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1. Introduction

Let F denote a totally real number field of degree d > 1 over Q,
let p be a prime number and let χ be a totally odd Hecke character
of finite order of F . Klingen and Siegel have shown that the values of
the Hecke L-series L(χ, s) at integers n ≤ 0 lie in the algebraic closure
Q ⊆ C of Q. In [14] Shintani gave another proof by constructing a nice
fundamental domain (i.e. a finite disjoint union of rational cones; a so-
called Shintani decomposition) for the canonical action of the positive
global units E+ of F on Rd

+.

Deligne and Ribet [8] and independently Barsky and Cassou-Noguès
[1, 3] have shown that there exists a p-adic analytic analogue Lp(χ, s)
of the Hecke L-series L(χ, s) which is characterized by 1

Lp(χ, 1− n) = LSp(χω
1−n, 1− n)

for all integers n ≥ 1. Here ω : Gal(F (µ2p)/F ) → (Z/2pZ)∗ → Z∗p
denotes the Teichmüller character and LSp(χ, s) the L-series without
the Euler factors at the places F above p. Compared to Deligne-Ribet’s
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work Barsky’s and Cassou-Noguès’ construction of Lp(χ, s) is more
elementary and is based on Shintani’s approach to the Theorem of
Siegel-Klingen.

Since L(χ, 0) 6= 0 it follows in particular that Lp(χ, s) has a trivial
zero at s = 0 if and only if there exists a place p above p such that the
local component χp of χ at p is trivial. In [10] Gross conjectured that
the order of vanishing ords=0 LSp(χ, s) is equal to the number of places
p of F above p such that χp = 1.

In section 3 of our work [16] we developed a framework to deal with
trivial zeros of higher order of p-adic L-functions. The latter are typi-
cally defined as so-called Γ-transforms of a p-adic measure on the Galois
group of a certain infinite abelian extension M/F . In [16] we attach
such a measure µκ to a cohomology class κ ∈ Hd−1(F ∗+,Db) where F ∗+
are the totally positive elements of F and Db is a certain space of p-
adic measures on the finite ideles

∏′
v-∞ F

∗
v of F . We showed that the

Γ-transform of µκ has a trivial zero of order at least r (and also give
a formula for its r-th derivative) if there exists r places p1, . . . , pr of
F above p such that κ ”extends” to a cohomology class whose values
are measures on the larger adelic space

∏r
i=1 Fpi×

∏′
v-∞,v 6=p1,...,pr

F ∗v (we

will recall the set-up and results of [16] which are used in this paper in
section 2 below).

In [16] we have applied this result to prove a conjecture of Hida
regarding trivial zeros of the p-adic L-function Lp(E, s) of a modular
elliptic curve E/F . The aim of this paper is to apply it to Lp(χ, s) i.e.
we give a proof of the following theorem.

Theorem 1.1. Let r be the number of places p of F above p such that
χp = 1. Then,

(1) ords=0 Lp(χ, s) ≥ r.

We will work with Barsky’s and Cassou-Noguès’ construction of
Lp(χ, s). However we need to ”lift” the p-adic measure µχ involved
to a measure-valued cohomology class κχ in order to apply the method
of [16]. This is achieved using a Shintani cocyle. It is a certain (d− 1)-
cocyle on F ∗+ with values in the module generated by all characteristic
functions of rational cones in Rd

+ which yields a Shintani decomposi-
tion when taking the cap-product of it with the fundamental class in
Hd−1(E+,Z) (for the precise definition see 3.3). The notion of a Shin-
tani cocyle has been introduced by D. Solomon [15] who has given a
definition in the case d = 2. For arbitrary d, Hill [11] has given a con-
struction. In section 3 we recall it and – by using a result of Colmez
[4] – establish the relation to a Shintani decomposition (see Prop. 3.7).
Then in section 4 and the beginning of section 5 we carry out the con-
struction of κχ which is followed by our proof of Thm. 1.1 (following
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Cassou-Noguès we choose a certain auxiliary prime q - p of F to obtain
p-integrality properties of twisted L-values).

It should be mentioned (see [9] and also [2]) that (1) can be proved
rather easily for the corresponding arithmetic p-adic L-function and
so Thm. 1.1 is a consequence of Iwasawa’s deep main conjecture (as
proven by Wiles [17]). However we think that our approach is of in-
dependent interest. It is certainly more elementary. We also feel that
the cohomological framework developed here might be useful to study
other properties of p-adic L-series (we hope to return to the topic in
the future).

It should be mentioned as well that Dasgupta [7] independently (and
earlier) gave a proof of (1) if r ≤ 3 which is closely related to our
approach. Moreover in joint work with Charollois [5] he gives another
proof of (1) based in part on a different cohomological construction of
Lp(χ, s) (involving Szech’s Eisenstein cocyle).

While working on this paper I had helpful conversations with Pierre
Colmez and Samit Dasgupta regarding ”Cassou-Noguès’ trick” so I
thank them both.

Notation. We introduce the following notation which will be used
throughout the rest of this paper.

We fix once and for all an embedding Q→ Cp.

If X and Y are topological spaces then C(X, Y ) denotes the set of
continuous maps X → Y . If R is a topological ring we let Cc(X,R)
denote the subset C(X,R) of continuous maps with compact support.
If we consider Y (resp. R) with the discrete topology then we shall also
write C0(X, Y ) (resp. C0

c (X,R)) instead of C(X, Y ) (resp. Cc(X,R)).

If X is a locally compact Hausdorff space and R = Cp we denote by
‖ · ‖p the p-adic maximums norm on C0

c (X,Cp). It is given by

(2) ‖φ‖p = max{|φ(x)|p | x ∈ X} ∀φ ∈ C0
c (X,Cp)

For a group G a subgroup H there exists morphisms of δ-functors

res : H•(G, · ) −→ H•(H, · ), cor : H•(H, · ) −→ H•(G, · ).
which in degree 0 and for a G-module M are the canonical inclusion
MG ↪→ MH and projection MH → MG respectively. If H has finite
index in G then there exists also morphisms

cor : H•(H, · ) −→ H•(G, · ), res : H•(G, · ) −→ H•(H, · ).
which in degree 0 are given as follows. If {gj}j∈J denote a system
of representatives of the cosets G/H and m ∈ MH then cor(m) =∑

j∈J gjm. For x = [m] ∈MG we have res(x) = [
∑

j∈J gjm].

Throughout the paper F denotes a totally real number field of degree
d over Q with ring of integers OF . Let EF = O∗F denote the group of
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global units. For a non-zero ideal a ⊆ OF we set N(a) = ](OF/a). We
denote by PF the set of all places of F and by P∞F (resp. S∞) the subset
of finite (resp. infinite) places. For a prime number q, we shall write
Sq for the set of places above q. We denote by σ1, . . . , σd the different
embeddings of F into R. Elements of PF will be denoted by v, w or also
by p, q if they are finite. If p ∈ P∞F , we denote the corresponding prime
ideal of OF also by p. For v ∈ PF , we denote by Fv the completion
of F at v. If v is finite then Ov denotes the valuation ring of Fv and
ordv the corresponding the normalized (additive) valuation on Fv (so
ordv($) = 1 if $ ∈ Ov is a local uniformizer at v). Also for v ∈ PF

we let | · |v be the associated normalize multiplicative valuation on
Fv. Thus if v ∈ S∞ corresponds to the embedding σ : F → R then
|x|v = |σ(x)| and if v = q is finite then |x|q = N(q)− ordq(x). For v ∈ PF

we put Uv = R+ = {x ∈ R | x > 0} if v is infinite and Uv = O∗v if v is
finite.

Let A = AF be the adele ring of F and I = IF the group of ideles.
For a subset S ⊆ PF we let AS (resp. IS) denote the S-adeles (resp.
S-ideles) and also define AS =

∏
v∈S Fv and IS =

∏
v∈S F

∗
v . We also

define US =
∏

v 6∈S Uv, and US =
∏

v∈S Uv. If S contains all archimedian

places then the factor group IS/US is canonically isomorphic to the
group IS of fractional OF -ideals which are prime to all places in S.
We sometimes view F as a subring of AS and AS via the diagonal
embedding. For a finite set of nonarchimedian places of F we put
ES = F ∗ ∩ US and ES = F ∗ ∩ US (intersection in AS resp. AS).

For T ⊆ PQ = {2, 3, 5, . . . ,∞} and S = {v ∈ PF | v|Q ∈ T}
we often write AT , AT , IT etc. for AS, AS, IS etc. We also write
U q, Uq, U

q,S, U q,∞ etc. for U{q}, U{q}, U
Sq∪S, USq∪S∞ etc. and use

a similar notation for adeles, ideles and fractional ideals. Thus for
example for a finite subset S of P∞F , IS,∞ denotes the set S ∪S∞-ideles
and for a prime number q we have Eq = {x ∈ F ∗ | ordv(x) = 0 ∀ v | q}.
For ` ∈ PQ = {2, 3, 5, . . . ,∞} we sometimes write F` rather than
A` = F ⊗ Q` =

∏
v∈S` Fv. We shall denote by F ∗+, ES,+, E+ etc. the

totally positive elements in F , ES, E etc.

For a Hecke character χ : I/F ∗ → C∗ of finite order and v ∈ PF we

let χv be its v-component, i.e. χv : F ∗v ↪→ I
χ−→ C∗. More generally if

S is a finite set of places of F we denote χS : IS → C∗ its restriction to
IS ⊆ I. If S consists only of non-archimedian places the image of χS is
contained in Q∗ ⊆ Cp.

We denote by N = NF/Q : F ∗ → Q∗ the norm given by N(x) =
det(`x) where `x : F → F is the Q-linear map ”multiplication by x”.
This extends to a map (F ⊗Q A)∗ → A∗ for any Q-algebra A which by
abuse of notation will also be denoted by N.

Unless otherwise stated all rings are commutative with unit.
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2. p-adic L-series attached to cohomology classes

Let R be a topological ring and let S be a finite set of nonarchi-
median places of F (we mostly consider the case S = Sp). Assume

that a decomposition S = S1

·
∪ S2 into disjoint subsets is given. We

introduce some spaces of R-valued functions on adeles and ideles. Put
C(S1, S2, R) = C(AS1×A∗S2

× IS,∞/US,∞, R), Cc(S1, S2, R) = Cc(AS1×
A∗S2
×IS,∞/US,∞, R) and C0

c (S1, S2, R) = C0
c (AS1×A∗S2

×IS,∞/US,∞, R).
We let I∞ act on Cc(S1, S2, R) by (a · f)(x) = f(a−1x) for a ∈ I∞,
f ∈ Cc(S1, S2, R) and x ∈ A∞. This induces an F ∗- resp. F ∗v -action
(for a finite place v) via the diagonal embedding F ∗ ↪→ I∞ resp. the
embedding F ∗v ↪→ I∞, x 7→ (. . . , 1, x, 1, . . .). Note that

C0
c (S1, S2, R) ∼=

⊗
v∈S1

C0
c (Fv, R)⊗

⊗
v∈S2

C0
c (F ∗v , R)⊗

⊗
v 6∈S

′
C0
c (Fv, R)Uv

where the restricted tensor product
⊗′ is taken with respect to the fam-

ily of functions {1Uv}v. If S1 = ∅ we often drop it from the notation, i.e.
we write C(S,R), Cc(S,R) and C0

c (S,R) for C(∅, S, R) = C(I∞/US,∞, R)
etc.

Assume now that S = Sp so S1

·
∪ S2 = Sp. Let Gp = Gal(M/F )

be the Galois group of the maximal abelian extension M/F which is
unramified outside p and ∞ and let ρ : I/F ∗ → Gp be the reciprocity
map. There is a canonical homomorphism

(3) ∂ : C(Gp, R) −→ Hd−1(F ∗+, Cc(S1, S2, R))

whose definition we recall from [16]. We denote by E+ and F ∗+ the
closure of E+ and F ∗+ with respect to the canonical embeddings

E+ ↪→ Up, F ∗+ ↪→ I∞/Up,∞

Note that F ∗+ = F ∗+E+. To begin with recall that the reciprocity map
of class field theory ρ : I/F ∗ → Gp induces an isomorphism

(4) I∞/F ∗+U
p,∞ ∼= I/F ∗Up ∼= Gp

We can regard Γ: = F ∗+/E+ as a discrete subgroup of I∞/(E+×Up,∞)

by using the embedding Γ ↪→ I∞/(E+ × Up,∞). Next we construct an
isomorphism

(5) H0(Γ, Cc(Sp, R)E+) −→ C(Gp, R).

Let pr : I∞/Up,∞ → I∞/(E+U
p,∞) denote the projection. Firstly, the

map

(6) Cc(I
∞/E+U

p,∞, R) −→ Cc(Sp, R)E+ , f 7→ f ◦ pr
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is obviously an isomorphism. If F denotes an (open and compact)
fundamental domain of I∞/E+U

p,∞ for the action of Γ then

Cc(I
∞/E+U

p,∞, R)) ∼= IndΓ C(F , R)
∼= IndΓ C((I∞/E+ × Up,∞)/Γ, R).

Hence there exists a canonical isomorphism

(7) H0(Γ, Cc(I
∞/E+U

p,∞, R)) −→ C((I∞/E+U
p,∞)/Γ, R)

which is given explicitly by [f ] 7→
∑

[ζ]∈Γ f(ζx). Since(
I∞/E+ × Up,∞) /Γ ∼= I∞/F ∗+U

p,∞ ∼= Gp
(the second isomorphism is induced by the reciprocity map) the target
of (7) can be identified with C(Gp, R). Thus we have an isomorphism

(8) H0(Γ, Cc(I
∞/E+ × Up,∞, R)) −→ C(Gp, R)

By combining (6) with the inverse of (8) we obtain the isomorphism
(5).

Let M be any F ∗+-module. Next we construct a homomorphism

(9) H0(Γ, H0(E+,M)) −→ Hd−1(F ∗+,M)

Since E+
∼= Zd−1 we have Hd−1(E+,Z) ∼= Z. Choose a generator η

of Hd−1(E+,Z). Since the action of Γ on Hd(E+,Z) is trivial, taking
the cap product with η yields an Γ-equivariant map H0(E+,M) →
Hd−1(E+,M) hence

(10) H0(Γ, H0(E+,M)) −→ H0(Γ, Hd−1(E+,M))

We define (9) as the composite of (10) with the edge morphism

H0(F ∗+/E+, Hd−1(E+,M)) −→ Hd−1(F ∗+,M)

of the Hochschild-Serre spectral sequence.

Finally we define (3) to be the composite

C(Gp, R) −→ H0(Γ, Cc(Sp, R)E+) −→ H0(Γ, Cc(S1, S2, R)E+)

−→ Hd−1(F ∗+, Cc(S1, S2, R))

where the first map is the inverse of (5), the second is induced by
the natural inclusion Cc(S,R) ↪→ Cc(S1, S2, R) and the third is (9) (for
M = Cc(S1, S2, R)). If R carries the discrete topology we write ∂0

rather than ∂ for the map (3):

∂0 : C0(Gp, R) −→ Hd−1(F ∗+, C0
c (S1, S2, R)).

Remarks 2.1. (a) There is in fact a canonical choice for η (since we
have fixed a numbering σ1, . . . , σn of the embeddings F ↪→ R). The
norm N : F → Q extends to a map N : F∞ → R. We denote the kernel

of F ∗∞,+ ⊆ F ∗∞
N−→ R by H. The isomorphism Log : F ∗∞,+ → Rd, y 7→

(log(σ1(y)), . . . , log(σ1(y)) maps H onto Rd
0 = {z = (z1, . . . , zd) ∈ Rd |
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i=1 zi = 0} and E+ onto a complete lattice in Rd

0. The isomorphism
H/E+

∼= Rd
0/Log(E+) provides the (d− 1)–dimensional compact man-

ifold H/E+ with an orientation. We chose η ∈ Hd−1(E+,Z) so that it
corresponds to the fundamental class under the canonical isomorphism
Hd−1(E+,Z) ∼= Hd−1(H/E+,Z).

(b) More generally for any discrete and cocompact subgroup of the G
of H we obtain a canonical generator ηG of Hd−1(G,Z) in the same
way as above. If G′ is a subgroup of finite index of G then we have
cor(ηG′) = ηG.

(c) The class ηG can be described explicitly in terms of generators
ε1, . . . , εd−1 of G. Let µ = ±1 be the sign of the determinant with rows
Log(ε1), . . . ,Log(εd−1), v0 where v0 = (1, . . . , 1) ∈ Rd. Then ηG can be
represented by the d− 1-cycle µ

∑
τ∈Sd−1

sign(τ) [ετ(1)| . . . |ετ(d−1)].

(d) We shall also need the cohomological analogue of the map (9). It
is a homomorphism

(11) Hd−1(F ∗+,M) −→ H0(Γ, H0(E+,M))

Taking the cap product with η yields a Γ-equivariant map Hd−1(E+,
M)→ H0(E+,M) hence

(12) H0(Γ, Hd−1(E+,M)) −→ H0(Γ, H0(E+,M))

and (11) is defined as the composite of the restriction

Hd−1(F ∗+,M) −→ H0(F ∗+/E+, H
d−1(E+,M))

followed by (12).

Measure valued cohomology classes and p-adic L-functions.
For a ring R put

D(S1, S2, R) = HomR(C0
c (S1, S2, R), R) = Hom(C0

c (S1, S2,Z), R)

and let

(13) 〈 , 〉 : D(S1, S2, R)× C0
c (S1, S2, R) −→ R,

be the canonical (evaluation) pairing. We define a I∞-action on D(S1,
S2, R) by requiring that 〈xφ, xf〉 = 〈φ, f〉 for all x ∈ I∞, f ∈ C0

c (S1, S2,
R) and φ ∈ D(S1, S2, R). The pairing (13) yields the bilinear map

∩ : Hd−1(F ∗+,D(S1, S2, R))×Hd−1(F ∗+, C0
c (S1, S2, R)) −→

−→ H0(F ∗+, R) = R.

In the case R = Cp an element λ ∈ D(S1, S2,Cp) is called bounded if
there exists a constant C > 0 such that

|λ(φ)|p ≤ C ‖φ‖p, ∀φ ∈ C0
c (S1, S2,Cp).

Here ‖ · ‖p denotes the p-adic maximums norm (2). The I∞-submodule
of all bounded elements ofD(S1, S2,Cp) will be denoted byDb(S1, S2,Cp).
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Note that Db(S1, S2,Cp) = Hom(C0
c (S1, S2,Op),Op) ⊗Op Cp where Op

denotes the valuation ring of Cp. Elements of D(S1, S2,Cp) can be re-
garded as Cp-valued distributions and elements of Db(S1, S2,Cp) as Cp-
valued measures on the locally compact space AS1× IS1,∞/Up,∞. Since
a Cp-valued measure can be integrated against any continuous function
with compact support the pairing (13) when restricted toDb(S1, S2,Cp)
extends canonically to a pairing

〈 , 〉 : Db(S1, S2,Cp)× Cc(S1, S2,Cp) −→ Cp.

The latter gives rise to the bilinear map

∩ : Hd−1(F ∗+,Db(S1, S2,Cp))×Hd−1(F ∗+, Cc(S1, S2,Cp)) −→ Cp.

For κ ∈ Hd−1(F ∗+,Db(S1, S2,Cp)) we define the Cp-valued distribution
µκ on Gp by

(14)

∫
Gp
f(γ)µκ(dγ) = ι∗(κ) ∩ ∂0(f) ∀ f ∈ C0(Gp, R)

(here ι : Db(S1, S2,Cp) ↪→ D(S1, S2,Cp) denotes the inclusion).

Lemma 2.2. (a) µκ is a p-adic measure on Gp.
(b)

∫
Gp f(γ)µκ(dγ) = κ ∩ ∂(f) for all f ∈ C(Gp,Cp).

Proof. It suffices to show that there exists a constant C > 0 with

(15) |κ ∩ ∂(f)|p ≤ C ‖f‖p ∀ f ∈ C(Gp,Cp).

Choose λ ∈ Db(Sp,Cp) representing the class of the image of κ under
the map (11) i.e. Hd−1(F ∗+,Db(Sp,Cp)) → H0(Γ, H0(E+,Db(Sp,Cp))).
Also let F denote an open and compact subset of I∞ which is U∞-
stable and such that the image of F under pr : I∞ → I∞/U∞ is a
fundamental domain for the action of Γ = F ∗+/E+. Then (15) follows
immediately from

κ ∩ ∂(f) = λ(1F · f ◦ ρ) ∀ f ∈ C(Gp,Cp)

where ρ : I∞/Up,∞ → Gp denotes the reciprocity map. �

Recall that the Γ-transform of a Cp-valued p-adic measure µ on Gp
is given by

Lp(µ, s) =

∫
Gp
〈γ〉sµ(dγ)

for s ∈ Zp. Here 〈γ〉s : = expp(s logp(N (γ))) where N : Gp → Z∗p is the

cyclotomic character (it is characterized by γζ = ζN (γ) for all p-power
roots of unity ζ). We have ([16], Thm. 3.13)
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Theorem 2.3. Let S1, S2 be disjoint subsets of Sp with S1 ∪ S2 = Sp,
let κ ∈ Hd−1(F ∗+,Db(S1, S2,Cp)) and let µ = µκ be the associated p-adic
measure on Gp. Then,

ords=0 Lp(µ, s) ≥ ](S1).

We point out that this is consequence of ∂((logp ◦N )k) = 0 for k =
0, . . . r− 1 (where r = ](S1)), a fact which is proved in [16]. Indeed, by
2.2 (b) we get for the k-th derivative of Lp(κ, s) at s = 0

L(k)
p (µ, 0) =

∫
Gp

(logp ◦N )kµ(dγ) = κ ∩ ∂((logp ◦N )k)

hence ords=0 Lp(µ, s) ≥ r.

Variant. Assume again that a decomposition S = S1

·
∪ S2 of an arbi-

trary finite subset S of P∞F into disjoint subsets is given. For a finite
set T ⊆ P∞F disjoint to S we define C(S1, S2, R)T (resp. C(S1, S2, R)T )
by omitting all places of T (resp. by omitting all places of F not lying
in S ∪ T ) from the definition of C(S1, S2, R). Thus

C(S1, S2, R)T = C(AS1 ×A∗S2
× IS∪T,∞/US∪T,∞, R)

C(S1, S2, R)T = C(AS1 ×A∗S2
× IT/UT , R)

Similarly one defines C0
c (S1, S2, R)T , C0

c (S1, S2, R)T , D(S1, S2, R)T ,
D(S1, S2, R)T , Db(S1, S2,Cp)

T , etc. If T = Sq for a prime number q then
we shall also write C(S1, S2, R)q, C0

c (S1, S2, R)q etc. for C(S1, S2, R)T ,
C0
c (S1, S2, R)T etc.

The R-module C0
c (S1, S2, R)T (resp. C0

c (S1, S2, R)T ) carries a canon-
ical IT,∞-action (resp. IT -action). It is easy to see that

C(S1, S2, R) ∼= IndI∞

IT,∞ C(S1, S2, R)T

C(S1, S2, R) ∼= IndI∞

IT
C(S1, S2, R)T

Thus by weak approximation we have C(S1, S2, R) ∼= Ind
F ∗+
ET,+
C(S1, S2,

R)T as F ∗+-modules. Moreover if IS∪T,∞ = US∪T,∞F ∗+ then

C(S1, S2, R) ∼= Ind
F ∗+
ES∪T+

C(S1, S2, R)T .

Similar statements hold for Cc(S1, S2, q, R), D(S1, S2, R) and Db(S1, S2,
Cp) where in the latter cases Ind has to be replaced by Coind.

For example by Shapiro’s Lemma there are canonical isomorphisms

Hd−1(ES∪T
+ , Cc(S1, S2, R)T ) ∼= Hd−1(F ∗+, Cc(S1, S2, R))(16)

Hd−1(ES∪T
+ ,Db(S1, S2,Cp))T ∼= Hd−1(F ∗+,Db(S1, S2,Cp))

if IS∪T,∞ = US∪T,∞F ∗+.

Hence the map (3), Thm. 2.3 etc. can be formulated in terms of
ET,+-(co-)homology with coefficients in C0

c (S1, S2, R)T , D(S1, S2,Cp)T
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etc. The isomorphisms (16) are induced by inclusions (i.e. adjunction
maps)

C(S1, S2, R)T −→ C(S1, S2, R)(17)

C(S1, S2, R)T −→ C(S1, S2, R)(18)

given by φ 7→ φ ⊗ 1UT (resp. φ 7→ φ ⊗ 1US∪T,∞). Note that (17) is
ET -equivariant and (18) is ES∪T -equivariant.

If q is a prime number such that Sq is disjoint from S ∪ T then (18)

factors in the form C(S1, S2, R)T
(19)−→ C(S1, S2, R)q

(17)−→ C(S1, S2, R)
where

(19) C(S1, S2, R)T −→ C(S1, S2, R)q, φ 7→ φ⊗ 1US∪T,q,∞ .

3. Shintani cocycles

Definition of a Shintani cocyle. For linearly independent x1, . . . xm ∈
F∞ the (open) cone C(x1, . . . , xm) generated by (x1, . . . xm) is defined
by

C(x1, . . . xm) =

{
m∑
i=1

λixi | λi ∈ R+ ∀ i = 1, . . . ,m

}
.

It is called positive if x1, . . . xm ∈ F∞,+ and rational if it is generated
by x1, . . . xm ∈ F ∗. A rational cone C = C(x1, . . . xm) generated by
x1, . . . xm ∈ F+ is called a Shintani cone. Note that this is equivalent
to the condition C ⊆ F∞,+. A subset D of F∞,+ that can be written as
a finite disjoint union of Shintani cones is called a Shintani set. Let K
(resp. Krat) denote the Z-span generated by all characteristic functions
1C of positive (resp. Shintani) cones. The group F ∗∞,+ acts on K via

(x · f)(y) = f(x−1y) for x ∈ F ∗∞,+, f ∈ K and y ∈ F∞ and Krat is a
F ∗+-stable subgroup. Since the intersection of two Shintani sets is again
a Shintani set the product of two functions in Krat lies again in Krat.

Let G be a discrete subgroup of H = {x ∈ F ∗∞,+ | N(x) = 1}. It
intersects a given positive cone C = C(x1, . . . xm) in only finitely many
points. In fact Log maps G to a lattice in Rd

0 and C ∩H to a bounded
open subset of Rd

0 so the intersectionG∩C ≈ Log(G∩C) is finite. Hence
for f ∈ K and y ∈ F∞,+ almost all terms in the sum

∑
x∈G (xf)(y) are

= 0. Thus the map f 7→
∑

x∈G xf induces a homomorphism

(20) H0(G,K) −→ Maps(F∞,+,Z)G

For a subgroup G of H which is discrete and cocompact (i.e. Log(G)
is a complete lattice in Rd

0) we let

(21) ψG : Hd−1(H,K) −→ Maps(F∞,+,Z)

be the composition of

Hd−1(H,K)
res−→ Hd−1(G,K)

∩ηG−→ H0(G,K)



SHINTANI COCYCLES AND VANISHING ORDER OF Lp(χ, s) AT s = 0 11

with the map (20).

Lemma 3.1. Let G,G1, G2 be discrete cocompact subgroups of H.

(a) If G1 ⊆ G2 then ψG1 = ψG2.

(b) Put ∞
√
G : = {x ∈ F ∗∞,+ | xn ∈ G for some n ∈ N }. Then the

image of (21) is ∞
√
G-invariant.

Proof. (a) This follows from the commutativity of the diagram

Hd−1(G2,K)
∩ηG2−−−→ H0(G2,K)

(20)−−−→ Maps(F∞,+,Z)G2yres

yres

yincl

Hd−1(G1,K)
∩ηG1−−−→ H0(G1,K)

(20)−−−→ Maps(F∞,+,Z)G1

which is due to cor ηG1 = ηG2 .

(b) is a consequence of (a) since ∞
√
G is the union of groups G′ with

G′ ⊇ G and [G′ : G] <∞ and since Im(ψG′) is G′-invariant. �

In the case G = E+ we restrict the map f 7→
∑

ε∈E+
εf to f ∈ Krat

and obtain a homomorphism

(22) H0(E+,Krat) −→ Maps(F∞,+,Z)E+

Recall that a Shintani set A is called a Shintani decomposition if F∞,+
can be decomposed as the disjoint union of E+-translates of A

F∞,+ =
·⋃
ε∈E′

εA.

Shintani [14] has shown that they exists.

Lemma 3.2. The map (22) is injective.

Proof. Let f ∈ K and let A be a Shintani decomposition for E+.
By ([6], Lemma 3,14) there exists only finitely many ε ∈ E+ with
1εA · f 6= 0. Modulo the augmentation ideal of the group ring Z[E+]
we get

f =
∑
ε∈E+

1εA · f =
∑
ε∈E+

ε(1A · ε−1f) ≡
∑
ε∈E+

1A · (ε−1f).

Hence any element of H0(E+,K) has a representative f ∈ K with
supp(f) : = {x ∈ F∞,+ | f(x) 6= 0} ⊆ A. For such f and y ∈ A
we have

∑
ε∈E+

(εf)(y) = f(y) so in particular
∑

ε∈E+
εf = 0 implies

f = 0. �

Similarly to (21) we define

(23) Hd−1(F ∗+,Krat) −→ Maps(F∞,+,Z)
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to be the composition of

(24) Hd−1(F ∗+,Krat)
res−→ Hd−1(E+,Krat)

∩ηE+−→ H0(E+,Krat)

with the map (22).

Definition 3.3. A cohomology class α ∈ Hd−1(F ∗+,Krat) is called Shin-
tani cocycle if the following equivalent conditions hold:

(i) α is mapped under (24) to the class [1A] ∈ H0(E+,Krat) of the
characteristic function 1A of a Shintani decomposition A.

(ii) α is mapped under (23) to the constant function ≡ 1 on F∞,+.

That (i) and (ii) are indeed equivalent follows from Lemma 3.2 since
[1A] is mapped to the constant function ≡ 1 under (22).

Solomon [15] has defined a Shintani cocyle in the case d = 2. In [11]
R. Hill has constructed a cohomology class in Hd−1(F ∗,L) for arbitrary
d where L is the quotient of the Z-span of the characteristic functions
of all rational cones modulo the constant functions F∞−{0} → Z. We
recall his construction and show that it is indeed a Shintani cocyle in
the above sense when restricted to the subgroup F ∗+ of F ∗.

Hill’s construction. Let k be a field and V a k-vector space of di-
mension d. Let K/k be a field extension and let t1, . . . , td ∈ K be
elements which are algebraically independent over k. For a k-basis
v = (v1, . . . , vd) of V , a k-algebra A and a ∈ A we define the element
b(v, a) ∈ VA = A⊗k V by

b(v, a) =
d∑
j=1

ai−1 vi

Recall that a set of vectors of V is said to be in general position if every
subset with no more than d vectors is linearly independent. We have
(see also [11], Lemma 1)

Lemma 3.4. Let K/k be a field extension and let t1, . . . , td ∈ K be
elements which are algebraically independent over k. Given a collection

d basis’ v(1) = (v
(1)
1 , . . . , v

(1)
d ), . . . , v(d) = (v

(d)
1 , . . . , v

(d)
d ) of V and v ∈

V , v 6= 0 the set of vectors in VK

(v, b(v(1), t1), . . . , b(v(d), td))

is in general position.

Proof. Let ω : V d → k be a determinant form on V . To prove that
(b(v(1), t1), . . . , b(v(d), td)) is linearly independent it suffices to show

f(t1, . . . , td) : = ω(b(v(1), t1), . . . , b(v(d), td)) 6= 0.

Let X be the closed subvariety f = 0 of An
k = Spec k[t1, . . . , td]. We

have to show X 6= An
k . For that we may assume that k is infinite. Now
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for any d elements a1, . . . , ad ∈ k with ai 6= aj for i 6= j the d-tuple
(b(v, a1), . . . , b(v, ad)) is a basis of V . Hence by Steinitz’ lemma we can
choose a1, . . . , ad ∈ k successively so that (b(v(1), a1), . . . , b(v(d), ad)) is a
basis, i.e. f(a1, . . . , ad) 6= 0. Similarly, one shows that (v, b(v(1), t1), . . . ,
b(v(d−1), td−1)) is linearly independent. �

Assume now that k is an ordered field (i.e. k = Q or k = R), V a
d-dimensional k-vector space and ω : V d → k a determinant form on V .
For an extension of ordered fields K/k and linearly independent vectors
v1, . . . , vm of VK we denote as before the open cone {

∑m
i=1 λivi | λi ∈

K, λi > 0∀ i = 1, . . . ,m} by C(v1, . . . vm). We also use the notation
C[v1, . . . vm] for the closed cone {

∑m
i=1 λivi | λi ∈ K, λi ≥ 0 ∀ i =

1, . . . ,m}−{0}. A cone is called k-rational if the generators v1, . . . , vm
can be chosen in V . If d = m we define a function c(v1, . . . vd) :
VK − {0} → Q by

c(v1, . . . , vd)(v) = sign(ω(v1, . . . , vd)) 1C(v1,...vd)(v).

We choose a field extension K/k with a discrete rank d+1 valuation
w which is trivial on k and so that its residue field is k. Recall that w
is a surjective map w : K → Zd+1 ∪ {+∞} such that for all x, y ∈ K
we have (i) w(x) = +∞ ⇔ x = 0, (ii) w(xy) = w(x) + w(y) and (iii)
w(x+y) ≥ min(w(x), w(y)). Here Zd+1 carries the lexicographical order
(m0, . . . ,md) < (n0, . . . , nd) ⇔ m0 = n0, . . . ,mi−1 = ni−1,mi < ni for
some i ∈ {0, . . . , d}. We denote the corresponding valuation ring by
Ow and the valuation ideal by mw so that Ow/mw = k. For x ∈ Ow we
denote by x̄ ∈ k the residue class xmodmw. We fix t0, t1, . . . , td ∈ K so
that w(t0) = (1, 0, . . . , 0), w(t1) = (0, 1, . . . , 0), . . . , w(td) = (0, . . . , 0, 1)
is the standard basis of Zd+1. We introduce an ordering on K by

(25) x > 0 ⇔ ū > 0

where x = utm0
0 · · · t

md
d ∈ K∗ with u ∈ O∗w and w(x) = (m0, . . . ,md).

Note that t0, . . . , td are algebraically independent over k and that we
have 0 < td and ti < tmi−1 for all i ∈ {1, . . . , d} and m ∈ N.

We fix a k-basis v = (v1, . . . , vd) of V and a determinant form ω :
V d → k on V . For g1, . . . , gd ∈ GL(V ) : = Aut(V ) and v ∈ V − {0}
we define

z(g1, . . . , gd)(v) = c(g1(b(v, t1)), . . . , gd(b(v, td)))(v).

Note that gb(v, a) = b(gv, a) for all g ∈ GL(V ) and a ∈ K. Hence
by Lemma 3.4 the vectors v, g1b(v, t1)), . . . , gdb(v, td)) are in general
position. By ([11], Prop. 3 and Thm. 1) the following holds
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(SC1) For all g0, g1, . . . , gd ∈ GL(V ) and v ∈ V − {0} we have

d∑
i=0

(−1)iz(g0, . . . , ĝi, . . . , gd)(v)

= (−1)dc(b(g0v, t0), . . . , b(gd−1v, td−1))(−b(gdv, td)).

(SC2) For g, g1, . . . , gd ∈ GL(V ) and v ∈ V − {0} we have

z(gg1, . . . , ggd)(v) = sign(det(g))z(g1, . . . , gd)(g
−1v)

(SC3) For g1, . . . , gd ∈ GL(V ) there exists finitely many disjoint k-
rational open cones C1, . . . , Cm such that z(g1, . . . , gd) =

∑m
i=1 1Ci .

We also need the following

Lemma 3.5. Let g1, . . . , gd ∈ GL(V ) and assume that b1 = g1(v1), . . . , bd
= gd(v1) is a basis of V . Then

sign(ω(b1, . . . , bd)) = sign(ω(g1(b(v, t1)), . . . , gd(b(v, td)))

and

C(b1, . . . , bd) ⊆ C(g1(b(v, t1)), . . . , gd(b(v, td)) ∩ k ⊆ C[b1, . . . , bd].

Proof. The first assertion follows immediately from the definition of
the ordering on K. Let v ∈ V − {0} and let λ1, . . . , λd ∈ K be the
coordinates of v with respect to the basis g1(b(v, t1)), . . . , gd(b(v, td)) of
VK . We claim that λ1, . . . , λd ∈ Ow. If not there exists i ∈ {1, . . . , d}
with w(λi) < 0 and w(λi) ≤ w(λj) for all j ∈ {1, . . . , d}. We get

0 ≡ λ−1
i v ≡

d∑
j=1

λj/λi bj mod mw ⊗k V.

which contradicts the assumption that b1, . . . , bd is a basis. The con-
gruence shows as well that λ1, . . . , λd ∈ k are the coordinates of v with
respect to b1, . . . , bd. From this the assertion follows immediately.

�

Existence of Shintani cocycles. Assume now k = Q and V = F .
We remark that FK = F ⊗QK as well as R⊗QK are integral domains
since Q is algebraically closed in K. In fact FK is a field. We will
denote the quotient field of R⊗Q K by K. The valuation w induces a
valuation on K with residue field R. Hence by the same recipe (25), w
and the parameters t0, . . . , td induce an ordering on K. For i = 1, . . . , d
the embedding σi : F → R induce an embedding FK → K as well
as homomorphisms of R- resp. K-algebras F∞ → R and FK∞ : =
FK ⊗K K = F ⊗Q K → K. By abuse of notation these maps will be
denoted by σi too. We put FK+ = {x ∈ FK | σi(x) > 0∀ i = 1, . . . , d}
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and define FK∞,+ similarly. Note that FK∞,+ ∩ F = FK+ ∩ F = F+

and that FK+ and FK∞,+ are stable under addition and multiplication.

We define a determinant form ω on F by ω(x1, . . . , xd) = det(σi(xj)).
We fix a Q-basis x = (x1, . . . , xd) of F with x1 = 1. For u1, . . . , ud ∈
F ∗∞,+ and y ∈ F∞ we define

z(u1, . . . , ud)(y) = c(u1(b(x, t1)), . . . , ud(b(x, td)))(y)

= sign(ω(b(u1x, t0), . . . , b(udx, td)))1C(b(u1x,t0),...,b(udx,td))(y)

The function y 7→ z(u1, . . . , ud)(y) lies in K. In fact for a ∈ K with
w(a) > 0 and i ∈ {1, . . . , d} we have

σi(b(x, a)) =
d∑
j=1

σi(xj)a
j−1 = 1 +

d∑
j=1

σi(xj)a
j−1 > 0.

Hence b(u1x, t0), . . . , b(udx, td) ∈ FK∞,+ and therefore z(u1, . . . , ud)(y)
6= 0 only if y ∈ F∞,+. On the other hand by (SC3) there exists finitely
many disjoint cones C1, . . . , Cm such that z(u1, . . . , ud) = ±

∑m
i=1 1Ci .

It follows Ci ⊆ F∞,+ for all i = 1, . . . ,m. Moreover if u1, . . . , ud ∈ F ∗+
then C1, . . . , Cm are rational cones hence z(u1, . . . , ud) ∈ Krat.

Lemma 3.6. The map z : (F ∗∞,+)d → K, (u1, . . . , ud) 7→ z(u1, . . . , ud)
is a homogeneous (d− 1)–cocyle of F ∗+.

Proof. Let u0, . . . , ud ∈ F ∗∞,+. Since b(u0x, t0), . . . , b(udx, td) are in
general position there exists unique non-zero scalars λ0, . . . , λd−1 ∈ K∗
with

∑d
i=0 λib(uix, ti) = −b(udx, td). If all λi were positive it would im-

ply −b(udx, td) ∈ FK∞,+ contradicting b(udx, td) ∈ FK∞,+. It follows
−b(udx, td) 6∈ C(b(u0x, t0), . . . , b(ud−1x, td−1)) and therefore by (SC1)
and (SC2) that z is a homogeneous (d− 1)–cocyle. �

Proposition 3.7. Let [zrat] be the cohomology class of the cocycle zrat :
(F ∗+)d → Krat, (u1, . . . , ud) 7→ z(u1, . . . , ud). Then either [zrat] or −[zrat]
is a Shintani cocycle.

Proof. Let g ∈ Maps(F∞,+,Z) be the image of [zrat] under (23).
Since the image of [zrat] under the canonical map Hd−1(F ∗+,Krat) →
Hd−1(F ∗+,K) is the restriction (to F ∗+) of the cohomology class [z] ∈
Hd−1(F ∗∞,+,K) of z : (F ∗∞,+)d → K we get g = ψE+([z]). Therefore

by Lemma 3.1 g is ∞
√
E+-invariant i.e. we have g(y) = g(εy) for all

ε ∈ ∞
√
E+ and y ∈ F∞,+. By ([4], Lemme 2.1 and 2.2) there exists

elements ε1, . . . , εd−1 of E+ with

(i) The subgroup E ′ of E+ generated by ε1, . . . , εd−1 is free of rank
d− 1.
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(ii) For all τ ∈ Sd−1 put f1,τ = 1 and fi,τ =
∏

j<i ετ(j) for 2 ≤ i ≤ d.

Then (f1,τ , . . . , fd,τ ) is linearly independent and for all τ ∈ Sd−1

we have sign(ω(f1,τ , . . . , fd,τ )) = sign(τ).
(iii) For τ ∈ Sd−1 put Cτ = C(f1,τ , . . . , fd,τ ). Then εCτ ∩ ε′Cτ ′ = ∅

for (ε, τ), (ε′, τ ′) ∈ E ′ × Sd−1 with (ε, τ) 6= (ε′, τ ′).

For τ ∈ Sd−1 we also set C̃τ = C(b(f1,τx, t0), . . . , b(fd,τx, td)) ∩ F∞,+.
Since the closure Cτ of Cτ in F∞,+ is C[f1,τ , . . . , fd,τ ] we have Cτ ⊆
C̃τ ⊆ Cτ by Lemma 3.5. By Lemma 3.1 (a) we get g = ψE′([z]) hence
by Remark 2.1 and Lemma 3.5 we obtain

g(y)=±
∑
ε∈E′

 ∑
τ∈Sd−1

sign(τ) z(f1,τ , . . . , fd,τ )

(ε−1y) =
∑

ε∈E′,τ∈Sd−1

1εC̃τ (y).

For pairs (ε, τ) 6= (ε′, τ ′) condition (iii) implies εCτ ∩ε′Cτ ′ = ∅ (because
εCτ is open). In particular C : = Cid = C(1, f1, . . . , fd−1) does not

intersect εC̃τ for all pairs (ε, τ) 6= (1, id) and consequently g is constant
= ±1 on C. Hence by Lemma 3.1 the function g is constant = ±1 on
the set

∞
√
E+ · C = {y ∈ F∞,+ | y = εy0 for some ε ∈ ∞

√
E+ and y0 ∈ C }.

To finish the proof we have to show ∞
√
E+ · C = F∞,+ or that the

image of ∞
√
E+ · C under Log is = Rd. However Log( ∞

√
E+) is a Q-

vector space which spans Rd
0 and for any t ∈ R the intersection of the

open set Log(C) with Rd
t : = {z = (z1, . . . , zd) ∈ Rd |

∑d
i=1 zi = t}

in nonempty. Hence Rd
t ⊆ Log( ∞

√
E+ · C) for all t ∈ R and therefore

Rd = Log( ∞
√
E+ · C). �

(S, T )-Shintani cocyles. For a finite set S of nonarchimedian places
of F we denote by KS (resp. KS) the subgroup of Krat generated by the
characteristic functions 1C of Shintani cones C generated by elements
in ES

+ (resp. ES,+). Note that KS resp. KS is a ES
+ resp. ES,+-stable

subspace of Krat. For a prime number q we write Kq for KSq . We have
KS = lim

−→T
KT where T runs through all finite subsets of P∞F which are

disjoint to S.

Let S, T be a pair of finite disjoint subsets P∞F . Consider the com-
posite

(26) Hd−1(ES
+,KT )

res−→ Hd−1(E+,KT )
∩ηE+−→ H0(E+,KT )

Definition 3.8. (a) A T -integral Shintani decomposition A is a Shin-
tani set which can be written as a finite disjoint union of Shintani cones
each generated by elements in ET,+.
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(b) An (S, T )-Shintani cocycle is a cohomology class α ∈ Hd−1(ES
+,KT )

which is mapped under (21) to the class [1A] ∈ H0(E+,KT ) of the
characteristic function of a T -integral Shintani decomposition A. If
T = Sq for a prime number q then a (S, Sq)-Shintani cocycle will be
also called (S, q)-Shintani cocycle.

Proposition 3.9. For a finite subset S of P∞F there exists another such
set S0 ⊇ S so that an (S, T )-Shintani cocycle exists for all T which are
disjoint from S0. In particular there exists an (S, q)-Shintani cocycle
for almost all prime numbers q.

Proof. Let α ∈ Hd−1(F ∗+,Krat) be a Shintani cocycle and let αS be
its image under res : Hd−1(F ∗+,Krat) → Hd−1(ES

+,Krat). Since ES
+ is

finitely generated the functor Hd−1(ES
+, · ) commutes with direct limits.

Hence there exists a finite set S0 ⊇ S and α0 ∈ Hd−1(ES
+,KS0) such

that ι∗(α0) = αS where ι : KS0 ⊆ Krat is the inclusion.

There exists a Shintani decompositionA such that the image α under
(24) is equal to [1A] ∈ H0(E+,Krat). By enlarging S0 if necessary we
may assume that A can be written as a finite disjoint union of Shintani
cones generated by elements in ES0

+ . This may not necessarily imply
that the image of α0 under

Hd−1(ES
+,KS0)

res−→ Hd−1(E+,KS0)
∩ηE+−→ H0(E+,KS0)

is equal to the class of 1A. However by further enlarging S0 we may
assume this as well (here we use that H0(E+, · ) commutes with direct
limits).

It is now obvious that for all T disjoint from S0 the image of α0

under the canonical map Hd−1(ES
+,KS0)→ Hd−1(ES

+,KT ) is a Shintani
(S, T )-cocycle. �

4. Integrality properties of L-values attached to
Shintani cones

Locally constant functions on adeles and ideles. Our aim now
is to relate the function space C0

c (S1, S2, R) to the Schwartz space
S(A∞, R) i.e. the space of compactly supported locally constant func-
tions A→ R.

In general for a locally compact totally disconnected topological ring
A and a ring R the Schwartz space S(A,R) is defined as S(A,R) =
C0
c (A,R). The group A∗ acts on S(A,R) by (af)(x) : = f(a−1x) for

a ∈ A∗, f ∈ S(A,R) and x ∈ A. Using the embedding Q ↪→ Cp we

view S(A,Q) as a subspace of S(A,Cp) and denote the induced p-adic

maximums norm (2) on S(A,Q) also by ‖ · ‖p.
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In order to relate C0
c (S1, S2, R) to S(A∞, R) we first consider the local

case. For v ∈ P∞F , φ ∈ Cc(F ∗v , R)Uv and x ∈ F ∗v the infinite sum

(
∞∑
n=0

$nφ)(x) : =
∞∑
n=0

φ($−nx)

is finite and one easily checks that F ∗v → R, x 7→ (
∑∞

n=0 $
nφ)(x)

extends to a function in C0
c (Fv, R). For example if φ = 1Uv then∑∞

n=0 $
nφ = 1Ov . We obtain a F ∗v -equivariant R-linear isomorphism

(27) δv : C0
c (F ∗v , R)Uv −→ S(Fv, R)Uv , φ 7→

∞∑
n=0

$nφ

which is characterized by δv(1xUv) = 1xOv .

Now consider S(A∞, R) with its canonical I∞-action. We have

S(A∞, R) ∼=
⊗
v-∞

′
S(Fv, R)

where the restricted tensor product
⊗′ is taken with respect to the

family of functions {1Ov}v. Thus by taking the tensor product of the
maps (27) we obtain a canonical I∞-equivariant isomorphism

∆ : C0
c (I∞/U∞, R) = C0

c (I∞, R)U
∞ −→ S(A∞, R)U

∞
.

It can be considered as a linearization of the map sending an idele to
the corresponding fractional OF -ideal. Indeed, it is characterized by
∆(1yU∞)(x) = 1a(x) for y ∈ I∞ and x ∈ F where a ∈ I denotes the
ideal corresponding to yU∞ under the isomorphism I∞/U∞ ∼= I.

More generally, if S1, S2 are disjoint finite subsets of P∞F and S =
S1 ∪ S2 then by taking the tensor product of the canonical inclusion
C0
c (AS1 × A∗S2

, R) → S(AS, R) (”extension by zero”) with the ten-
sor product of the maps (27) for v 6∈ S we obtain a I∞-equivariant
monomorphism

C0
c (S1, S2, R) −→ S(A∞, R)U

S,∞
.

It maps a function of the form φ =
⊗

φv with φv ∈ C0
c (F ∗v , R)Uv for all

v 6∈ S to φ̃ =
⊗

φ̃v with φ̃v = φv if v ∈ S and φ̃v = δv(φv) if v 6∈ S.

Similarly, if q is a prime number with Sq ∩ S = ∅ then by the same
procedure we obtain a canonical Iq,∞-equivariant monomorphism

(28) C0
c (S1, S2, R)q −→ S(Aq,∞, R)U

S,q,∞
.

Solomon-Hu pairing. For a finite dimensional Q-vector space V we
denote by Q[[V ]] the algebra

∏
n≥0 Symn V and let Q((V )) be its quotient

field. A choice of a basis (v1, . . . vm) of V induces isomorphisms between
Q[[V ]] resp. Q((V )) and the power series ring Q[[z1, . . . , zm]] resp. the field
of Laurent series Q((z1, . . . , zm)). Elements in Q[[V ]] can be written as



SHINTANI COCYCLES AND VANISHING ORDER OF Lp(χ, s) AT s = 0 19

formal sums
∑

n≥0 vn with vn ∈ Symn V . We denote the augmentation
map by

ev0 : Q[[V ]] −→ Q, ψ =
∑
n≥0

vn 7→ ev0(ψ) = v0

(thus if we think of ψ as a power series in z1, . . . , zm then ev0(ψ) is the
evaluation at z1 = . . . = zm = 0). We have Q[[V ]]∗ = {ψ ∈ Q[[V ]] |
ev0(ψ) 6= 0}.

For V = F ⊗Q Q we put R = Q[[F ⊗Q Q]] and Q = Q((F ⊗Q Q)).
The field F can be viewed as a subset of R via the embedding ι :
F ↪→ F ⊗ Q = Sym1(F ⊗ Q) ⊂ R, i.e. ι(x) =

∑
n≥0 vn with v1 = x

and vn = 0 for all n 6= 1. The multiplication in F induces a F ∗-
action on Q, F ∗ × Q → Q, (x, g) 7→ x ? g which is characterized by
x ? (ι(x1) · · · ι(xn)) = ι(xx1) · · · ι(xxn) for x, x1, . . . , xn ∈ F ).

Solomon and Hu [12] (see also [11]) have constructed a pairing

(29) 〈〈 , 〉〉 : Krat × S(A∞,Q) −→ Q
with the following properties.

(SH1) 〈〈xf, xΦ〉〉 = x ? 〈〈f,Φ〉〉 for all x ∈ F ∗, f ∈ Krat and Φ ∈
S(A∞,Q).

(SH2) If C is a Shintani cone C = C(x1, . . . xm) with x1, . . . xm ∈ F+

linearly independent over Q and if Φ ∈ S(A∞,Q) is invariant under
translation by

∑m
i=1 Zxi then

〈〈1C ,Φ〉〉 =
m∏
i=1

(1− exp(xi))
−1 ·

∑
x∈F∩P (x1,...,xm)

Φ(x) exp(x)

where exp(y) =
∑∞

i=0 ι(y)n/n! ∈ R and

P (x1, . . . , xm) = {
m∑
i=1

tixi | ti ∈ R, 0 < ti ≤ 1 ∀ i = 1, . . . ,m}.

Cassou-Noguès trick. For a Shintani cone C and Φ ∈ S(A∞,Q) we
consider the Dirichlet series L(Φ, C; s) given by

L(Φ, C; s) =
∑
x∈F

Φ(x)1C(x) N(x)−s.

Following Cassou-Nogué [3] we study its value at s = 0 for certain C
and Φ.

Let q be a prime number 6= p and let q be a place of F above q. We
define φq ∈ S(Fq,Q) by φq = 1Oq − N(q) ($q1Oq) i.e.

φq(x) =

 1 if x ∈ Uq,
1− N(q) if x ∈ qOq,
0 otherwise.
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Let ψq : Fq → Q∗ denote an (additive) character with Ker(ψq) = Oq

and define 〈x, y〉q : = ψq(xy) for x, y ∈ Fq. One can easily see that φq

is the Fourier transform of the function 1$−1
q Uq

∈ S(Fq,Q). Hence by

the Fourier inversion formula we obtain

(30) φq(x) = −
∑
y∈Q

〈x, y〉q

for all x ∈ Fq where Q is a system of representatives of the set of cosets
$−1

q Oq/Oq−{Oq} = {y+Op | y ∈ q−1Oq−Oq}. Note that if N(q) = q
then 〈x, y〉q is a primitive q-th root of unity for all y ∈ Q and x ∈ Uq.
We define φq ∈ S(Fq,Q) as the (tensor) product of φq and the functions
1Ov for v | q, v 6= q

(31) φq = φq ⊗
⊗
v|q,v 6=q

1Ov ∈
⊗
v|q

S(Fv,Q) ∼= S(Fq,Q)

Assume now that N(q) = q (for example we may choose a prime
q 6= p which splits completely in F and take any place q above q). In
the following Lemma we identify S(Aq,∞,Q)⊗S(Fq,Q) with S(A∞,Q).

Thus for φ ∈ S(Aq,∞,Q) we regard φ ⊗ φq as an element of S(A∞,Q)
(the function φq is defined by (31)).

Lemma 4.1. Let φ ∈ S(Aq,∞,Q) and let C = C(x1, . . . , xm) be a
Shintani cone generated by x1, . . . , xm ∈ Eq,+.

(a) We have 〈〈1C , φ⊗ φq〉〉 ∈ R. Moreover,

(32) | ev0(〈〈1C , φ⊗ φq〉〉)|p ≤ ‖φ‖p.

(b) L(φ ⊗ φq, C; s) converges absolutely for Re(s) > m/d and extends
holomorphically to the whole complex plane. At s = 0 we have

L(φ⊗ φq, C; 0) = ev0(〈〈1C , φ⊗ φq〉〉).

Proof. Put Φ = φ⊗ φq and Φ0 = φ⊗
⊗

v|q 1Ov ∈ S(A∞,Q). By (30)
we get

(33) Φ(x) = −
∑
y∈Q

〈x, y〉qΦ0(x)

for all x ∈ F (we consider elements of S(A∞,Q) also as functions on
F via the diagonal embedding F ↪→ A∞). There exists two fractional
OF -ideals a ⊆ b ⊆ F such that Φ0 has support in b and is constant
modulo a, i.e. supp(Φ0)∩F ⊆ b and Φ0(x+a) = φ(x) for all a ∈ a and
x ∈ A∞. Since the q-component of Φ0 is =

⊗
v|q 1Ov we may assume

that no prime of OF above q occurs in the prime decomposition of a
and b.

Fix i ∈ {1, . . . ,m}. Since xi lies in Eq there exists a positive integer
M prime to q such that Mxi ∈ a. Indeed, no prime ideal above q



SHINTANI COCYCLES AND VANISHING ORDER OF Lp(χ, s) AT s = 0 21

occurs in the prime decomposition of x−1
i a and we can choose M to be

the positive generator of x−1
i a ∩ Z.

By replacing each xi by some multiple Mxi with q -M we can (and
will) assume that x1, . . . , xm ∈ a, i.e. Φ0 is invariant under translation
by
∑m

i=1 Zxi. Since xi is a unit at q (i.e. ordq(xi) = 0) we remark that
〈xi, y〉q is a primitive q-th root of unity for all y ∈ Q and i = 1, . . . ,m.
So by (33) the function Φ is invariant under translation by

∑m
i=1 Z(qxi).

Since P̃ = P (qx1, . . . , qxm) is the disjoint union of sets of the form
(
∑m

i=1 nixi) + P with P = P (x1, . . . , xm) and 0 ≤ n1, . . . , nm ≤ q − 1
and because Φ0 is constant modulo

∑m
i=1 Zxi we obtain using (33)∑

x∈F∩P̃

Φ(x) exp(x) = −
∑
y∈Q

∑
x∈b∩P̃

〈x, y〉qΦ0(x) exp(x)

= −
∑
y∈Q

∑
x∈b∩P

〈x, y〉qΦ0(x) exp(x)

q−1∑
n1,...,nm=0

m∏
i=1

(〈xi, y〉q exp(xi))
ni

= −
m∏
i=1

(1− exp(qxi)) ·
∑
y∈Q

∑
x∈b∩P 〈x, y〉qΦ0(x) exp(x)∏m
i=1(1− 〈xi, y〉q exp(xi))

.

By (SH2) we obtain

〈〈1C ,Φ〉〉 =
m∏
i=1

(1− exp(qxi))
−1 ·

∑
x∈F∩P̃

Φ(x) exp(x)

= −
∑
y∈Q

∑
x∈b∩P 〈x, y〉qΦ0(x) exp(x)∏m
i=1(1− 〈xi, y〉q exp(xi))

∈ R

since ev0(1−〈xi, y〉q exp(xi)) = 1−〈xi, y〉q 6= 0 hence 1−〈xi, y〉q exp(xi)
∈ R∗ for all y ∈ Q and i = 1, . . . ,m. Moreover we get

ev0(〈〈1C ,Φ〉〉) = −
∑
y∈Q

∑
x∈b∩P〈x, y〉qΦ0(x)∏m
i=1 (1− 〈xi, y〉q)

To deduce (32) note that |1− 〈xi, y〉q|p = 1 hence

| ev0(〈〈1C ,Φ〉〉)|p ≤ max
y∈R
|
∑
x∈b∩P

〈x, y〉qΦ0(x)|p ≤ ‖Φ0‖p = ‖φ‖p.

(b) For L(Φ, C; s) we obtain

L(Φ, C; s) = −
∑
y∈Q

∑
x∈b∩C

〈x, y〉qΦ0(x) N(x)−s

= −
∑
y∈Q

∑
x∈b∩P

〈x, y〉qΦ0(x)
∞∑

n1,...,nm=0

m∏
i=1

〈xi, y〉niq N(x+
m∑
i=1

nixi)
−s
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Fix y ∈ Q and put ξi = 〈xi, y〉q. To deduce (b) it is enough to show
that the Dirichlet series

∞∑
n1,...,nm=0

m∏
i=1

ξnii N(x+
m∑
i=1

nixi)
−s

extends to a holomorphic function on the whole complex plane and
that its value at s = 0 is equal to 1∏m

i=1 (1−ξi) . This is well-known (see

[14], Prop. 9 or [3], Thm. 5 and Thm. 13). �

p-adic measures attached to Hecke characters and cones. Let
χ : I/F ∗ → C∗ be a Hecke character of finite order with conductor
f(χ). Our aim is to construct a Eq,+-equivariant pairing

(34) 〈〈 , 〉〉χ,q : Kq × C0
c (S1, S2,Q)q −→ Q

(a variant of the Solomon-Hu pairing) with the property that for fixed
f ∈ Kq the map 〈〈f, · 〉〉χ,q : C0

c (S1, S2,Q)q → Cp, φ 7→ 〈〈f, φ〉〉χ,q is an

element of Db(S1, S2,Cp).

Let S0 be the set of all v ∈ P∞F which divide pf(χ). We decompose

S0 into disjoint sets S0 = S1

·
∪ S2

·
∪ S3 where S1 = {v ∈ Sp | χv = 1},

S2 = Sp − S1 and S3 = S − Sp. Note that χS0 : IS0,∞ → Q∗ factors
through IS0,∞/US0,∞ ∼= IS0 . Hence we may view χS0 as a character

χ = χS0 : IS0 −→ Q∗, a 7→ χS0(a).

We fix a place q of F such that q = N(q) is a prime number with
Sq ∩ S0 = ∅. Since Iq,∞/Eq,+U

S0,q,∞ ∼= I/F ∗US0 we can (and will) also
regard χ as a character of

(35) χ : Iq,∞ −→ Q∗

with Eq,+U
S0,q,∞ ⊆ Ker(χ).

Note that since χv = 1 for all v ∈ S1 we can extend (35) to a

multiplicative map χ : AS1 × IS1,q,∞ → Q∗. We define a map

∆χ = ∆χ
q : C0

c (S1, S2,Q)q −→ S(A∞,Q)

as the composition

C0
c (S1, S2,Q)q

incl
↪→ C0

c (S1, S2 ∪ S3,Q)q
χ·−→ C0

c (S1, S2 ∪ S3,Q)q

(28)−→ S(Aq,∞,Q)
· ⊗φq−→ S(A∞,Q).

Thus for an element φ ∈ C0
c (S1, S2, q,Q) of the form φ =

⊗
v-q∞ φv with

φv ∈


C0
c (Fv,Q) if v ∈ S1,

C0
c (F ∗v ,Q) if v ∈ S2,

C0
c (F ∗v ,Q)Uv if v 6∈ Sp ∪ Sq
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we have ∆χ(φ) =
⊗

v-∞ φ̃v where φ̃v ∈ S(Fv,Q) is given by

φ̃v =


χvφv if v ∈ S0,
1Oq − N(q) 1$qOq if v = q,
1Ov if v|q, v 6= q,
δv(χvφv) if v 6∈ S0 ∪ Sq.

Since φv = 1Uv for almost all v we have φ̃v = 1Ov for almost all v.

We remark that

∆χ(yφ)(x) = χ(y)(∆χ(φ))(y−1x)

for x ∈ A∞, y ∈ Iq,∞ and φ ∈ C0
c (S1, S2, q,Q). In particular ∆χ is Eq,+-

equivariant. We also note that ‖∆χ(φ)‖p = ‖φ‖p where ‖ · ‖p denote

the norm (2) on C0(S1, S2,Q) and S(A∞,Q) respectively.

Let y = (yv)v ∈ US0 × IS0,∞ be an idele whose components yv at
places v above q are all = 1 (hence we can view y as an element of
Iq,∞). We need an explicite description of ∆χ(1yUq,∞). For that let
a ∈ IS0 ⊆ I be the ideal corresponding to yU∞. Then for x ∈ F we
have

(36) ∆χ(1yUq,∞)(x) = χ(x−1a)(1a∩ES0 (x)− N(q)1aq∩ES0 (x)).

According to Lemma 4.1 the image of a pair (f,∆χ(φ)) with f ∈ Kq
and φ ∈ C0

c (S1, S2,Q)q under the map (29) lies in R. We define (34)
by taking the composition of

Kq × C0
c (S1, S2,Q)q

incl×∆χ

−−−−−→ Krat × S(A∞,Q)

with (29) and ev0 : R → Q, i.e. we have 〈〈f, φ〉〉χ,q = ev0(〈〈f,∆χ(φ)〉〉)
for all f ∈ Kq and φ ∈ C0

c (S1, S2,Q)q. By Lemma 4.1 (a) we obtain a
Eq,+-equivariant homomorphism

Kq −→ Db(S1, S2,Cp)
q, f 7→ 〈〈f, · 〉〉χ,q

Shintani decomposition and special L-values. Let y(1), . . . , y(h) ∈
US0 × IS0,∞ be ideles whose components at places above q are all = 1
(hence y(1), . . . , y(h) can be regarded as elements Iq,∞) and such that
y(1), . . . , y(h) is a system of representatives of Iq,∞/U q,∞Eq,+ ∼= Cl+(F )
(the narrow class group of F ). We also consider a q-integral Shintani
decompostion A. Recall that this means that A has a decomposition

A =
·⋃
j∈JCj where {Cj | j ∈ J} is a finite collection of Shintani cones

Cj which are generated by elements of Eq,+.

Lemma 4.2. Let F =
⋃h
i=1 y

(i)U q,∞. Then,

〈〈1A, 1F〉〉χ−1,q = (1− χ(q) N(q))LSp(χ, 0).



24 BY MICHAEL SPIESS

Proof. Recall that for Re(s) > 1 we have

LSp(χ, s) =
∏
v-p∞

Lv(χ, s) =
∏

v-∞,v 6∈S

Lv(χ, s) =
∑

b∈IS ,b⊆OF

χ(b) N(b)−s

(since Lv(χ, s) = 1 for all v | f(χ)). Let a1, . . . , ah ∈ IS0 be the
ideals corresponding to y(1)U∞, . . . , y(h)U∞. For i ∈ {1, . . . , h} put

Φi = ∆χ−1

q (1y(i)Uq,∞) and

L(Φi, 1A; s) =
∑
x∈F

Φi(x)1A(x) N(x)−s =
∑
j∈J

L(Φi, Cj, 0).

So by Lemma 4.1 the function L(Φi, 1A; s) is entire and by (36) we have

L(Φi, 1A; s) =
∑

x∈ai∩ES0∩A

χ(xa−1
i ) N(x)−s

−χ(q) N(q)
∑

x∈qai∩ES0∩A

χ(x(qai)
−1) N(x)−s.

Since x 7→ xa−1
i resp. x 7→ x(qai)

−1 induces bijections

ai ∩ ES0 ∩ A −→ {b ∈ IS0 | b ∼ a−1
i , b ⊆ OF},

qai ∩ ES0 ∩ A −→ {b ∈ IS0 | b ∼ (qai)
−1, b ⊆ OF}

we get

L(Φi, 1A; s) = N(ai)
s (

∑
b∈IS ,b⊆OF ,b∼a−1

i

χ(b) N(b)−s)

−χ(q) N(q)1+s N(ai)
s (

∑
b∈IS ,b⊆OF ,b∼(qai)−1

χ(b) N(b)−s)

In particular for s = 0 we obtain

h∑
i=1

L(Φi, 1A; 0) = (1− χ(q) N(q))LSp(χ, 0).

On the other hand by Lemma 4.1 ev0(〈〈1Cj ,Φi〉〉) = L(Φi, Cj, 0) for all
j ∈ J hence

〈〈1A, 1F〉〉χ−1,q =
h∑
i=1

∑
j∈J

ev0(〈〈1Cj ,Φi〉〉) =
h∑
i=1

L(Φi, 1A; 0)

so the assertion follows. �

5. Construction of Lp(χ, s) and proof of the main result

Interpolation property. As in last section χ : I/F ∗ → C∗ denotes
a Hecke character of finite order, S1 the set places v with χv = 1 and
v | p, S2 = Sp − S1 and S3 the set places which do not lie above
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p and divide f(χ). We choose y(1), . . . , y(h) ∈ US0 × IS0,∞ such that
y(1), . . . , y(h) is a system of representatives of I∞/U∞F ∗+

∼= Cl+(F ) (as

before S0 = S1

·
∪ S2

·
∪ S3). Then there exists a finite subset S4 of

P∞F which is disjoint from S0 and such that y(1), . . . , y(h) already lie in
IS4 × US4,∞. Put S = S0 ∪ S4 so that IS,∞ = US,∞F ∗+.

By Prop. 3.9 there exists a prime number q such that (i) S ∩ Sq =
∅, (ii) q splits completely in F and (iii) there exists a (S, q)-Shintani
cocycle α ∈ Hd−1(ES

+,Kq).
We choose a place q of F above q and put T = S − Sp = S3 ∪ S4. In

the following we embed C0
c (Sp,Q)T into C0

c (Sp,Q)q and the latter into

C0
c (Sp,Q) via the map (19) and (17) respectively. So we have

C0
c (Sp,Q)T ⊆ C0

c (Sp,Q)q ⊆ C0
c (Sp,Q).

When restricting (34) to Kq × C0
c (S1, S2,Q)T we get a ES

+-equivariant
pairing

(37) Kq × C0
c (S1, S2,Q)T −→ Q

which induces a ES
+-equivariant homomorphism

(38) Kq −→ Db(S1, S2,Cp)T

Consider the map

Hd−1(ES
+,KT ) −→ Hd−1(ES

+,Db(S1, S2,Cp)T )(39)

(16)−→ Hd−1(F ∗+,Db(S1, S2,Cp))

where the first arrow is induced by (38). We denote the image of α
under (39) by κχ,q and let µχ,q = µκχ,q denote the corresponding p-adic
measure on Gp defined by (14).

Proposition 5.1. For all characters η : Gp → Q∗ we have∫
Gp
η(γ)µχ,q(dγ) = (1− (χη)−1(q) N(q))LSp((χη)−1, 0).

Proof. The pairing (37) when restricted to the subgroup C0
c (Sp,Q)T

⊆ C0
c (S1, S2,Q)T yields a pairing

∩SH : Hd−1(ES
+,Kq)×Hd−1(ES

+, C0
c (Sp,Q)T ) −→ C

and we have

(40) κχ,q ∩ β = α ∩SH β ∀ β ∈ Hd−1(ES
+, C0

c (Sp,Q)T ).

Moreover (37) induces a pairing

(41) H0(E+,Kq))×H0(E+, C0
c (Sp,Q)T ) −→ C
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and the following diagram commutes

(42)

Hd−1(ES
+,Kq) × Hd−1(ES

+, C0
c (Sp,Q)T )

∩SH−−−→ Cy(26)

x yid

H0(E+,Kq)) × H0(E+, C0
c (Sp,Q)T )

(41)−−−→ C
where the second vertical map is the composite of

H0(E+, C0
c (Sp,Q)T )

∩ηE+−→ Hd−1(E+, C0
c (Sp,Q)T )

with cor : Hd−1(E+, C0
c (Sp,Q)T → Hd−1(ES

+, C0
c (Sp,Q)T .

Put F =
⋃h
i=1 y

(i)U q,∞ and let η : Gp → Q∗ be a character. We view

η as a Hecke character Iq,∞/Up,q,∞ → Q∗ (more precisely we denote the
composite

Iq,∞/Up,q,∞ pr−→ Iq,∞/Eq,+U
p,q,∞ ∼= I/F ∗Up ρ−→ Gp

η−→ Q∗

also by η where ρ is the reciprocity map). Then η·1F ∈ C0
c (Sp,Q)q actu-

ally lies in H0(E+, C0
c (Sp,Q)T ) and its class in H0(Γ, H0(E+, C0

c (Sp,Q))

is mapped under (5) to η (viewed here as a continuous map Gp → Q).

Let A be a q-integral Shintani decomposition such that the (S, q)-
Shintani cocycle α is mapped to the class of 1A in H0(E+,Kq)) under
(26). Using (40), the commutativity of (42) and Lemma 4.2 we obtain∫

Gp η(γ)µχ,q(dγ) = κχ,q ∩ ∂(η) = α ∩SH ∂(η) = 〈〈1A, η1F〉〉χ,q
= 〈〈1A, 1F〉〉χη,q = (1− (χη)−1(q) N(q))LSp((χη)−1, 0).

�

Proof of Theorem 1.1. Recall ([13], 4.6) that there exists a Cp-valued
p-adic measure µ on Gp such that for its Γ-transform we have

Lp(µ, s) = (1− χ(q)〈γ〉1−s)Lp(χ, s)
and such that∫

Gp
η(γ)µ(dγ) = (1− (ηχ)(q) N(q))LSp(ηχ, 0)

for all characters η : Gp → Q∗. Since the latter property determines µ
uniquely we deduce from Prop. 5.1 that µ = τ∗(µχ,q) where τ : Gp →
Gp, γ 7→ γ−1. Hence

Lp(χ, s) = (1− χ(q)〈γ〉1−s)−1 Lp(µχ,q,−s)
in a neighborhood of s = 0 and therefore

ords=0 Lp(χ, s) = ords=0 Lp(µχ,q, s) ≥ ]S1

by Theorem 2.3. �
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