ov).
For a field Q of characteristic zero we denote by Hg = Hg(as) the Hecke
algebra of G(A®) with coefficients in €, i.e. it is the convolution ring of
locally constant compactly supported Q-valued functions on G(A®) (see [5],
p. 309). If K C G(A®) is any compact open subgroup then we let ’H}%Q
be the subspace of K-biinvariant functions in ’H%. Let q € Pr — S and
assume K = K’ x G(Oy) for some compact open subgroup K’ of G(AY)
where S” = SU {q}. Then H%Q is isomorphic to the tensor product of
’Hf(/,ﬂ and the Hecke algebra Ho(G(Fy),G(Oq4)). For the latter we have

Ha(G(Fy), G(Oy)) = Q[T}] (see [5], 4.6.5) so in this case /Hf(Q = ’HS/,’Q[Tq].
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Recall that the concepts “smooth Hg—module” and “smooth Q-repre-
sentation of G(A®)” are interchangeable. In the following we view a smooth
Hg-module often as a smooth G(A®)-module and vice versa. A sequence of
smooth Hg-modules Vi — Vi — V3 is exact if and only if VK — V£ — VK
is exact for all compact open subgroups K of G(A®). We call a smooth
representation V of G (AS ) semisimple if it is isomorphic to a direct sum of
smooth irreducible representations of G(A®). A smooth representation V of
G(A®) is irreducible if and only if VX is either zero or a simple 3. -module
for all K. More generally it is easy to see that a smooth represehtation %4
of G(A?®) is semisimple if and only if V¥ is a semisimple 'Hf(,ﬂ—module for
all K.

Let V and W be smooth Hg—modules and assume that V' is irreducible
and W is semisimple. Let Ky be a compact open subgroup of G(A®) such
that Vo £ 0. Then the canonical map Homgas)(V, W) — Homy,s (VKo

0

WHo) is an isomorphism. For that it is enough to assume that W is irre-
ducible in which case the assertion follows from ([6], Prop. on p. 38).

For 7 € (G, 2) the complex representation 7° of G(A®) is an example
of a smooth irreducible representation. It is also known that 75 can be
defined over a finite extension of (. More precisely there exists a smallest
finite extension 2 = Q, C Q of Q (the field of definition of ) and a smooth
irreducible Q-representation G(A®) — GL(V) such that 7° = V ®q C as
G(A?®)-representations. By abuse of notation we also write 75 (resp. 73K)
for the H3-module V (resp. for the H3-module VE). For a field C con-
taining Q,, a compact open subgroup K of G(A®) and a smooth semisim-
ple C-representation W of G(A®) we write W, for HomG(AS)(WS,W) =
Homg a5y (V ®aC, W) and WK for HomHi(VK, WHEY., Alsoif f: W' = W
is a homomorphism of smooth semisimple G (A®)-representations we denote
the induced homomorphism W/ — W, of C-vector spaces by fr. We have
WE =W, if K C Ko(f(r))® and WE = 0 otherwise. If K = Ky(f(r))?,
then 75 is one-dimensional as a ,-vector space [8]. Thus the action
of ’Hf( is given by a homomorphism A, : Hf{ — Qp (it is known that
Ar(Tq) lies in the ring of integers of Q). In this case we have W = {w €
WE | tw = M\ (t)w Vt € HE}. We also remark that if W — W — W”
is an exact sequence of smooth semisimple representations of G(AS ) then
W — W, — W/ is exact as well.

Finally, a representation W of G(A®) will be said to be of automor-
phic type if W is smooth and semisimple and the only irreducible subrep-
resentations of W are either the one dimensional representations or the
representations 75 for 7 € Ag(G,2). By strong multiplicity one, if W
is of automorphic type then W is independent of the set S in the fol-
lowing sense. Let S’ D S and K = [] co_g K(f(7)),. Then we have

/

HOIHG(AS/)(TI'S JWEY = HOH]G(AS)(T('S,W) (this fact will be used in the
proof of Prop. 4.8 below).

4.4. Cohomology of PGLy(F). In this section we introduce and study
the cohomology groups of certain G(F)*-modules <7 (a, M, C) on which the
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group G(AP*°) acts smoothly and so that each m € y(G, 2,a) occurs with
multiplicity 29+ in HY(G(F)T, /(a, M, C)) (see Prop. 4.8 below).

Let H C G(F) be any subgroup and let M be a left G(F)-module. Let
R is a ring and N an R[H]-module. For a finite subset S of P% we denote
by o7 (S, M;N) the R-module of maps ® : G(A%>®) x M — N such that
®(g,—) : M — N is a homomorphism and such that there exists a compact
open subgroup K of G(A%%®) with ®(gk,m) = ®(g,m) for all k € K,
g € G(A®®) and m € M.

We have commuting G(A%>)- and H-actions on 7 (S, M; N); the first
is induced by right multiplication on G(A®*) and the second is given
by (v - ®)(g,m) = v®(y1g,7 'm). For a compact open subgroup K C
G(A%®) we set o (K,S,M;N) = o/ (S,M; N)X. If K = Ko(m)® for an
ideal m of Op not divisible by any q € S we write </ (m,S,M;N) for
o (Ko(m)®,S,M;N). If S = () we will often drop S from the notation,
i.e. we write &/ (M; N), o (K, M;N) etc. for &/ (S,M;N), o/ (K,S, M;N)
etce.

In contrast to our previous notation in this section we denote by Si,
Sy subsets of S, with S1 C Sy C S,. We define the G(AS2°°)-H-module
JZ{(QSNSQaM;N) by

W(QSNS%M;N) :JZ{(S%M;%Q(FSUN))

Also for a compact open subgroup K C G(A®*) we put o7 (K, ag,,S2, M;
N) = o (ag,,S2, M;N)¥ and if K = Ko(m)*2 for an ideal m of O not
divisible by any p € Sy we set @/ (m, ag,,S2, M;N) for d(Kg(m)SQ,gSI, So,
M;N). If S = S; = Sy (resp. S1 = S2 = Sp) (we deal mostly with the latter
case) we shall drop Sz (resp. S7 and S2) again from the notation, i.e. we put

A (ag, M;N) = (ag,5 M;N) = (S, M; #*Fs,N)),
A (a, M;N) = (ag,,Sp, M;N) = A(Sp, M; B*(F},N)).

So o/ (a, M; N) can be identified with the R-module of maps ¢ : G(AP*>°) x
M x %B4(Fy, R) — N which are invariant under some compact open subgroup
of G(AP>).

The pairing (34) induces a pairing
(,):4(ag,,S2, M;N) x B,(Fs,,R) — o/ (So, M;N)

hence a homomorphism <7 (ag,,S2, M; N) — B4 Fs,, o/ (S2, M; N)) which
becomes an isomorphism when restricting it to K-invariant elements

(K, ag,, S, M; N) — B%Fs,, (K, Ss, M; N))

(for any compact open subgroup K C G(A®>°°)). Similarly, for any p € S
and Sp: = 51 — {p} we have an isomorphism

o

(83) (K, ag,,S2, M; N) — B (Fy, & (K, ag,, S2, M; N))
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Remark 4.3. Assume that M is free as an abelian group. For a compact
open subgroup K C G(A%>) we have

(K, ag,, S, M;R) = Coind$ ™™™ Homy (M, #%(Fs,, R))

=} Coindf((ASQYoo) Homp(M ®z #4(Fs,, R), R)

Since %4(Fs,, R) is a free R-module we see that the R-module <7 (K, ag, , Sa,
M; R) is isomorphic to a product of copies of R.

Assume now that R = C,, let O = Oc,, so that L = &/(K, ag,, S2, M;O)
is a complete lattice in V = &/ (K, ag,, S2, M; O) ®o C,, (see section 1). Let
p € S such that ay = 1 and Sy = S1 — {p}. By (83) the vector space
(K, ag,,52,M;0) ®0o C, can be identified with Dist”(F}, V) and so the
evaluation map (6) extends to a pairing Dist?(F,, V) x Co(Fp, Cp) — V,
i.e. we have a canonical bilinear map

(K, ag,,S2, M;0) @0 C, x St(F,,Cp) — (K, ag,, 52, M;0) @0 Cp.

It will be used for the construction of the L-invariants L£,(7) in the next
chapter.

The next result follows immediately from (21) and (22).
Lemma 4.4. Let S C Sy, letp € S and let So: = S—{p}. Let K C G(AS>)
be a compact open subgroup and put Ko = K x G(Oy), K1 = K x Ko(p)p.
(a) If oy # 1 then the following sequence is exact

(Tp—ayp)

0 — (K, ag,M;N) — (Ko, ag,,M;N) 4 (Ko,ag,,M;N) — 0

(b) If oy = £1 then there exists a short exact sequence
0> (K,ag,M;N) - o (Ky,ag,,M; N)V=F! - o/ (Ko, ag,,M; N) =0
where W = W, is a certain involution acting on o/ (K1,ag,, M;N).

Remark 4.5. The involution in part (b) above induces an involution — also
denoted by W, — on the cohomology groups H*(G(F)*, o/ (K1,ag,, M; N)).
In particular if n is an ideal of Op such that p devides n exactly once we have
an involution W, acting on H¥1(G(F)*, o/ (n, R)). This is the analogue of
the Atkin-Lehner involution. As in the classical case we have W, = —U, on
H(G(F)*, o (1, R)).

Proposition 4.6. Let S1 C S2 C S, and let K be a compact open subgroup
of G(AS2>),

(a) Let N be a flat R-module (equipped with the trivial G(F')-action). Then
the canonical map

Hq(G(F)fd(K,Qsl,SQ,M;R)) ®r N — Hq(G(F)fd(K,Qsl,SQ,M;N))
is an isomorphism for all ¢ > 0.

(b) If R is noetherian then HI(G(F)Y o/ (K, ag,,S2, M; R)) is a finitely gen-

erated R-module.
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Proof. (a) The sequence 0 — M — Div(P!(F)) = Indgg; Z—7—0
yields a short exact sequence
) +
(84) 0 — & (K,ag,,5;N) — Comdggg+ (K, ag,,52; N)

— (K, ag,,5, M;N) — 0

(where &/ (K, ag,,S2; N): = & (K,ag,,S2,%Z; N)). By considering the asso-
ciated long exact cohomology sequences it is enough to prove the assertion
when we replace the coefficients @7 (K, ag, , S2, M;-) with & (K, ag, , So;-) or

Coindgggi (K, ag,,S2;-) (here we use the flatness assumption). Further-

more using Lemma 4.4 it is enough to consider the case S; = ), S = S5.

Since &/ (K, S,Z; N) = Coind?{(Asm) N it suffices to show that

HYG(F)*, CoindSA") R) @ N — HI(G(F)*, CondZ ™™™ N)
HYB(F)*, CoindSA") R) @ N — HY(B(F)*, CoindSA"™) )

are isomorphism for all ¢ > 0 and all R-modules N. For that it is enough

to prove that the functors N — Hq(G(F)JF,Coindi(AS’OO)N) and N —

S,00
HY(B(F)*, CoindIG((A 'N ) commute with direct limits (since any module

is the direct limit of free modules of finite rank). For g € G(A%%) put
I, =G(F)TNgKg~!. By the strong approximation theorem there are only
finitely many double cosets G(F)TgK in G(A%>®). If gy,..., g, € G(AS>)
is a system of representatives then

HYG(F)*, Coind 32”7 Ny = @ HUT,,, N).
=1

Since the group I'y is S-arithmetic, hence of type (VFL), the functor N —
HY(Ty, N) commutes with direct limits (see [24], p. 101). The same proof
works for HY(B(F )ﬂCoind%Asm) N) as well. Indeed using the Iwasawa
decomposition G(A%>®) = B(AS)]]
B(F)*\G(A®>)/K is finite.

(b) can be deduced using similar arguments and the fact that the groups I'y
are S-arithmetic and ([24], remarque on p. 101). O

G(O,) one can easily see that

vfoo

Let S; C S2 C S, be as before, let R be a ring and let M be a left
G(F)-module. We define

Hg(G(F)—Fv%(QSl)SQ?M; R)) = hi>n Hq(G(F)—F’M(KaQSl?SZaM; R))

where K runs through all compact open subgroups of G(A°2>°). By 4.6 we
have

Corollary 4.7. Let S C S, and let R — R’ be a flat ring homomorphism.
Then the canonical map

HY(G(F)", (a5, M; R)) ®p R’ — HI(G(F)", o/ (ag, M; R'))

is an isomorphism for all ¢ > 0.
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If R = Cis a field of characteristic zero then H{(G(F)", o/ (ag,,S2, M
C)) is a smooth G(A%2>)-module and it is easy to see that we have

HY(G(F)*, o (as,, S2. M; C))" = HUG(F)", o/ (K, ag,, S2, M; C)).

We identify G(F)/G(F)* with the group ¥ = {#1}%*! via the isomophism

G(F)/G(F)* dety F*/F} =2 ¥ (compare Remark 3.13). Hence X acts on

HY(G(F)*, o/ (as,, Sz, M; C)) and HI(G(F)", o (K, ag, , 2, M; C)) by con-
jugation.

Proposition 4.8. Let S C S, and let C be a field containing the field of
definition of m € Ao(G, 2, ).

(a) The G(AS>)-representation H{(G(F)*, .o/ (ag, M;C)) is of automor-
phic type for all q € Z.

(b) Let p € 3 and q € {0,1,...,d}. Then

C ifg=d
HYG(F)", (a5, M;C))ry = {0 gg<d—1.

Proof. Firstly, we assume S = (). Consider the long exact sequence
. — H{(G(F)",(C)) — H{(B(F)",(C)) —
— HI(G(F)*, o/ (M;C)) — HITYG(F)T,«(C))...
th
(F

associated to (84) (the second group is defined similarly as the direct limit
of the groups HY(B(F)", o/ (K,C))). The action of G(A*) on H{(G(F)T,
o/ (C)) and H{(B(F)",«(C)) has been determined in [16]. As a G(A>)-
module HI(G(F)*", &/ (C)) is a direct sum of one dimensional representa-
tions except for ¢ = d+ 1 in which case there exists a G(A>°)-stable decom-
position

Hf+1(G(F)+,JZ{(C)) — H4t1 @Hd+1 @Hd—i-l

cusp res Eis -
Again, the action of G(A>) on the second and third summand is direct sum
of one dimensional representations. On the first factor it is of automorphic
type and we have ([16], 3.6.2.2)
HEN(GF)Y, o (C))ry = C.

cusp

Using 4.4, (a) can now be easily deduced from the case S = ). For (b) we
may pass to the Ko(m)®-invariant part H4(G(F)*, o (m, ag, M; C)),, where
m denotes the maximal prime-to-S divisor of §(r). By keeping in mind that
the Hecke operator T, (resp. U, = —W,) acts by multiplication with a,
(resp. £1) on HY(G(F)*, o/ (ag, M;C))x for p € S with ap # £1 (resp.
ap = £1) and S’ € S — {p}, (b) can also be deduced from the case S = 0)
using Lemma 4.4. O

4.5. Eichler-Shimura map. For the rest of this chapter we change the
notation slightly again and denote by S1 = {p1,...,p,} the subset of p € S,
such that a, =1 (i.e. mp, = St) and put Sz = S, —S; (thus with our previous
notation we have S = {p1,...,p,} and S = {pr41,...,Pm}).
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Let K C G(AP**) be a compact open subgroup. Our aim is to define a
HY5>°-equivariant homomorphism (Eichler-Shimura map)

(85) S2(G, K,a) - HYG(F)", o (K,a, M;C)), & ko.

Its definition is similar to (76) (the role of the manifold Uy with its natural
F-action is replaced by H*! with G(F)™ acting on it). Firstly, define
(86) In: $2(G, K,a) — HY(G(F)", o (K, a, M; Q) (H?)))

by

(Io(®), ) (g, m) = / Wi (L.9)

m

for ¢ € Cy(F},C), g € G(AP*°) and m € M (here (1, g) denotes the element
(1a(r,): 9) € G(Fp) x G(AP>) = G(A™)). That the image of I is G(F)"-
invariant follows from (82) by a tedious but straightforward computation.
Note that the complex C*: = (K, a, M;Qp (H?)) is a resolution of
o (K,a, M;C) and we have C? = 0 for ¢ > d. We define (85) to be the
composite of (86) with the edge morphism

H(G(F)*,CcY — HYG(F)T,C*) 2 HYG(F)", o/ (K,a, M;C))
of the spectral sequence E¥Y = HI(G(F)",CP)= EPT1 = HPYI(G(F)T,C*®).
Next we define two maps
(87) A%: S9(G,mya) — D(Gp,S1)
(88) A% o (m ag,, Sp, M; N) — 2(SoNS1,8 NS, N)

(for Sy any subset of S,) which are global analogues of the map 0% defined
in section 2.5. The first is given by

se@rat) = o= (o 9)) w0 = (o5 7))t

for f € CY(Fs, x F§,,Z) and 2* € I? and the second by
P 0
AX(@)(f,2P) = 5 (@(( . 1) oo o)) ()

(7 -0 an

for f € CY(Fsyns, ¥ F§ ns,» Z) and 2P € IP°° (as usual oo, 0 denote the
points [1 : 0] and [0 : 1] of PL(F) so oo — 0 € M).

One checks easily that (88) is T'(F')-equivariant (we let T'(F') act on Z(SpN
51,80 N S, N) via the identification T = G,,). Hence the maps F} =
T(F)" — G(F)", A%: o/ (ag,, M;N) = 2(So N S1,50 N Sz, N) induce a
Y-equivariant homomorphism

(89) Hq(G(F)+,%(m,gsl,Sp,M;N)) — HI(F}, 2(S0NS1,5NS2,N)).

The proof of the following lemma is straightforward and will be left to the
reader.
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Lemma 4.9. The following diagram commutes

So(Gm, )~y HAG(F) o (m,a, M; C))

lAﬁ l<89)

DG, 81) s HAF:, 9(Sy, S, C))

4.6. p-adic measures attached to Hilbert modular forms. Let 7 €
A0(G,2, ). As in section 2.6 let ju,, denote the distribution xa, (x)¥y, (z)dz
on F; (resp. F}") if i < r (resp. i > r) and let pir, = fia; X ... X [q,, be the
product distribution on Fg, X F§2.

For v € Pp let W, denote the Whittaker model of 7, and let W = W(r)

be the global Whittaker model. We can choose W,, € W,, such that the local
zeta function

e = [ W ) vl taa

is equal to the local L-factor L(s, T, ® x,) for any unramified quasicharacter
Xv : Fif — C* and Re(s) > 0. In fact if v € Sy we can choose W), such that
Wo(gk) = j(k,i)2Wy(g) for all g € GLa(R) and k € SO(2). If v is finite
we can (and will) take W, to be Ky(f(m,)),-invariant. It is then uniquely
determined ([8], Theorem 1). If 7, is spherical (i.e. ord,(f(7)) = 0), then
Wy, = Wy is the unique G(O,)-invariant element of W, with W, o(g) = 1
for all g € G(Oy). Put WP(g) =[]y, Wu(gv) for g = (g0) € G(AP).

We define ¢ = ¢ : C2(Fs, x F§,,Z) x I /UP*° — C in D(Gy, S1) by

o(fah)i= ) wm (CH) WP (C“' (1))

(er™

That ¢, is well-defined follows from 2.10 (b). In fact for f € CO(Fg, x Fs,,Z)
there exists an element Wy of the Whittaker model W, of m, = Ques, Ty

such that
osta): = s(atm) = 5w (1)

CEF™

where W (g): = Wy(gp)WP(gP) for g = (gp,g") € G(A). It follows ¢, €
D(Gp,S1). Let pir: = pg, be the corresponding distribution on G, and
Knt = kg, € HY(F},2(51,52,C)). We have

Proposition 4.10. (a) (Interpolation property) Let x : G, — C* be a char-
acter of finite order with conductor §(x). Then

| xmntan) = 700 TT elapns) - Lhm o
Op peES)

where

(1= apx()™) if ordy (f(x)) = 0,4 = £1;
elap, ) = (1= 21 = i) if ordy((x)) = 0, # &1
apfordp(f(x)) if ordy (§(x)) > 0.
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(b) Let Up = [1pes, Op X [lpes, Op and put ¢o: = (¢x)u,- Then,
/ ¢0($) d*z = H e(ap71) ’ L(%vﬁ)
I/F* pESs

(¢) kr is integral (compare Def. 3.16). For p € X let kr ,, denote the projec-
tion of kx onto HY(Ft, 2(5), S2,C))yu- Then Ky is integral of rank < 1.

Proof. (a) We view x as a character of I/ F* and choose an open subgroup
U of U, which lies in the kernel of x;, = x|r;. Let Wy: =Wy, € W, be as
above and W(g): = Wy (g,)WP(g?) € W. It suffices to show

W01 X@lel o) a

= NG00 T elopxal - ) - L(s + 4, 7@ %)
pes,

for all s € C with Re(s) > —1. Since both sides are holomorphic functions
it is enough to prove this for Re(s) > 0. Using 2.10 (c) and 2.9 we obtain

0
Uy U] fy pe X (@)l d0 (@) d*a = [U, U] fy x (@)W (g 1) 4z

0
= U U fF* Xp |x|sWU <0 1> dxxflp X |y|st < 1) de
HpeSp fF* Xp( ‘x|p Koy, (dx) - LSp (s+ 3 7, T & X)
= NGFO))T(X) Tlpes, e(ap: xpl - [3) - L(s + 3,7 ® x).
(b) Again it suffices to show that
[ waPon@ira = ] elagl - ) - L+ 1
1/F* pESs
for Re(s) > 0. A similar computation as above yields
fogp- leloolarae =
Myes, o 25012008 - Tlyes, s [2lpha, (205 a2 - L, (s + 5, 1).

For p € S we have p11(20y) = pr Leo, (¥)¥p(y)dy = |7|p1lo, () hence

/\x|gu1(x(’)p)dxx = / \x|g+1lop(x)dxx
Fy Fy

p p

= (L=Np) ) = L(s + 5,m).
On the other hand by Prop. 2.9 we get for p € So

[ el oy 0O = [ ol oy (da) = ela] - [5) - L+ b,

P P

The assertion follows.
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o € $B%F,, Q) be the image of @™, \,, under (35) and define
Ao(G,hol, 2, a) by

_ ¢ 0 ¢ 0
<¢7(I)7T(gp)> - Z <(0 1 ¢7)\g> Wp 0 1 gp
CeF™
for g € G(AP) and ¢ € HB,(F,,C). To see that @, satisfies property (ii)
of Def. 4.1, let ¢y € HB,(F),C) and define Wy, € W(r) by Wy(gp,g”): =
(gp0, Aa) WP(gp). Then

(W, ®x)(9) = > Ww<<8 (1)> g) € Ao(G,hol, 2).

CEF™
Let m be the maximal prime-to-p divisor of f(7). Because WP is Ky(m)-
invariant we have ®, € Sa(G,m,a). Since A%(®,) = ¢, by 2.10 (a), we can
apply Lemma 4.9 to conclude that s, lies in the image of (89). That k.
is integral now follows from the fact that R — H(G(F)%, </ (m,a, M; R))
commutes with flat base change by Prop. 4.6. The second assertion is a
consequence of Prop. 4.6 and 4.8. O

Let m € Ap(G,2,). By 3.18 and 3.21 the distribution u, is a p-adic
measure. We define the p-adic L-function of m by

Ly(s,m): = Lp(s,kr) = Lp(S, kr 4) = / (7)’pr(dy) for s € Zy.

p
It is a locally analytic function with values in the vector space Ly, , ®5 C,
of dimension < 1 (compare Remark 3.13).

5. EXCEPTIONAL ZERO CONJECTURE

5.1. Automorphic L-invariants. We keep the notation and assumptions
from the end of last section. In this section we define for each p € S; a
certain number L,(7) € Cp, the L-invariant of = at p. It has the property
that it does not change under suitable quadratic twists (see Lemma 5.5
below).

Let O denote the valuation ring of C,,. Fix p € Sy and put Sy = S, — {p}.
Recall that by Remark 4.3) there exists a canonical pairing
(90) o (K,a, M;0) ®0 C, x St(Fp,Cp)

— (K, ag,, 5, M;0)®0C, C & (K,ag,,Sp, M;Cp).
It induces a cup-product pairing on G(F)*-cohomology. Together with 4.6
this yields a pairing
(O1) U HYG(F) o/ (K, a0, M; Cp) x HY(G(F), $t(Fy, Cy)
— HPU(G(F)Y, o (K, ag,, Sp, M; Cp))

Hence by passing to the direct limit over all K we obtain a homomorphism
of smooth G(AP*>°)-representations

SUb: HE(G(F) o (a, M3 Cy) — HEY(G(F) o (agy Sp M Cy))
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for all b € HY(G(F)*, St(Fy, Cp)).

Remarks 5.1. (a) Note that in (90) we cannot replace o7 (m,a, M;O) Q0
Cp by & (m,a, M;C,). Therefore the compatibility of R — H?(G(F)*,
o/ (m,a, M; R)) with flat base change is crucial in the definition of (91).

(b) Let m be an ideal of Op which is relatively prime to pOp. We have a
commutative diagram

o (m,a, M;0) @0 Cp x St(Fy,Cp) —— o/ (m,ag,,Sp, M;0) ®0 C,

lAﬂxéfl lAg

@b(Sl, So, (Cp) X CQ(Fp, (Cp) —_— @b(SO N S1, Sy NSy, (Cp)
(the top horizontal arrow is the map (90)). Hence for b € HI(G(F)™, St(F,,
C,)) the diagram

HY(G(F) o/ (m,a,M;Cy)) —  HPH(G(F)Y o (m,as,, Sp,M; Cp))

|0 |60

HP(FE, 258,55, Cy))  —2Oh Fora(Fr, 95(Sy 0 81, 80 N 85, Cp))
commutes as well. Here 6* : HY(G(F'), St(Fy,Cp)) — HY(F*,Co(Fy,Cp)) is
the canonical map induced by 6; " (compare 2.11 (b)) and the first vertical
map is given by

HP(G(F)F, o (m, 0, M; Cp)) = HP(G(F)F, o/ (m,a, M; 0)) @0 Cp
SN Hp(F, 981, 82,0)) @0 Cp — HP(FE, 9(S1, S, C,))
The definition of the second vertical map is analogous.

The extension classes (30) associated to the homomorphisms ordy : Fy —
Cp and {, = log,oNp, g, : F* — C, define two cohomology classes bord,p,

blog,p € HI(G(F)J’_a St(vaCp))'

Lemma 5.2. (a) The G(AP>)-representation H{(G(F)", < (ag,,Sp, M;
Cp)) is of automorphic type for all q € Z.

(b) For pu € ¥ the map - Ubgqp induces an isomorphism
(92) Hg(G(F)Jra ﬂf(@vM;Cp))mg — Hf+1(G(F)+, W(@sm Sp, M; Cp))mg

of Cp,-vector spaces.

Proof. Let K be a compact open subgroup of G(AP*°) and put Ky =

K x G(O,) € G(AS0>). We define the ’Hfg’usw-module 2k by

To—(g+1
0 — 2k — (Ko, ag,, M;Cp) -~ )

(Ko, ag,, M;Cp) — 0.

By considering the corresponding long exact cohomology sequence we obtain
that H*(G(F)", 2k) is of automorphic type and H*(G(F)*, 2k). = 0.
For the latter note that H*(G(F)", o/ (Ko,ag,, M;Cp))x = 0 since Ky ¢
Ko(f(m))%YS=. By (17) there exists an exact sequence

0— (K, ag,, Sp, M;Cp) — 2 — o (K,a, M;Cp) — 0.
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It follows from 2.11 (c) that (92) is equal to the connecting homomorphism
in the corresponding long exact sequence in degree d (up to sign). Hence
the assertions follow from Prop. 4.8. (]

Definition 5.3. For p € X there exists a unique Ly(m, 1) € C, — called the
L-invariant of m at p — such that

(' Ublog,p)ﬂ',ﬁ = £P(777H) ( Ubordvp)ﬂ,g'
If p=(1,...,1) then we write Ly(m) = Ly(, ).

Conjecture 5.4. Ly(m, p) is independent of the choice of p € X, i.e. we
have Ly(m,p) = Ly(m) for all p € X.

Lemma 5.5. Let x : I/F* — {£1} be a quadratic character whose conduc-
tor is prime to p and such that x, = 1. Then

Ly(m,p) = Ly(m @ x,sign(x)p)
where sign(x) = Xoo(—1,...,—1) € 2.

Proof. For a smooth semisimple representation V' of G(AP**°) we denote
by V, the representation V' ® detox?”>. Note that (Vy)r = Vzg,. Put
e: = €e(xp) = (Xp1 (@1)s -+, Xpm (@m)) (compare section 2.8). We define a
twisting operator

T, : A (a, Sy, M;Cp) — A (ea, Sy, M;Cp)

by Ty (®)(g,m) = x> (det(g)) %y, (2(g,m)) for all g € G(AP>), m €
M and define T, : (ag,, Sy, M;Cp) — ((ea)s,,Sp, M;Cp) analo-
gously. Note that Tto, is G(F)*-linear and maps & (K, a, Sp, M;C,) onto
o (K, ea, Sp, M;Cp) as long as det(K) is contained in the kernel of x»*.
Note also that Tto, o Tw, =id. For b € HY(G(F)*,St(F},, Cp)) we obtain a
diagram

HYG(F)% o (0, M; Cp)) COr g GFY, o (g, Sy M; Cp))e
HAG(F)% o (60, M; Cp))m, ———LLHIG(FYS o (€)1 Sps M: Cp) oy

where the vertical maps are induced by Tw,. The commutativity of the
diagram for b = bjog, and b = byqp implies the assertion. O

Remarks 5.6. (a) Conjecture 5.4 is known in the case F' = Q ([2], Theorem
6.8).

(b) Let D be a quaternion algebra over F and let G' = D* (viewed as an
algebraic group). Let 7 be an automorphic representation of G’(A) whose
components m, are discrete series for all v € So. By a similar construction
as above one should be able to define an L-invariant £, () whenever p does
not divide the discriminant of D and we have m, = St. These L-invariants
have been defined in the case F' = Q and D definite by Teitelbaum [28], for
F =Q, D = M>(Q) by Darmon [9] (for weight 2) and Orton [22] (higher even
weight) and if F' has narrow class number 1 by Greenberg [13] (in the case of
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parallel weight (2,...,2)) (it not difficult to see that for D = My (F) the L-
invariant defined in [13] match with the one defined above). An interesting
and difficult problem is to show that £,(m) is invariant under the Jacquet-
Langlands correspondence (this has been proved for F' = Q in certain cases
in [2], Cor. 6.9) or under base change. The author hopes to return to the
study of these L-invariants in the future.

5.2. Main results. Our first main result is

Theorem 5.7. Let m € Ao(G,2,a). The vanishing order of Ly(s,7) at
s =0 is at least equal to r (i.e. to the number of places p of F' above p with
Ty =2 St ). Moreover we have

(93) L0, = ! [ Lo(m) - ] elop, 1) - L(%,7)
peST pES2
2 if ap = —1;
where e(ay, 1) = { (1- a%)z if ap # £
Proof. The first statement follows from 3.19 (a). By 3.22, 4.10 (b) and
3.19 (b) we have

s, el 1) - La,m) = (DG (krp Uey U...Ug,) N9
L0 = ()G ! (Fry Uegy, U...Uc, ) N0

Thus it suffices to show Kr y Ucy, = Ly(m) Kr g Uy for p € 5. Let m
be the maximal prime-to-p divisor of f(m). The proof of 4.10 (c) and 4.8
shows that there exists an element 8 € HY(G(F)*, o/ (m,a, M;Q)), which
is mapped under (89) to some non-zero multiple of .. Also by Lemma
2.11 (b) we have 2¢, = 0*(bora,p) and 2cg, = 0*(blog,p). Hence the assertion
follows from 4 Uborap = Lp(m) B Ubleg p (here we view 3 as an element of
HYG(F)*, o (m,a, M;Cp))). O

Now assume that F/F' is an elliptic curve which is p-ordinary, i.e. it has
either good ordinary or multiplicative reduction at all places above p. We
also assume that E is modular by which we mean that for some prime number
¢, the f-adic Tate module of E is isomorphic (as a Galois representation)
to the ¢-adic representation associated to some m = 7 € o(G,2) (this
holds then for any ¢; compare [30]). Then it is known ([7], [27]) that the
local L-factors of E and 7 all match up. In particular we have A(E, x, s) =
L(s — 3,7 ® x) for any character x : I/F* — C* (where A(E, x, s) denotes
the completed Hasse-Weil L-function) and the conductor of E is = f(m).
Moreover 7 is p-ordinary and E has split multiplicative reduction at p if
and only if m, = St. Thus m € 2y(G,2,a) for some ordinary parameters
a = (ai,...,apy) and if S; = {p1,...,p,} denotes the set of p € S}, where

E has split multiplicative reduction then a;y = ... = o, = 1. For p € 5}
_ log,(Ng, /0, (@E/F,)) .
recall that £,(F) = —* dz(q;/pp) 2= where gp/p, denotes the Tate period

associated to E//F,. The p-adic L-function of E is defined as L,(FE,s): =
L,(s, 7). Recall Hida’s conjecture [17]
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Conjecture 5.8. (a) ords—o L,(E,s) > r.
(0) Ly (2.0) = ! Tlyes, Lp(E) - TTyes, ey, 1) - AE. 1),

In the case r = 1 this has been proved by Mok [21] (under the additional
assumption that p is unramified in F' and > 5). We prove the first assertion
unconditionally and deduce the second from Mok’s result under some further
(mild) restrictions using Theorem 5.7 and a non-vanishing result for twisted
L-values [29], [12]. Let w(m) denote the root number of 7. We first show

Proposition 5.9. Assume that p > 5 is unramified in F. If (i) E has
multiplicative reduction at some place q1p or (ii) r+w(mw) =1 mod 2 then

Ly(E) = Ly(m) for allp € Sy.

Proof. Suppose that there exists a quadratic character y : I/F* — {£+1}
whose conductor is relatively prime to f(7) with the following properties

o xp, =1forallve{p}US,US, (where Sy =S, — S1);

o xq# 1lforallqe Sy — {p};
o L(z:m®x) #0.

Let E, denote the twist of £ by x. The first property and 5.5 imply £, (F) =
Ly(Ey) and Ly(m) = Ly(m ® x). It also follows from the first two properties
that E, is p-ordinary and p is the only place above p where E, has good
ordinary reduction. Thus by ([21], Theorem 1.1) Conj. 5.8 (b) holds for
E,. Since the formula coincides with (93) with the possible exception of
the £-invariants and because of the non-vanishing of L(%,7 ® x) we deduce
Lo(B) = Ly(Ey) = Lu(r &%) = Ly(m).

Therefore it remains to show that under the assumptions (i) or (ii) there
exists a quadratic character with the above properties. If x is any quadratic
character with f() relatively prime to f(7) then it is well known that w(7 ®
X) = [lpes,. Xo(=1) x(f(m)) w(r). Hence under the assumptions (i) or (ii)
it is clear that there exists x so that at least the first two properties are
satisfied and such that w(r ® x) = 1. Then a theorem of Waldspurger ([29];
see also [12], Thm. B) implies that we can choose x so that L(1,7® x) # 0
holds as well. O

Theorem 5.10. (a) ords—o L,(E,s) > 7.

(b) Assume p > 5 is unramified in F. If (i) E has multiplicative reduction
at some place q 1 p or (ii) v is odd or (iii) w(nw) = —1 then Conj. 5.8 (b)
holds.

Proof. (a) is part of Theorem 5.7. For (b) assume first w(7) = —1. Then
both sides of the equation vanish (the left hand side by (93)). If w(w) =1
and (i) or (ii) hold then (b) follows from Thm. 5.7 and Prop. 5.9. O

Remarks 5.11. (a) In the case F' = Q, Thm. 5.7 is due to Darmon [9].
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(b) If Conjecture 5.4 holds then it is not necessary to assume (i) or (ii)
in Prop. 5.9 above. In fact, obviously, there exists a quadratic character
x with x, =1 # xq for all v € {p} U Sy and q € S; — {p} and so that
w(m ® x) = 1. Hence by Waldspurger’s theorem we can choose x which
satisfies also L(3,7 ® x) # 0. In the forthcoming work [14] we shall give a
different and unconditional proof of the equality £,(E) = L,(m) (hence of
Hida’s conjecture) without using Mok’s result.
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