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Abstract. We consider algebraic Delone sets Λ in the Euclidean plane and
address the problem of distinguishing convex subsets of Λ by X-rays in pre-
scribed Λ-directions, i.e. directions parallel to lines through two different points
of Λ. Here, an X-ray in direction u of a finite set gives the number of points
in the set on each line parallel to u. It is shown that for any algebraic Delone
set Λ there are four prescribed Λ-directions such that any two convex sub-
sets of Λ can be distinguished by the corresponding X-rays. We further prove
the existence of a natural number cΛ such that any two convex subsets of Λ

can be distinguished by their X-rays in any set of cΛ prescribed Λ-directions.
In particular, this extends a well-known result of Gardner and Gritzmann on
the corresponding problem for planar lattices to nonperiodic cases that are
relevant in quasicrystallography.

1. Introduction

Discrete tomography is concerned with the inverse problem of retrieving infor-
mation about some finite set in Euclidean space from (generally noisy) information
about its slices. One important problem is the unique reconstruction of a finite
point set in Euclidean 3-space from its (discrete parallel) X-rays in a small number
of directions, where the X-ray of the finite set in a certain direction is the line sum
function giving the number of points in the set on each line parallel to this direction.

The interest in the discrete tomography of planar Delone sets Λ with long-range
order is motivated by the requirement in materials science for the unique recon-
struction of solid state materials like quasicrystals slice by slice from their images
under quantitative high resolution transmission electron microscopy (HRTEM). In
fact, in [29], [36] a technique is described, which can, for certain crystals, effectively
measure the number of atoms lying on densely occupied columns. It is reasonable
to expect that future developments in technology will extend this situation to other
solid state materials. The aforementioned density condition forces us to consider
only Λ-directions, i.e. directions parallel to lines through two different points of Λ.
Further, since typical objects may be damaged or even destroyed by the radiation
energy after about 3 to 5 images taken by HRTEM, applicable results may only use
a small number of X-rays. It is actually this restriction to few high-density direc-
tions that makes the problems of discrete tomography mathematically challenging,
even if one assumes the absence of noise.

In the traditional setting, motivated by crystals, the positions to be determined
form a finite subset of a three-dimensional lattice, the latter allowing a slicing into
equally spaced congruent copies of a planar lattice. In the crystallographic setting,
by the affine nature of the problem, it therefore suffices to study the discrete tomog-
raphy of the square lattice; cf. [15], [16], [17], [19], [21], [22], [23] for an overview.
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For the quasicrystallographic setting, the positions to be determined form a finite
subset of a nonperiodic Delone set with long-range order (more precisely, a math-
ematical quasicrystal or model set [8], [30]) which on the other hand is contained
in a free additive subgroup of R3 of finite rank r > 3. These model sets possess,
as is the case for lattices, a dimensional hierarchy, i.e. they allow a slicing into
planar model sets. However, the slices are in general no longer pairwise congruent
or equally spaced in 3-space; cf. [32]. Still, most of the model sets that describe real
quasicrystallographic structures allow a slicing such that each slice is, when seen
from a common perpendicular viewpoint, a (planar) n-cyclotomic model set, where
n = 5, n = 8 and n = 12, respectively (Example 3.11); cf. [24, Section 1.2], [26],
[28, Section 4.5] and [37] for details. These cyclotomic model sets thus take over
the role played by the planar lattices in the crystallographic case. In the present
text, we shall focus on the larger class of algebraic Delone sets (Definition 3.1).

Since different finite subsets of a Delone set Λ may have the same X-rays in
several Λ-directions (in other words, the above problem of uniquely reconstructing
a finite point set from its X-rays is an ill-posed problem in general), one is naturally
interested in conditions to be imposed on the set of Λ-directions together with
restrictions on the possible finite subsets of Λ such that the latter phenomenon
cannot occur. Here, we consider the convex subsets of Λ (i.e. bounded subsets of Λ
with the property that their convex hull contains no new points of Λ) and show that
for any algebraic Delone set Λ there are four prescribed Λ-directions such that any
two convex subsets of Λ can be distinguished by the corresponding X-rays, whereas
less than four Λ-directions never suffice for this purpose (Theorem 5.10(a)). We
further prove the existence of a finite number cΛ such that any two convex subsets
of Λ can be distinguished by their X-rays in any set of cΛ prescribed Λ-directions
(Theorem 5.10(b)). Moreover, we demonstrate that the least possible numbers cΛ in
the case of the practically most relevant examples of n-cyclotomic model sets Λ with
n = 5, n = 8 and n = 12 are (in that very order) 11, 9 and 13 (Theorem 5.11(b) and
Remark 5.12). This extends a well-known result of Gardner and Gritzmann (cf. [15,
Theorem. 5.7]) on the corresponding problem for planar lattices Λ (cΛ = 7) to cases
that are relevant in quasicrystallography and in particular solves Problem 4.34
of [28]. The above results and their continuous analogue (Theorem 6.2) follow from
deep insights into the existence of certain U -polygons in the plane (cf. Section 2).
We believe that our main result on these polygons (Theorem 5.6) is of independent
interest from a purely geometrical point of view. For the algorithmic reconstruction
problem in the quasicrystallographic setting, we refer the reader to [3], [26].

2. Preliminaries and notation

Natural numbers are always assumed to be positive. For a natural number n and
a prime number p, we denote the exponent of the highest power of p dividing n by
ordp(n). We denote the norm in Euclidean d-space by ‖ · ‖. The Euclidean plane
will occasionally be identified with the complex numbers. For z ∈ C, z̄ denotes the
complex conjugate of z and |z| =

√
zz̄ its modulus. The unit circle in C is denoted

by S1 and its elements are also called directions. For a nonzero complex number z,
we denote by sl(z) the slope of z, i.e. sl(z) = −i(z− z̄)/(z+ z̄) ∈ R∪{∞}. For r > 0
and z ∈ C, Br(z) is the open ball of radius r about z. Recall that an (R-)linear
endomorphism (resp., affine endomorphism) Ψ of C is given by z 7→ az + bz̄ (resp.,
z 7→ az + bz̄ + t), where a, b, t ∈ C. In both cases, it is an automorphism if and
only if detΨ = aā − bb̄ 6= 0. A homothety h : C → C is given by z 7→ λz + t,
where λ ∈ R is positive and t ∈ C. In the following, let Λ be a subset of C. A
direction u ∈ S1 is called a Λ-direction if it is parallel to a nonzero element of the
difference set Λ − Λ = {v − w | v, w ∈ Λ} of Λ. A convex polygon is the convex
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hull of a finite set of points in C. A polygon in Λ is a convex polygon with all
vertices in Λ. Further, a bounded subset C of Λ is called a convex subset of Λ if
C = (convC) ∩ Λ, where convC denotes the convex hull of C. Let U ⊂ S1 be a
finite set of directions. A nondegenerate convex polygon P is called a U -polygon
if it has the property that whenever v is a vertex of P and u ∈ U , the line in the
complex plane in direction u which passes through v also meets another vertex v′

of P . By a regular polygon we shall always mean a nondegenerate convex regular
polygon. An affinely regular polygon is the image of a regular polygon under an
affine automorphism of the complex plane. Λ is called uniformly discrete if there
is a radius r > 0 such that every ball Br(z) with z ∈ C contains at most one point
of Λ. Note that the bounded subsets of a uniformly discrete set Λ are precisely the
finite subsets of Λ. Λ is called relatively dense if there is a radius R > 0 such that
every ball BR(z) with z ∈ C contains at least one point of Λ. Λ is called a Delone
set if it is both uniformly discrete and relatively dense. Λ is said to be of finite local
complexity if Λ−Λ is discrete and closed. Note that Λ is of finite local complexity
if and only if for every r > 0 there are, up to translation, only finitely many patches
of radius r, i.e. sets of the form Λ∩Br(z), where z ∈ C; cf. [30]. A Delone set Λ is
a Meyer set if Λ−Λ is uniformly discrete. Trivially, any Meyer set is of finite local
complexity. Λ is called periodic if it has nonzero translation symmetries. Finally,
we denote by KΛ the intermediate field of C/Q that is given by

KΛ = Q
(

(Λ− Λ) ∪
(

Λ− Λ
))

.

2.1. Recollections from the theory of cyclotomic fields. Let K ⊂ C be a
field and let µ be the group of roots of unity in C. We denote the maximal real
subfield K ∩R of K by K+ and set µ(K) = µ∩K. As usual, let K∗ = K \{0}. For
n ∈ N, we always let ζn = e2πi/n, a primitive nth root of unity in C. Then, Q(ζn)
is the nth cyclotomic field. Further, φ will always denote Euler’s totient function,
i.e.

φ(n) = card
({

k ∈ N
∣

∣ 1 ≤ k ≤ n and gcd(k, n) = 1
})

.

Recall that φ is multiplicative with φ(pr) = pr−1(p− 1) for p prime and r ∈ N.

Fact 2.1 (Gauss). [38, Theorem 2.5] [Q(ζn) : Q] = φ(n) and the field extension
Q(ζn)/Q is a Galois extension with Abelian Galois group G(Q(ζn)/Q) ≃ (Z/nZ)×,
with a(modn) corresponding to the automorphism given by ζn 7→ ζan. �

Note that the composition Q(ζn)Q(ζm) = Q(ζn, ζm) of cyclotomic fields is equal
to the cyclotomic field Q(ζlcm(n,m)). Further, the intersection Q(ζn) ∩ Q(ζm) of

cyclotomic fields is equal to the cyclotomic field Q(ζgcd(n,m)). Note that Q(ζn)
+ =

Q(ζn+ ζ̄n) = Q(ζn+ζ−1
n ). Clearly, if n divides m then Q(ζn) is a subfield of Q(ζm).

Since Q(ζn) = Q(ζ2n) for odd n by Fact 2.1, we may sometimes restrict ourselves
to n ∈ N with n 6≡ 2 (mod 4).

2.2. Cross ratios. Let (t1, t2, t3, t4) be an ordered tuple of four distinct elements
of R ∪ {∞}. Then, its cross ratio 〈t1, t2, t3, t4〉 is the nonzero real number defined
by

〈t1, t2, t3, t4〉 =
(t3 − t1)(t4 − t2)

(t3 − t2)(t4 − t1)
,

with the usual conventions if one of the ti equals ∞. We need the following invari-
ance property of cross ratios of slopes which is usually stated in the framework of
projective geometry; cf. [11, Corollary 96.11]. For the reader’s convenience, we give
a reformulation and also include a proof.
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Lemma 2.2. Let z1, z2, z3, z4 ∈ C∗ be pairwise nonparallel and let Ψ be a linear
automorphism of the complex plane. Then, one has

〈

sl(z1), sl(z2), sl(z3), sl(z4)
〉

=
〈

sl(Ψ(z1)), sl(Ψ(z2)), sl(Ψ(z3)), sl(Ψ(z4))
〉

.

Proof. The assertion follows from the identities

(2.1)
〈

sl(z1), sl(z2), sl(z3), sl(z4)
〉

=
(z3z̄1 − z̄3z1)(z4z̄2 − z̄4z2)

(z3z̄2 − z̄3z2)(z4z̄1 − z̄4z1)

and Ψ(v)Ψ(w) −Ψ(v)Ψ(w) = (detΨ)(vw̄ − v̄w), where v, w ∈ C. �

Lemma 2.3. Let Λ ⊂ C. Then the cross ratio of slopes of four pairwise nonparallel
Λ-directions is an element of K+

Λ .

Proof. This follows immediately from (2.1). �

3. Algebraic Delone sets

The following notions will be useful; see also [24], [25], [27], [28] for generalisations
and for results related to those presented below.

Definition 3.1. A Delone set Λ ⊂ C is called an algebraic Delone set if it satisfies
the following properties:

(Alg) [KΛ : Q] < ∞ .

(Hom) For any finite subset F of KΛ, there is a homothety

h of the complex plane such that h(F ) ⊂ Λ .

Moreover, Λ is called an n-cyclotomic Delone set if it satisfies the property

(n-Cyc) KΛ ⊂ Q(ζn)

for some n ≥ 3 and has property (Hom). Further, Λ is called a cyclotomic Delone
set if it is an n-cyclotomic Delone set for a suitable n ≥ 3.

Remark 3.2. Algebraic Delone sets were already introduced in [28, Definition 4.1].
Clearly, for every algebraic Delone set Λ, the field extension KΛ/Q is an imaginary
extension (due to Λ being relatively dense) with KΛ = KΛ. By the Kronecker-
Weber theorem (cf. [38, Theorem 14.1]) and Fact 2.1, the cyclotomic Delone sets
are precisely the algebraic Delone sets Λ with the additional property that KΛ/Q
is an Abelian extension.

Following Moody [30], modified along the lines of the algebraic setting of Pleas-
ants [31], we make the following definition.

Definition 3.3. Let K ⊂ C be an imaginary quadratic extension of a real al-
gebraic number field (necessarily, this real algebraic number field is K+) of de-
gree [K : Q] = d over Q (in particular, d is even). Let OK be the ring of
integers in K and let .⋆ : OK → Cs−1 × Rt be any map of the form z 7→
(σ2(z), . . . , σs(z), σs+1(z), . . . , σs+t(z)), where σs+1, . . . , σs+t are the real embed-
dings of K/Q into C/Q and σ2, . . . , σs arise from the complex embeddings of K/Q
into C/Q except the identity and the complex conjugation by choosing exactly one
embedding from each pair of complex conjugate ones (in particular, d = 2s+ t and
s ≥ 1). Then, for any such choice, each translate Λ of

Λ(W ) = {z ∈ OK | z⋆ ∈ W} ,
where W ⊂ Cs−1 × Rt ≃ Rd−2 is a relatively compact set with nonempty interior,
is called a K-algebraic model set. Moreover, .⋆ and W are called the star map and
the window of Λ, respectively.
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Remark 3.4. Algebraic number fields K as above may be obtained by starting
with a real algebraic number field L and adjoining the square root of a negative
number from L. Note that, in the situation of Definition 3.3, the quadratic extension
K/K+ is a Galois extension with G(K/K+) containing the identity and the complex
conjugation (in particular, one has K = K). We use the convention that for d = 2
(meaning that s = 1 and t = 0), Cs−1 × Rt is the trivial group {0} and the star
map is the zero map. Due to the Minkowski representation {(z, z⋆) | z ∈ OK}
of the maximal order OK of K being a (full) lattice in C × Cs−1 × Rt ≃ Rd

(cf. [10, Chapter 2, Section 3]) that is in one-to-one correspondence with OK via
the canonical projection on the first factor and due to O⋆

K being a dense subset of
Cs−1 × Rt (see Lemma 3.7 below), K-algebraic model sets are indeed model sets
and thus are Meyer sets; cf. [8], [9], [30], [34], [35] for the general setting and further
properties of model sets. Since the star map is a monomorphism of Abelian groups
for d > 2 and since the window is a bounded set, a K-algebraic model set Λ is
periodic if and only if d = 2, in which case Λ is a translate of the planar lattice OK .

A real algebraic integer λ is called a Pisot-Vijayaraghavan number (PV-number)
if λ > 1 while all other conjugates of λ have moduli strictly less than 1.

Fact 3.5. [33, Chapter 1, Theorem 2] Every real algebraic number field contains a
primitive element that is a PV-number. �

Before we can show that K-algebraic model sets are algebraic Delone sets, we
need the following lemmas.

Lemma 3.6. Let Λ be a nonperiodic K-algebraic model set with star map .⋆. Then,
there is an algebraic integer λ ∈ K+ such that a suitable power of the Z-module
endomorphism m⋆

λ of O⋆
K , defined by m⋆

λ(z
⋆) = (λz)⋆, is contractive, i.e. there is

an l ∈ N and a real number c ∈ (0, 1) such that ‖(m⋆
λ)

l(z⋆)‖ ≤ c ‖z⋆‖ holds for all
z ∈ OK .

Proof. By Fact 3.5, we may choose a PV-number λ of degree d/2 = [K+ : Q] in
K+, where d = [K : Q] ≥ 4 due to the nonperiodicity; see Remark 3.4. Since all
norms on Cs−1×Rt ≃ Rd−2 are equivalent, it suffices to prove the assertion in case
of the maximum norm on Cs−1×Rt with respect to the absolute value on C and R,
respectively, rather than considering the Euclidean norm itself. But in that case,
the assertion follows immediately with l = 1 and

c = max
{

|σj(λ)|
∣

∣ j ∈ {2, . . . , s+ t}
}

,

since the set {σ2(λ), . . . , σs+t(λ)} of conjugates of λ does not contain λ itself. To see
this, note that σj(λ) = λ, where j ∈ {2, . . . , s+ t}, implies that σj fixes K+ whence
σj is the identity or the complex conjugation, a contradiction; see Definition 3.3
and Remark 3.4. �

Lemma 3.7. Let Λ be a K-algebraic model set with star map .⋆ and let d = [K : Q].
Then O⋆

K is dense in Cs−1 × Rt ≃ Rd−2.

Proof. If d = 2, one even has O⋆
K = Cs−1 × Rt = {0}. Otherwise, choose a PV-

number λ of degree d/2 in K+; cf. Fact 3.5. Since OK is a full Z-module in K, the
set {λkz | z ∈ OK} is a full Z-module in K for any k ∈ N . Thus the set

{(λkz, (m⋆
λ)

k(z⋆)) | z ∈ OK} ,
is a (full) lattice in Cs × Rt ≃ Rd for any k ∈ N, where m⋆

λ is the Z-module
endomorphism of O⋆

K from Lemma 3.6; cf. [10, Chapter 2, Section 3]. In conjunction
with Lemma 3.6, this implies that, for any ε > 0, the Z-module O⋆

K contains an
R-basis of Cs−1 × Rt whose elements have norms ≤ ε. The assertion follows. �
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Lemma 3.8. Let Λ be a K-algebraic model set. Then, for any finite set F ⊂ K,
there is a homothety h of the complex plane such that h(F ) ⊂ Λ. Moreover, h can
be chosen such that h(z) = κz+ v, where κ ∈ K+ is an algebraic integer with κ ≥ 1
and v ∈ Λ.

Proof. Without loss of generality, we may assume that Λ is of the form Λ(W )
(see Definition 3.3) and that F 6= ∅. Note that there is an l ∈ N such that
{lz | z ∈ F} ⊂ OK . Let d = [K : Q] and let .⋆ be the star map of Λ. If d = 2, we are
done by setting h(z) = lz. Otherwise, since W has nonempty interior, Lemma 3.7
shows the existence of a suitable z0 ∈ OK with z⋆0 ∈ intW . Consider the open
neighbourhood V = (intW )− z⋆0 of 0 in Cs−1 × Rt and choose a PV-number λ of
degree d/2 in K+; cf. Fact 3.5. By virtue of Lemma 3.6, there is a k ∈ N such that

(m⋆
λ)

k
(

(lF )⋆
)

⊂ V .

It follows that {(λkz + z0)
⋆ | z ∈ lF} ⊂ intW and, further, that h(F ) ⊂ Λ, where

h is the homothety given by z 7→ (lλk)z + z0. The additional statement follows
immediately from the observation that z0 ∈ Λ. �

Proposition 3.9. K-algebraic model sets are algebraic Delone sets. Moreover, any
K-algebraic model set Λ satisfies KΛ = K.

Proof. Since KΛ = Kt+Λ for any t ∈ C, we may assume that Λ is of the form Λ(W )
(see Definition 3.3). Any K-algebraic model set Λ is a Delone set by Remark 3.4.
Property (Alg) follows from the observation that KΛ ⊂ K (recall that Λ − Λ ⊂
OK and that K = K). Further, property (Hom) is an immediate consequence of
Lemma 3.8. Let {α1, . . . , αd} be a Q-basis of K/Q. By the additional statement
of Lemma 3.8 there is a nonzero element κ ∈ K+ and a point v ∈ Λ such that
the Q-linear independent set {κα1, . . . , καd} is contained in Λ − {v} ⊂ KΛ. Since
KΛ ⊂ K, this shows that KΛ = K. �

Remark 3.10. As another immediate consequence of Lemma 3.8, one verifies that,
for any K-algebraic model set Λ, the set of Λ-directions is precisely the set of OK-
directions.

Example 3.11. Standard examples of n-cyclotomic Delone sets are the Q(ζn)-
algebraic model sets, where n ≥ 3, which from now on are called n-cyclotomic
model sets; cf. Fact 2.1 and Proposition 3.9 (note also that Q(ζn) is obtained from
Q(ζn)

+ by adjoining the square root of the negative number ζ2n+ζ−2
n −2 ∈ Q(ζn)

+,
the latter being the discriminant of X2 − (ζn + ζ−1

n )X + 1). These sets were also
called cyclotomic model sets with underlying Z-module Z[ζn] in [28, Section 4.5],
since Z[ζn] is the ring of integers in the nth cyclotomic field; cf. [38, Theorem 2.6].
The latter range from periodic examples like the fourfold square lattice (n = 4)
or the sixfold triangular lattice (n = 3) to nonperiodic examples like the vertex
set of the tenfold Tübingen triangle tiling [6], [7] (n = 5), the eightfold Ammann-
Beenker tiling of the plane [1], [5], [20] (n = 8) or the twelvefold shield tiling [20]
(n = 12); see [27, Figure 1], [28, Figure 2] and Figure 1 below for illustrations. In
general, for any divisor m of lcm(n, 2), one can choose the window such that the
corresponding n-cyclotomic model sets have m-fold cyclic symmetry in the sense of
symmetries of LI-classes, meaning that a discrete structure has a certain symmetry
if the original and the transformed structure are locally indistinguishable; cf. [2]
for details. Note that the vertex sets of the famous Penrose tilings of the plane fail
to be 5-cyclotomic model sets but can still be seen to be 5-cyclotomic Delone sets;
see [4] and references therein.
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4. A cyclotomic theorem

Definition 4.1. Let m ≥ 4 be a natural number. Set

Dm =
{

(k1, k2, k3, k4) ∈ N4
∣

∣ k3 < k1 ≤ k2 < k4 ≤ m− 1 and k1 + k2 = k3 + k4
}

and define the function fm : Dm → Q(ζm)∗ by

(4.1) fm(k1, k2, k3, k4) =
(1− ζk1

m )(1 − ζk2

m )

(1− ζk3

m )(1 − ζk4

m )
.

We further set Cm = fm(Dm) (note that Cm ⊂ Cm′ for any multiple m′ of m)
and C =

⋃

m≥4 Cm. Moreover, for a subset K of C, we set C(K) = C ∩ K and

Cm(K) = Cm ∩K.

Fact 4.2. [15, Lemma 3.1] Let m ≥ 4. The function fm is real-valued. Moreover,
one has fm(d) > 1 for all d ∈ Dm. �

For our application to discrete tomography, we shall show below the finiteness of
the set C(L) for all real algebraic number fields L and provide explicit results in the

three cases Q(ζ5)
+ = Q(

√
5), Q(ζ8)

+ = Q(
√
2) and Q(ζ12)

+ = Q(
√
3). Gardner

and Gritzmann showed the following result for the field Q = Q(ζ3)
+ = Q(ζ4)

+.

Theorem 4.3. [15, Lemma 3.8, Lemma 3.9 and Theorem 3.10]

C(Q) = C12(Q) =
{

4
3 ,

3
2 , 2, 3, 4

}

.

Moreover, all solutions of fm(d) = q ∈ Q, where m ≥ 4 and d ∈ Dm, are either
given, up to multiplication of m and d by the same factor, by m = 12 and one of
the following

(i) d = (6, 6, 4, 8), q = 4
3 ; (ii) d = (6, 6, 2, 10), q = 4;

(iii) d = (4, 8, 3, 9), q = 3
2 ; (iv) d = (4, 8, 2, 10), q = 3;

(v) d = (4, 4, 2, 6), q = 3
2 ; (vi) d = (8, 8, 6, 10), q = 3

2 ;
(vii) d = (4, 4, 1, 7), q = 3; (viii) d = (8, 8, 5, 11), q = 3;
(ix) d = (3, 9, 2, 10), q = 2; (x) d = (3, 3, 1, 5), q = 2;
(xi) d = (9, 9, 7, 11), q = 2;

or by one of the following

(xii) d = (2k, s, k, k + s), q = 2, where s ≥ 2,m = 2s and 1 ≤ k ≤ s
2 ;

(xiii) d = (s, 2k, k, k + s), q = 2, where s ≥ 2,m = 2s and s
2 ≤ k < s. �

The next three lemmas are the key tools for our approach.

Lemma 4.4. Let a ∈ R∗. If a = 1+x
1+y for x, y ∈ µ ∪ {0} with y 6= −1 then

a ∈ { 1
2 , 1, 2}.

Proof. It suffices to consider the cases a = 1 + ω and a = 1+ω1

1+ω2

with ω, ω1, ω2 ∈ µ

and ω2 6= −1. In the first case, one has ω = a − 1 ∈ µ(R) = {±1} whence ω = 1
(due to a 6= 0) and a = 2. In the second case, one has

a = ā =
1 + ω̄1

1 + ω̄2
= ω2ω

−1
1

1 + ω1

1 + ω2
= ω2ω

−1
1 a ,

thus ω1 = ω2 and a = 1. �

Lemma 4.5 (Comparison of coefficients). Let K ⊂ C be a field, let m ∈ N, and let
ζ ∈ µ with ζm ∈ K. Let a0, . . . , am−1, b0, . . . , bm−1 ∈ K with

m−1
∑

i=0

aiζ
i =

m−1
∑

i=0

biζ
i .

Then one has ai = bi for all i = 0, . . . ,m − 1 if one of the following conditions
holds.
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(a) [K(ζ) : K] = m.
(b) [K(ζ) : K] = m − 1 and at most m − 1 of a0, . . . , am−1, b0, . . . , bm−1 are

nonzero.

Moreover, if [K(ζ) : K] = m − 1 and ak − bk 6= 0 for some k then |ai − bi| =
|aj − bj | 6= 0 for all i, j.

Proof. In case (a), the assertion follows immediately from the linear independence
of 1, ζ, . . . , ζm−1 over K. If [K(ζ) : K] = m − 1, set ω = ζm ∈ K. The minimum
polynomial f ∈ K[X ] of ζ over K has degree m−1 and one has Xm−ω = (X− ǫ)f
with ǫ ∈ K, hence ω = ǫm (in particular, ǫ ∈ µ(K)) and

f =
Xm − ǫm

X − ǫ
=

m−1
∑

i=0

ǫm−1−iX i .

If
∑m−1

i=0 (ai − bi)ζ
i = 0 then there is an element c ∈ K with ai = bi + cǫm−1−i for

all i = 0, . . . ,m−1. By assumption (b) one has ai = 0 = bi for some i. This implies
c = 0 and therefore the assertion. For the additional statement, first observe that
due to ak 6= bk for some k one has c 6= 0. Thus |ai − bi| = |cǫm−1−i| = |c| =
|cǫm−1−j| = |aj − bj| 6= 0 for all i, j. �

Lemma 4.6. Let K ⊂ C be a field, let m ∈ N, and let ζ ∈ µ with ζm ∈ K.
Further, let ω1, ω2, ω3, ω4 ∈ µ(K) and k1, k2, k3, k4 ∈ {0, . . . ,m − 1} satisfy the
following conditions.

(i) gcd(ki,m) = 1 for some i ∈ {1, 2, 3, 4}.
(ii) k1 + k2 ≡ k3 + k4 (mod m)

(iii) ω3ζ
k3 , ω4ζ

k4 6= 1 and a = (1−ω1ζ
k1 )(1−ω2ζ

k2 )
(1−ω3ζk3 )(1−ω4ζk4 )

∈ K ∩ (R∗ \ {±1}).
Then a ∈ { 1

2 , 2} if one of the following conditions holds.

(a) [K(ζ) : K] = m and m ≥ 3.
(b) [K(ζ) : K] = m− 1 and m ≥ 5.

Proof. Without restriction, we may assume that gcd(k1,m) = 1. Then, for i =
2, 3, 4, there are ai, bi ∈ Z such that ki = aik1 + bim and, with ζ′ = ζk1 , ζki =
(ζ′)ai(ζm)bi . Since one has (ζ′)m ∈ K, K(ζ′) = K(ζ) and

(1 − ω1ζ
k1)(1− ω2ζ

k2 )

(1 − ω3ζk3)(1− ω4ζk4 )
=

(1 − ω′
1ζ

′)(1 − ω′
2ζ

′k′

2)

(1 − ω′
3ζ

′k′

3)(1 − ω′
4ζ

′k′

4)

for suitable ω′
1, ω

′
2, ω

′
3, ω

′
4 ∈ µ(K) and k′2, k

′
3, k

′
4 ∈ {0, . . . ,m−1} with 1+k′2 ≡ k′3+k′4

(mod m), we may further assume that k1 = 1. We thus obtain

1− ω1ζ − ω2ζ
k2 + ω1ω2ζ

k2+1 = a− aω3ζ
k3 − aω4ζ

k4 + aω3ω4ζ
k3+k4 ,

where, without restriction, k3 ≤ k4. From now on, let [k] ∈ {0, . . . ,m − 1} denote
the canonical representative of the equivalence class of k ∈ Z modulo m. We may
finally write

1− ω1ζ − ω2ζ
k2 + ω1ω2ωζ

[k2+1] = a− aω3ζ
k3 − aω4ζ

[1+k2−k3] + aω3ω4ω
′ζ [k2+1]

with k3 ≤ [1 + k2 − k3] and suitable ω, ω′ ∈ µ(K).
Case 1. k2 = 0. Then

1− ω1ζ − ω2 + ω1ω2ωζ = a− aω3ζ
k3 − aω4ζ

[1−k3] + aω3ω4ω
′ζ .

If k3 = 0 then a = 1−ω2

1−ω3

by Lemma 4.5 and the assertion follows from Lemma 4.4.

The case k3 = 1 cannot occur (due to k3 ≤ [1 − k3]), whereas k3 ≥ 2 implies
a = 1− ω2 by Lemma 4.5. The assertion follows from Lemma 4.4.

Case 2. k2 = 1. Then

1− (ω1 + ω2)ζ + ω1ω2ωζ
2 = a− aω3ζ

k3 − aω4ζ
[2−k3] + aω3ω4ω

′ζ2 .
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If k3 = 0 then a = 1
1−ω3

by Lemma 4.5 and the assertion follows from Lemma 4.4.
If k3 = 1 then Lemma 4.5 implies a = 1, which is excluded by assumption. The
case k3 = 2 is impossible (due to k3 ≤ [2− k3]). Let k3 ≥ 3 (hence m ≥ 4). Under
condition (a), this implies a = 1 by Lemma 4.5, which is excluded by assumption.
Under condition (b), k3 = 3 implies

1− (ω1 + ω2)ζ + ω1ω2ωζ
2 = a− aω3ζ

3 − aω4ζ
m−1 + aω3ω4ω

′ζ2

with m − 1 ≥ 4 (due to m ≥ 5). The additional statement of Lemma 4.5 implies
m = 5 and |1 − a| = |aω4| = |a|, thus a = 1/2. If k3 ≥ 4 then m ≥ 6 (due to
k3 ≤ [2− k3]) and Lemma 4.5 implies a = 1, which is excluded by assumption.

Case 3. k2 ∈ {2, . . . ,m− 2} (hence m ≥ 4 and 2 ≤ k2 < k2 +1 ≤ m− 1). Then

(1 − a)− ω1ζ − ω2ζ
k2 + (ω1ω2ω − aω3ω4ω

′)ζk2+1 = −aω3ζ
k3 − aω4ζ

[1+k2−k3] .

Under condition (a), Lemma 4.5 shows that this is impossible, since there are at
least three nontrivial coefficients on the left-hand side and at most two nontrivial
coefficients on the right-hand side of this equation. Under condition (b) (hence
m ≥ 5), k3 = 0 implies a−1 = aω3 by Lemma 4.5, thus a = 1

1−ω3
and the assertion

follows from Lemma 4.4. If k3 = 1 then a = 1 by Lemma 4.5, which is excluded
by assumption. If k3 ≥ 2 and m ≥ 7 then a = 1 by Lemma 4.5, which is excluded
by assumption. Employing the additional statement of Lemma 4.5, we shall now
see that the missing cases (k3 ≥ 2 and m ∈ {5, 6}) are either impossible or yield
|1− a| = 1 and thus a = 2 (due to a 6= 0). In fact, m = 5 and k3 = 2 imply k2 = 3
(due to k3 ≤ [1 + k2 − k3]) and, further, |1 − a| = |ω1| = 1. The case m = 5 and
k3 = 3 cannot occur (due to k3 ≤ [1 + k2 − k3]). If m = 5 and k3 = 4 then k2 = 2
(due to k3 ≤ [1 + k2 − k3]) and, further, |1 − a| = |ω1| = 1. If m = 6 and k3 = 2
then k2 ∈ {3, 4} (due to k3 ≤ [1+ k2− k3]). The case k2 = 3 is impossible, whereas
the case k2 = 4 yields |1− a| = |ω1| = 1. The case m = 6 and k3 = 3 is impossible
(due to k3 ≤ [1 + k2 − k3]). The case m = 6 and k3 = 4 implies k2 = 2 (due to
k3 ≤ [1 + k2 − k3]) and, further, |1 − a| = |ω1| = 1. Finally, the case m = 6 and
k3 = 5 implies k2 = 3 (due to k3 ≤ [1+k2−k3]) and, once again, |1−a| = |ω1| = 1.

Case 4. k2 = m− 1. Then

(1 + ω1ω2ω)− ω1ζ − ω2ζ
m−1 = a(1 + ω3ω4ω

′)− aω3ζ
k3 − aω4ζ

[m−k3] .

Under condition (a), Lemma 4.5 implies {k3, [m − k3]} = {1,m− 1}, thus k3 = 1
and [m−k3] = m−1 (due to k3 ≤ [m−k3]). Further, Lemma 4.5 yields a = ω2/ω4,
a contradiction (due to |a| 6= 1). By the additional statement of Lemma 4.5,
condition (b) (hence m ≥ 5) implies m = 5, k3 = 2 and, further, |aω3| = |ω2| = 1,
a contradiction (due to |a| 6= 1). �

We are now in a position to prove the following extension of Theorem 4.3.

Theorem 4.7. For n ∈ N, one has

C(Q(ζn)
+) = Clcm(2n,12)(Q(ζn)

+) .

In particular, the last set is finite. Moreover, all solutions of fm(d) ∈ Q(ζn)
+,

where m ≥ 4 and d ∈ Dm, are either of the form (xii) or (xiii) of Theorem 4.3 or
are given, up to multiplication of m and d by the same factor, by m = lcm(2n, 12)
and d from a finite list.

Proof. Since Q(ζn)
+ = Q(ζ2n)

+ for odd n it suffices to consider the case where n
is even (hence lcm(2n, 12) = lcm(2n, 3)). Let m ≥ 4 and d = (k1, k2, k3, k4) ∈ Dm

such that

a = fm(d) =
(1− ζk1

m )(1 − ζk2

m )

(1− ζk3

m )(1 − ζk4

m )
∈ Q(ζn)

+ .
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Recall that a > 1 by Fact 4.2. We may assume that gcd(m, k1, k2, k3, k4) = 1. By
virtue of Theorem 4.3, we may also assume that a 6∈ Q. Observe that

a ∈ Q(ζn)
+ ∩Q(ζm)+ = Q(ζgcd(m,n))

+ .

Claims 1 and 2 below show that lcm(2n, 3) is a multiple of m, hence the assertion.
Claim 1. Let p be an odd prime number and assume that ordp(n) < ordp(m).

Then one has p = 3, ordp(m) = 1 and ordp(n) = 0.
To see this, set r = ordp(m) ≥ 1, K = Q(ζm/p) and note that Q(ζgcd(m,n)) ⊂ K.

Let m = prm′, where gcd(p,m′) = 1. Then, for i = 1, 2, 3, 4, there are ai, bi ∈ Z

such that ki = aip+ bim
′ and, further, ζki

m = ζai

m/pζ
bi
pr . Since ζppr = ζpr−1 ∈ K one

has

a =
(1− ω1ζ

l1
pr )(1 − ω2ζ

l2
pr )

(1− ω3ζ
l3
pr )(1 − ω4ζ

l4
pr )

for suitable ω1, ω2, ω3, ω4 ∈ µ(K) and l1, l2, l3, l4 ∈ {0, . . . , p−1} with gcd(li, p) = 1
for some i ∈ {1, 2, 3, 4} and l1 + l2 ≡ l3 + l4 (mod p). Further, by Fact 2.1, one has

[K(ζpr ) : K] = [Q(ζm) : Q(ζm/p)] =
φ(pr)

φ(pr−1)
=

{

p− 1 if r = 1;
p if r ≥ 2.

Lemma 4.6 implies both for p ≥ 5 and r ≥ 2 that a = 2, a contradiction. Therefore
p = 3, r = ordp(m) = 1 and consequently ordp(n) = 0.

Claim 2. ord2(m) ≤ ord2(n) + 1.
Assume that r = ord2(m) ≥ ord2(n) + 2 ≥ 3. Set K = Q(ζm/4) and note that

Q(ζgcd(m,n)) ⊂ K. As above, since ζ42r = ζ2r−2 ∈ K, one has

a =
(1− ω1ζ

l1
2r )(1 − ω2ζ

l2
2r )

(1− ω3ζ
l3
2r )(1 − ω4ζ

l4
2r )

for suitable ω1, ω2, ω3, ω4 ∈ µ(K) and l1, l2, l3, l4 ∈ {0, 1, 2, 3} with gcd(li, 4) = 1
for some i ∈ {1, 2, 3, 4} and l1 + l2 ≡ l3 + l4 (mod 4). Further, by Fact 2.1, one has

[K(ζ2s) : K] = [Q(ζm) : Q(ζm/4)] =
φ(2r)

φ(2r−2)
= 4 .

Lemma 4.6 now implies a = 2, a contradiction. This proves the claim. �

Remark 4.8. Similar to the proof of Theorem 4.7, one can also use Lemma 4.6 to
give another proof of the fact shown in [15] that all solutions of fm(d) ∈ Q \ {2},
where m ≥ 4 and d ∈ Dm, are given, up to multiplication of m and d by the same
factor, by m = 12. Thus the number 2 plays a special role in this context. Indeed
this number leads to infinite families of solutions (see Theorem 4.3(xii)-(xiii) above)
that can be found by using the 2-adic valuation; cf. [15] for details.

One even has the following result, which improves [28, Theorem 4.19].

Theorem 4.9. For any real algebraic number field L, the set C(L) is finite. More-
over, there is a number mL ∈ N such that all solutions of fm(d) ∈ L, where m ≥ 4
and d ∈ Dm, are either of the form (xii) or (xiii) of Theorem 4.3 or are given, up
to multiplication of m and d by the same factor, by m = mL and d from a finite
list.

Proof. The finiteness of L/Q together with the identity

Q(µ)+ =
⋃

n∈N

Q(ζn)
+

implies that L∩Q(µ)+ = L∩Q(ζn)
+ for some n ∈ N. Since C ⊂ Q(µ)+ by Fact 4.2

it follows that

C(L) = L ∩ C = L ∩ C ∩Q(µ)+ = L ∩ C ∩Q(ζn)
+ ⊂ C(Q(ζn)

+) .
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By virtue of Theorem 4.7, the assertion follows with mL = lcm(2n, 12). �

Corollary 4.10. (a)

C(Q(
√
5)) = C60(Q(

√
5))

=
{

10−2
√
5

5 ,
√
5
2 , 9−3

√
5

2 , 5+3
√
5

10 , 5+
√
5

6 ,−1 +
√
5, 3+

√
5

4 , 4
3 ,

5−
√
5

2 , 5+
√
5

5 ,

3
2 , 6− 2

√
5, 1+

√
5

2 , 5+
√
5

4 , −3+3
√
5

2 , 5+2
√
5

5 , 2, 2+
√
5

2 , 15+3
√
5

10 ,
√
5,

3+
√
5

2 , 10+2
√
5

5 , 3, 1 +
√
5, 5+

√
5

2 , 4, 2 +
√
5, 3 +

√
5, 5+3

√
5

2 , 7+3
√
5

2 ,

9+3
√
5

2 , 5 + 2
√
5, 6 + 2

√
5
}

.

Moreover, all solutions of fm(d) ∈ Q(
√
5), where m ≥ 4 and d ∈ Dm,

are either of the form (xii) or (xiii) of Theorem 4.3 or are given, up to
multiplication of m and d by the same factor, by m = 60 and d from the
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following list.

1 (12, 36, 6, 42) 2 (24, 24, 9, 39) 3 (24, 48, 18, 54) 4 (36, 36, 21, 51)
5 (24, 24, 18, 30) 6 (36, 36, 30, 42) 7 (4, 8, 2, 10) 8 (5, 25, 3, 27)
9 (6, 42, 4, 44) 10 (8, 14, 4, 18) 11 (8, 32, 5, 35) 12 (8, 50, 6, 52)
13 (9, 21, 5, 25) 14 (9, 39, 6, 42) 15 (10, 10, 4, 16) 16 (10, 28, 6, 32)
17 (10, 52, 8, 54) 18 (12, 18, 6, 24) 19 (14, 26, 8, 32) 20 (14, 34, 9, 39)
21 (14, 42, 10, 46) 22 (16, 32, 10, 38) 23 (18, 18, 8, 28) 24 (18, 26, 10, 34)
25 (18, 36, 12, 42) 26 (18, 46, 14, 50) 27 (18, 54, 16, 56) 28 (21, 51, 18, 54)
29 (24, 24, 12, 36) 30 (24, 42, 18, 48) 31 (26, 32, 16, 42) 32 (26, 46, 21, 51)
33 (28, 34, 18, 44) 34 (28, 44, 22, 50) 35 (28, 52, 25, 55) 36 (32, 50, 28, 54)
37 (34, 42, 26, 50) 38 (34, 46, 28, 52) 39 (35, 55, 33, 57) 40 (36, 36, 24, 48)
41 (39, 51, 35, 55) 42 (42, 42, 32, 52) 43 (42, 48, 36, 54) 44 (46, 52, 42, 56)
45 (50, 50, 44, 56) 46 (52, 56, 50, 58) 47 (18, 18, 6, 30) 48 (42, 42, 30, 54)
49 (4, 52, 2, 54) 50 (5, 35, 2, 38) 51 (6, 18, 2, 22) 52 (8, 10, 2, 16)
53 (8, 28, 3, 33) 54 (8, 46, 4, 50) 55 (8, 56, 6, 58) 56 (9, 21, 3, 27)
57 (9, 39, 4, 44) 58 (10, 32, 4, 38) 59 (10, 50, 6, 54) 60 (12, 42, 6, 48)
61 (14, 18, 4, 28) 62 (14, 26, 5, 35) 63 (14, 34, 6, 42) 64 (14, 52, 10, 56)
65 (16, 28, 6, 38) 66 (18, 24, 6, 36) 67 (18, 34, 8, 44) 68 (18, 42, 10, 50)
69 (18, 48, 12, 54) 70 (21, 51, 16, 56) 71 (24, 36, 12, 48) 72 (25, 55, 22, 58)
73 (26, 28, 10, 44) 74 (26, 42, 16, 52) 75 (26, 46, 18, 54) 76 (28, 50, 22, 56)
77 (32, 34, 16, 50) 78 (32, 44, 22, 54) 79 (32, 52, 27, 57) 80 (34, 46, 25, 55)
81 (36, 42, 24, 54) 82 (39, 51, 33, 57) 83 (42, 46, 32, 56) 84 (42, 54, 38, 58)
85 (50, 52, 44, 58) 86 (12, 12, 2, 22) 87 (12, 24, 3, 33) 88 (12, 36, 4, 44)
89 (12, 48, 6, 54) 90 (24, 24, 6, 42) 91 (24, 36, 10, 50) 92 (24, 48, 16, 56)
93 (36, 36, 18, 54) 94 (36, 48, 27, 57) 95 (48, 48, 38, 58) 96 (8, 28, 6, 30)
97 (14, 26, 10, 30) 98 (18, 24, 12, 30) 99 (18, 42, 15, 45) 100 (32, 52, 30, 54)

101 (34, 46, 30, 50) 102 (36, 42, 30, 48) 103 (12, 24, 6, 30) 104 (24, 36, 15, 45)
105 (36, 48, 30, 54) 106 (15, 45, 12, 48) 107 (18, 30, 12, 36) 108 (30, 42, 24, 48)
109 (24, 36, 20, 40) 110 (10, 30, 8, 32) 111 (15, 15, 9, 21) 112 (18, 30, 14, 34)
113 (24, 30, 18, 36) 114 (30, 36, 24, 42) 115 (30, 42, 26, 46) 116 (30, 50, 28, 52)
117 (45, 45, 39, 51) 118 (15, 15, 3, 27) 119 (18, 30, 6, 42) 120 (30, 42, 18, 54)
121 (45, 45, 33, 57) 122 (8, 32, 2, 38) 123 (14, 34, 4, 44) 124 (18, 18, 3, 33)
125 (18, 36, 6, 48) 126 (24, 42, 12, 54) 127 (26, 46, 16, 56) 128 (28, 52, 22, 58)
129 (42, 42, 27, 57) 130 (10, 30, 2, 38) 131 (15, 45, 6, 54) 132 (18, 30, 4, 44)
133 (24, 30, 6, 48) 134 (30, 36, 12, 54) 135 (30, 42, 16, 56) 136 (30, 50, 22, 58)
137 (24, 36, 6, 54) 138 (30, 30, 6, 54) 139 (30, 30, 18, 42) 140 (12, 12, 6, 18)
141 (12, 24, 8, 28) 142 (12, 36, 9, 39) 143 (12, 48, 10, 50) 144 (24, 24, 14, 34)
145 (24, 36, 18, 42) 146 (24, 48, 21, 51) 147 (36, 36, 26, 46) 148 (36, 48, 32, 52)
149 (48, 48, 42, 54) 150 (14, 26, 2, 38) 151 (18, 42, 6, 54) 152 (34, 46, 22, 58)
153 (14, 34, 12, 36) 154 (18, 18, 12, 24) 155 (26, 46, 24, 48) 156 (42, 42, 36, 48)
157 (18, 42, 12, 48) 158 (20, 20, 2, 38) 159 (20, 40, 6, 54) 160 (40, 40, 22, 58)
161 (20, 20, 8, 32) 162 (40, 40, 28, 52) 163 (20, 20, 14, 26) 164 (20, 40, 18, 42)
165 (40, 40, 34, 46) 166 (20, 40, 12, 48) 167 (24, 24, 4, 44) 168 (36, 36, 16, 56)
169 (30, 30, 12, 48) 170 (30, 30, 24, 36) 171 (30, 30, 20, 40) 172 (30, 30, 10, 50)
173 (20, 40, 15, 45) 174 (20, 40, 10, 50) 175 (20, 20, 10, 30) 176 (40, 40, 30, 50)
177 (20, 20, 5, 35) 178 (40, 40, 25, 55) 179 (15, 45, 10, 50) 180 (15, 15, 5, 25)
181 (45, 45, 35, 55)
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(b)

C(Q(
√
2)) = C48(Q(

√
2))

=
{

2+
√
2

3 , 4− 2
√
2, 1+

√
2

2 ,−3 + 3
√
2, 4

3 ,
√
2, 3

2 ,
2+

√
2

2 , 2, 1 +
√
2,

3, 2 +
√
2, 4, 6+3

√
2

2 , 3 + 2
√
2, 4 + 2

√
2, 4 + 3

√
2
}

.

Moreover, all solutions of fm(d) ∈ Q(
√
2), where m ≥ 4 and d ∈ Dm,

are either of the form (xii) or (xiii) of Theorem 4.3 or are given, up to
multiplication of m and d by the same factor, by m = 48 and d from the
following list.

1 (6, 18, 4, 20) 2 (10, 36, 8, 38) 3 (12, 12, 6, 18) 4 (12, 22, 8, 26)
5 (12, 30, 9, 33) 6 (12, 38, 10, 40) 7 (18, 18, 10, 26) 8 (18, 24, 12, 30)
9 (18, 36, 15, 39) 10 (24, 30, 18, 36) 11 (26, 36, 22, 40) 12 (30, 30, 22, 38)

13 (30, 42, 28, 44) 14 (36, 36, 30, 42) 15 (4, 10, 2, 12) 16 (8, 40, 6, 42)
17 (9, 33, 6, 36) 18 (10, 26, 6, 30) 19 (12, 18, 6, 24) 20 (15, 39, 12, 42)
21 (18, 30, 12, 36) 22 (20, 26, 12, 34) 23 (22, 28, 14, 36) 24 (22, 38, 18, 42)
25 (30, 36, 24, 42) 26 (38, 44, 36, 46) 27 (10, 22, 8, 24) 28 (18, 18, 12, 24)
29 (26, 38, 24, 40) 30 (30, 30, 24, 36) 31 (18, 30, 16, 32) 32 (4, 38, 2, 40)
33 (8, 8, 2, 14) 34 (9, 15, 3, 21) 35 (10, 22, 4, 28) 36 (10, 44, 8, 46)
37 (12, 30, 6, 36) 38 (18, 18, 6, 30) 39 (18, 36, 12, 42) 40 (20, 22, 8, 34)
41 (26, 28, 14, 40) 42 (26, 38, 20, 44) 43 (30, 30, 18, 42) 44 (33, 39, 27, 45)
45 (40, 40, 34, 46) 46 (6, 30, 2, 34) 47 (10, 12, 2, 20) 48 (12, 18, 3, 27)
49 (12, 26, 4, 34) 50 (12, 36, 6, 42) 51 (18, 24, 6, 36) 52 (18, 30, 8, 40)
53 (18, 42, 14, 46) 54 (22, 36, 14, 44) 55 (24, 30, 12, 42) 56 (30, 36, 21, 45)
57 (36, 38, 28, 46) 58 (10, 26, 2, 34) 59 (18, 30, 6, 42) 60 (22, 38, 14, 46)
61 (12, 24, 2, 34) 62 (24, 24, 6, 42) 63 (24, 36, 14, 46) 64 (12, 24, 10, 26)
65 (24, 24, 18, 30) 66 (24, 36, 22, 38) 67 (16, 16, 10, 22) 68 (32, 32, 26, 38)
69 (18, 18, 2, 34) 70 (30, 30, 14, 46) 71 (16, 32, 6, 42) 72 (24, 24, 16, 32)
73 (24, 24, 8, 40) 74 (16, 32, 12, 36) 75 (16, 32, 8, 40) 76 (16, 16, 8, 24)
77 (32, 32, 24, 40) 78 (16, 16, 4, 28) 79 (32, 32, 20, 44) 80 (12, 36, 8, 40)
81 (12, 12, 4, 20) 82 (36, 36, 28, 44)

(c)

C(Q(
√
3)) = C24(Q(

√
3))

=
{

8− 4
√
3, 3+2

√
3

6 , −3+3
√
3

2 , 3+
√
3

4 , 2+
√
3

3 , 3−
√
3, 4

3 ,
1+

√
3

2 ,−2 + 2
√
3,

3
2 ,

3+
√
3

3 ,
√
3, 2+

√
3

2 , 2, 3+2
√
3

3 , 3+
√
3

2 , 1 +
√
3, 3, 6+2

√
3

3 , 2 +
√
3, 4,

3 +
√
3, 5+3

√
3

2 , 3 + 2
√
3, 4 + 2

√
3, 6 + 3

√
3, 7 + 4

√
3, 8 + 4

√
3
}

.

Moreover, all solutions of fm(d) ∈ Q(
√
3), where m ≥ 4 and d ∈ Dm,

are either of the form (xii) or (xiii) of Theorem 4.3 or are given, up to
multiplication of m and d by the same factor, by m = 24 and d from the
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following list.

1 (4, 8, 2, 10) 2 (6, 16, 4, 18) 3 (8, 10, 4, 14) 4 (8, 14, 5, 17)
5 (8, 18, 6, 20) 6 (10, 16, 7, 19) 7 (14, 16, 10, 20) 8 (16, 20, 14, 22)
9 (3, 15, 2, 16) 10 (4, 6, 2, 8) 11 (6, 14, 4, 16) 12 (9, 21, 8, 22)
13 (10, 12, 6, 16) 14 (10, 18, 8, 20) 15 (12, 14, 8, 18) 16 (18, 20, 16, 22)
17 (10, 14, 8, 16) 18 (4, 4, 2, 6) 19 (4, 14, 3, 15) 20 (5, 7, 3, 9)
21 (5, 17, 4, 18) 22 (6, 10, 4, 12) 23 (7, 19, 6, 20) 24 (8, 14, 6, 16)
25 (10, 10, 6, 14) 26 (10, 16, 8, 18) 27 (10, 20, 9, 21) 28 (14, 14, 10, 18)
29 (14, 18, 12, 20) 30 (17, 19, 15, 21) 31 (20, 20, 18, 22) 32 (4, 10, 2, 12)
33 (10, 14, 6, 18) 34 (14, 20, 12, 22) 35 (4, 16, 2, 18) 36 (6, 8, 2, 12)
37 (8, 10, 3, 15) 38 (8, 14, 4, 18) 39 (8, 20, 6, 22) 40 (10, 16, 6, 20)
41 (14, 16, 9, 21) 42 (16, 18, 12, 22) 43 (8, 10, 6, 12) 44 (14, 16, 12, 18)
45 (3, 9, 1, 11) 46 (4, 18, 2, 20) 47 (6, 10, 2, 14) 48 (6, 20, 4, 22)
49 (10, 12, 4, 18) 50 (12, 14, 6, 20) 51 (14, 18, 10, 22) 52 (15, 21, 13, 23)
53 (4, 10, 1, 13) 54 (4, 20, 2, 22) 55 (5, 7, 1, 11) 56 (5, 17, 2, 20)
57 (6, 14, 2, 18) 58 (7, 19, 4, 22) 59 (8, 10, 2, 16) 60 (10, 14, 4, 20)
61 (10, 18, 6, 22) 62 (14, 16, 8, 22) 63 (14, 20, 11, 23) 64 (17, 19, 13, 23)
65 (6, 8, 1, 13) 66 (6, 16, 2, 20) 67 (8, 12, 2, 18) 68 (8, 18, 4, 22)
69 (12, 16, 6, 22) 70 (16, 18, 11, 23) 71 (6, 8, 4, 10) 72 (6, 16, 5, 17)
73 (8, 12, 6, 14) 74 (8, 18, 7, 19) 75 (12, 16, 10, 18) 76 (16, 18, 14, 20)
77 (6, 12, 4, 14) 78 (12, 18, 10, 20) 79 (6, 18, 2, 22) 80 (10, 12, 2, 20)
81 (12, 14, 4, 22) 82 (8, 14, 2, 20) 83 (10, 16, 4, 22) 84 (8, 16, 2, 22)
85 (10, 14, 2, 22) 86 (12, 12, 2, 22) 87 (12, 12, 10, 14) 88 (4, 14, 2, 16)
89 (10, 10, 4, 16) 90 (10, 20, 8, 22) 91 (14, 14, 8, 20) 92 (6, 12, 2, 16)
93 (12, 18, 8, 22) 94 (8, 8, 6, 10) 95 (16, 16, 14, 18) 96 (10, 10, 2, 18)
97 (14, 14, 6, 22) 98 (10, 10, 8, 12) 99 (14, 14, 12, 16) 100 (12, 12, 8, 16)

101 (12, 12, 4, 20) 102 (8, 16, 6, 18) 103 (8, 16, 4, 20) 104 (8, 8, 4, 12)
105 (16, 16, 12, 20) 106 (8, 8, 2, 14) 107 (16, 16, 10, 22) 108 (6, 18, 4, 20)
109 (6, 6, 2, 10) 110 (18, 18, 14, 22)

Proof. Applying Theorem 4.7 to the cases n = 5, 8, 12, the assertions follow from a
direct computation. Note that in each case the last eleven entries of the lists above
derive from (i)-(xi) of Theorem 4.3. �

5. Determination of convex subsets of algebraic Delone sets by

X-rays

Definition 5.1. (a) Let F be a finite subset of C, let u ∈ S1 be a direction,
and let Lu be the set of lines in the complex plane in direction u. Then the
(discrete parallel) X-ray of F in direction u is the function XuF : Lu →
N0 = N ∪ {0}, defined by

XuF (ℓ) = card(F ∩ ℓ ) .

(b) Let F be a collection of finite subsets of C and let U ⊂ S1 be a finite set of
directions. We say that the elements of F are determined by the X-rays in
the directions of U if, for all F, F ′ ∈ F , one has

(XuF = XuF
′ ∀u ∈ U) ⇒ F = F ′ .

The following negative result shows that, for algebraic Delone sets Λ, one has
to impose some restriction on the finite subsets of Λ to be determined. The proof
only needs property (Hom).
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Fact 5.2. [28, Proposition 3.1 and Remark 3.2] Let Λ be an algebraic Delone set
and let U ⊂ S1 be a finite set of pairwise nonparallel Λ-directions. Then the finite
subsets of Λ are not determined by the X-rays in the directions of U . �

Here, we shall focus on the convex subsets of algebraic Delone sets. One has
the following fundamental result which even holds for Delone sets Λ with property
(Hom). See Figure 1 for an illustration of direction (i)⇒(ii).

Fact 5.3. [28, Proposition 4.6 and Lemma 4.5] Let Λ be an algebraic Delone set
and let U ⊂ S1 be a set of two or more pairwise nonparallel Λ-directions. The
following statements are equivalent:

(i) The convex subsets of Λ are determined by the X-rays in the directions of
U .

(ii) There is no U -polygon in Λ.

In addition, if card(U) < 4, then there is a U -polygon in Λ. �

The proof of the following central result uses Darboux’s theorem on second
midpoint polygons; see [12], [14, Chapter 1] or [18].

Fact 5.4. [15, Proposition 4.2] Let U ⊂ S1 be a finite set of directions. Then there
exists a U -polygon if and only if there is an affinely regular polygon such that each
direction in U is parallel to one of its edges. �

Remark 5.5. Clearly, U -polygons have an even number of vertices. Moreover,
an affinely regular polygon with an even number of vertices is a U -polygon if and
only if each direction of U is parallel to one of its edges. On the other hand, it
is important to note that a U -polygon need not be affinely regular, even if it is a
U -polygon in an algebraic Delone set. For example, there is a U -icosagon in the
vertex set of the Tübingen triangle tiling of the plane (a 5-cyclotomic model set;
see [27, Figure 1, Corollary 14 and Example 15]), which cannot be affinely regular
since that restricts the number of vertices to 3, 4, 5, 6 or 10 by [25, Corollary
4.2]; see also [15, Example 4.3] for an example in the case of the square lattice.
In general, there is an affinely regular polygon with n ≥ 3 vertices in an algebraic
Delone set Λ if and only if Q(ζn)

+ ⊂ K+
Λ , the latter being a relation which (due to

property (Alg)) can only hold for finitely many values of n; cf. [25, Theorem 3.3].

We can now prove our main result on U -polygons which is an extension of [15,
Theorem 4.5]. In fact, we use the same arguments as introduced by Gardner and
Gritzmann in conjunction with Lemma 2.3 and Theorem 4.9. Note that the result
even holds for arbitrary sets Λ with property (Alg).

Theorem 5.6. Let Λ be an algebraic Delone set. Further, let U ⊂ S1 be a set
of four or more pairwise nonparallel Λ-directions and suppose the existence of a
U -polygon. Then the cross ratio of slopes of any four directions of U , arranged in
order of increasing angle with the positive real axis, is an element of the set C(K+

Λ ).

Moreover, C(K+
Λ ) is finite and card(U) is bounded above by a finite number bΛ ∈ N

that only depends on Λ.

Proof. Let U be as in the assertion. By Fact 5.4, U consists of directions parallel
to the edges of an affinely regular polygon. There is thus a linear automorphism Ψ
of the complex plane such that

V =
{

Ψ(u)/|Ψ(u)|
∣

∣u ∈ U
}

is contained in a set of directions that are equally spaced in S1, i.e. the angle
between each pair of adjacent directions is the same. Since the directions of U are
pairwise nonparallel, we may assume that there is an m ∈ N with m ≥ 4 such that
each direction of V is given by ehπi/m, where h ∈ N0 satisfies h ≤ m − 1. Let uj ,



16 CHRISTIAN HUCK AND MICHAEL SPIEß

1 ≤ j ≤ 4, be four directions of U , arranged in order of increasing angle with the
positive real axis. By Lemma 2.3, one has

q =
〈

sl(u1), sl(u2), sl(u3), sl(u4)
〉

∈ K+
Λ .

We may assume that Ψ(uj)/|Ψ(uj)| = ehjπi/m, where hj ∈ N0, 1 ≤ j ≤ 4, and,
h1 < h2 < h3 < h4 ≤ m− 1. Lemma 2.2 now implies

q =
〈

sl(Ψ(u1)), sl(Ψ(u2)), sl(Ψ(u3)), sl(Ψ(u4))
〉

=
(tan(h3π

m )− tan(h1π
m ))(tan(h4π

m )− tan(h2π
m ))

(tan(h3π
m )− tan(h2π

m ))(tan(h4π
m )− tan(h1π

m ))

=
sin( (h3−h1)π

m ) sin( (h4−h2)π
m )

sin( (h3−h2)π
m ) sin( (h4−h1)π

m )
.

Setting k1 = h3 − h1, k2 = h4 − h2, k3 = h3 − h2 and k4 = h4 − h1, one gets
1 ≤ k3 < k1, k2 < k4 ≤ m−1 and k1+k2 = k3+k4. Using sin θ = −e−iθ(1−e2iθ)/2i,
one finally obtains

K+
Λ ∋ q =

(1− ζk1

m )(1 − ζk2

m )

(1− ζk3

m )(1 − ζk4

m )
= fm(d) ,

with d = (k1, k2, k3, k4), as in (4.1). Then, d ∈ Dm if its first two coordinates are
interchanged, if necessary, to ensure that k1 ≤ k2; note that this operation does
not change the value of fm(d). This proves the first assertion.

Suppose that card(U) ≥ 7. Let U ′ consist of seven directions of U and let
V ′ = {Ψ(u)/|Ψ(u)| |u ∈ U ′}. We may assume that all the directions of V ′ are in
the first two quadrants, so one of these quadrants, say the first, contains at least
four directions of V ′. Application of the above argument to these four directions
gives integers hj satisfying 0 ≤ h1 < h2 < h3 < h4 ≤ m/2, where we may also
assume, by rotating the directions of V ′ if necessary, that h1 = 0. As above, we
obtain a corresponding solution of fm(d) = q ∈ K+

Λ , where d ∈ Dm.

By property (Alg) and Theorem 4.9, the set C(K+
Λ ) is finite and there is a number

mΛ ∈ N such that all solutions of fm(d) ∈ K+
Λ , where m ≥ 4 and d ∈ Dm, are either

of the form (xii) or (xiii) of Theorem 4.3 or are given, up to multiplication of m
and d by the same factor, by m = mΛ and d from a finite list. Without restriction,
we may assume that mΛ is even.

Suppose that the above solution is of the form (xii) or (xiii) of Theorem 4.3.
Then using h1 = 0, one obtains h4 = k4 = k + s > m/2, a contradiction. Thus,
our solution derives from m = mΛ and finitely many values of d ∈ Dm. Since this
applies to any four directions of V ′ lying in the first quadrant, all such directions
correspond to angles with the positive real axis which are integer multiples of π/mΛ.

We claim that all directions of V ′ have the latter property. To see this, suppose
that there is a direction v ∈ V ′ in the second quadrant, and consider a set of
four directions vj , 1 ≤ j ≤ 4, in V ′, where v4 = v and vj , 1 ≤ j ≤ 3, lie in the

first quadrant. Suppose that vj = ehjπi/m, 1 ≤ j ≤ 4. Then hj is an integer
multiple of m/mΛ, for 1 ≤ j ≤ 3. Again, we obtain a corresponding solution
of fm(d) = q ∈ K+

Λ , where d ∈ Dm. If this solution derives from the finite list
guaranteed by Theorem 4.9, then clearly h4 is also an integer multiple of m/mΛ.
Otherwise, by Theorem 4.9, this solution is of the form (xii) or (xiii) of Theorem 4.3
and we can take h1 = 0 as before, whence either h2 = k, h3 = 2k and h4 = k + s,
1 ≤ k ≤ s/2, or h2 = s − k, h3 = s and h4 = k + s, s/2 ≤ k < s, where m = 2s.
Since s = m/2 = (mΛ/2)(m/mΛ) is an integer multiple of m/mΛ, we conclude in
either case that k, and hence h4 = k+ s, is also an integer multiple of m/mΛ. This
proves the claim.
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It thus remains to examine the case m = mΛ in more detail. Let hj , 1 ≤ j ≤ 4,
correspond to the four directions of V ′ having the smallest angles with the positive
real axis, so that h1 = 0 and hj ≤ m/2, 2 ≤ j ≤ 4. We have already shown that
the corresponding d = (k1, k2, k3, k4) must occur in the finite list guaranteed by
Theorem 4.9. Since hj ≤ m/2, 1 ≤ j ≤ 4, we also have kj ≤ m/2, 1 ≤ j ≤ 4. This
yields only finitely many quadruples (h1, h2, h3, h4) = (0, k1 − k3, k1, k4).

Suppose that h corresponds to any other direction of V ′ and replace (h1, h2, h3, h4)
by (h2, h3, h4, h). We obtain finitely many d = (h4−h2, h−h3, h4−h3, h−h2) ∈ Dm,
which, by Theorem 4.9, either occur in (xii) or (xiii) of Theorem 4.3 with m = mΛ or
occur in the finite list guaranteed by that result. This gives only finitely many pos-
sible finite sets of more than four directions, which implies that card(U) is bounded
from above by a finite number that only depends on Λ (since the above analysis
only depends on Λ). �

Similarly, the next result even holds for arbitrary sets Λ with property (n-Cyc),
where n ≥ 3.

Theorem 5.7. Let n ≥ 3 and let Λ be an n-cyclotomic Delone set. Further, let
U ⊂ S1 be a set of four or more pairwise nonparallel Λ-directions and suppose the
existence of a U -polygon. Then the cross ratio of slopes of any four directions of
U , arranged in order of increasing angle with the positive real axis, is an element
of the subset C(K+

Λ ) of C(Q(ζn)
+). Moreover

C(Q(ζn)
+) = Clcm(2n,12)(Q(ζn)

+)

is finite and card(U) is bounded above by a finite number bn ∈ N that only depends
on n. In particular, one can choose b3 = b4 = 6, b5 = 10, b8 = 8 and b12 = 12.

Proof. Employing Theorem 4.7 together with the trivial observation that K+
Λ ⊂

Q(ζn)
+ for any n-cyclotomic Delone set, the general result follows from the same

arguments as used in the proof of Theorem 5.6. The work of Gardner and Gritz-
mann shows that one can choose b3 = b4 = 6; cf. [15, Theorem 4.5]. The specific
bounds bn for n = 5, 8, 12 are obtained by following the proof of Theorem 5.6 and
employing Corollary 4.10.

More precisely, let n = 8 (whence lcm(2n, 12) = 48) and suppose that card(U) ≥
7. Let U ′ consist of seven directions of U and let V ′ = {Ψ(u)/|Ψ(u)| |u ∈ U ′}, with
Ψ as described in the proof of Theorem 5.6. Then all directions of V ′ correspond to
angles with the positive real axis which are integer multiples of π/48 and it suffices
to examine the case m = 48 in more detail. Let hj, 1 ≤ j ≤ 4, correspond to the
four directions of V ′ having the smallest angles with the positive real axis, so that
h1 = 0 and hj ≤ m/2 = 24, 2 ≤ j ≤ 4. The corresponding d = (k1, k2, k3, k4)
must occur in (1)-(82) of Corollary 4.10(b). Since hj ≤ 24, 1 ≤ j ≤ 4, we also have
kj ≤ 24, 1 ≤ j ≤ 4. The only possibilities are (1), (3), (15), (19), (27), (28), (33),
(34), (47), (67), (76) and (81) of Corollary 4.10(b). These yield

(h1, h2, h3, h4) ∈
{

(0, 2, 6, 20), (0, 6, 12, 18), (0, 2, 4, 12), (0, 6, 12, 24),

(0, 2, 10, 24), (0, 6, 18, 24), (0, 6, 8, 14), (0, 6, 9, 21),

(0, 8, 10, 20), (0, 6, 16, 22), (0, 8, 16, 24), (0, 8, 12, 20)
}

.

Suppose that h corresponds to any other direction of V ′ and replace (h1, h2, h3, h4)
by (h2, h3, h4, h). The corresponding d either occur in (xii) or (xiii) of Theorem 4.3
with m = 48 or occur in (1)-(82) of Corollary 4.10(b). We obtain (18, h−6, 14, h−2),
(12, h−12, 6, h−6), (10, h−4, 8, h−2), (18, h−12, 12, h−6), (22, h−10, 14, h−2),
(18, h− 18, 6, h− 6), (8, h− 8, 6, h− 6), (15, h− 9, 12, h− 6), (12, h− 10, 10, h− 8),
(16, h−16, 6, h−6), (16, h−16, 8, h−8) and (12, h−12, 8, h−8). The only possibilities
are h = 24, 30, 36, 42 for (12, h − 12, 6, h − 6), h = 26, 40 for (10, h − 4, 8, h − 2),
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h = 30, 36, 42 for (18, h − 12, 12, h − 6), h = 38, 46 for (22, h − 10, 14, h − 2),
h = 36, 42 for (18, h − 18, 6, h − 6), h = 34 for (12, h − 10, 10, h − 8), h = 32, 40
for (16, h − 16, 8, h − 8) and h = 34 for (12, h − 12, 8, h − 8). It follows that the
only possible sets of more than four directions only comprise directions of the form
ehπi/48 and are given by the ranges

{0, 8, 16, 24, 32, 40}, {0, 8, 12, 20, 34}, {0, 6, 12, 18, 24, 30, 36, 42},
{0, 2, 4, 12, 26, 40}, {0, 6, 12, 24, 30, 36, 42}, {0, 2, 10, 24, 38, 46},
{0, 6, 18, 24, 36, 42}, {0, 8, 10, 20, 34}

of h. In particular, card(U) ≤ 8.
With the help of Corollary 4.10, the cases n = 5, 12 can be treated analogously

with the following results.
For n = 12, the only possible sets of more than four directions only comprise

directions of the form ehπi/24 and are given by the ranges

{0, 4, 8, 12, 16, 18, 20, 22}, {0, 4, 6, 10, 14, 16, 18, 20, 22},
{0, 2, 4, 10, 12, 14, 18, 20, 22}, {0, 2, 4, 8, 12, 14, 16, 18, 20, 22},
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22}, {0, 2, 6, 12, 16, 18, 20, 22},
{0, 2, 4, 12, 14, 20, 22}, {0, 4, 6, 12, 14, 16, 18, 20, 22}, {0, 2, 8, 12, 18, 20, 22},
{0, 2, 6, 10, 14, 16, 18, 20, 22}, {0, 2, 8, 10, 16, 18, 20, 22}, {0, 2, 10, 12, 20, 22}

of h, whence card(U) ≤ 12.
For n = 5, the only possible sets of more than four directions only comprise

directions of the form ehπi/60 and are given by the ranges

{0, 10, 20, 30, 40, 50}, {0, 6, 24, 30, 48, 54}, {0, 2, 4, 10, 32, 54},
{0, 4, 8, 18, 34, 50}, {0, 6, 10, 16, 38}, {0, 6, 12, 24, 30, 36, 42, 48, 54},
{0, 10, 18, 28, 44}, {0, 12, 18, 30, 36, 42, 48, 54}, {0, 6, 8, 16, 38},
{0, 10, 14, 28, 34}, {0, 2, 8, 30, 52, 58}, {0, 4, 14, 30, 46, 56},
{0, 6, 18, 30, 42, 48, 54}, {0, 6, 12, 30, 36, 42, 48, 54},
{0, 6, 12, 18, 24, 30, 36, 42, 48, 54}, {0, 6, 18, 24, 36, 42, 48, 54}

of h, whence card(U) ≤ 10 in this case. �

Without further mention, the following result will be used in Remark 5.9 below.

Lemma 5.8. Let Λ be a K-algebraic model set and let U ⊂ S1 be a finite set of
directions. The following statements are equivalent:

(i) There is a U -polygon in Λ.
(ii) For any K-algebraic model set Λ′, there is a U -polygon in Λ′.

Proof. The assertion follows from Proposition 3.9 together with [28, Fact 4.4]. �

Remark 5.9. The work of Gardner and Gritzmann shows that b3 = b4 = 6 is best
possible for any 3- or 4-cyclotomic model set; cf. [15, Example 4.3]. The U -icosagon
in the vertex set of the Tübingen triangle tiling from Remark 5.5 has the property
that card(U) = 10; see [27, Figure 1]. This shows that, for any 5-cyclotomic model
set, the number b5 = 10 is best possible. Figure 1 shows a U -polygon with 24
vertices in the vertex set of the shield tiling with card(U) = 12, hence b12 = 12 is
best possible for any 12-cyclotomic model set. A similar example of a U -polygon
with 16 vertices in the vertex set of the Ammann-Beenker tiling with card(U) = 8
shows that b8 = 8 is best possible for any 8-cyclotomic model set; cf. [28, Figure 2].
U -polygons of class c ≥ 4 (i.e. U -polygons with 4 consecutive edges parallel to
directions of U) in cyclotomic model sets were studied in [27]. By [27, Corollary
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Figure 1. The boundary of a U -polygon in the vertex set Λ of
the twelvefold shield tiling, where U is the set of twelve pairwise
nonparallel Λ-directions given by the edges and diagonals of the
central regular dodecagon. The vertices of Λ in the interior of the
U -polygon together with the vertices indicated by the black and
grey dots, respectively, give two different convex subsets of Λ with
the same X-rays in the directions of U .

14] (see also [13, Theorem 12]), the existence of a U -polygon of class c ≥ 4 in an n-
cyclotomic model set with n 6≡ 2 (mod 4) having the property that φ(n)/2 is equal
to one or a prime number implies that card(U) ≤ an, where a3 = a4 = 6, a8 = 8,
a12 = 12 and an = 2n for all other such values of n. In particular, one observes the
coincidence bn = an for n = 3, 4, 5, 8, 12; cf. Theorem 5.7. However, there does not
seem to be a reason why the least possible numbers bn in Theorem 5.7 may not be
larger than an for other n ≥ 3 having the above property.

Summing up, we finally obtain our main result on the determination of convex
subsets of algebraic Delone sets; see [28, Theorem 4.21] for a weaker version.

Theorem 5.10. Let Λ be an algebraic Delone set.

(a) There are sets of four pairwise nonparallel Λ-directions such that the convex
subsets of Λ are determined by the corresponding X-rays. In addition, less
than four pairwise nonparallel Λ-directions never suffice for this purpose.

(b) There is a finite number cΛ ∈ N such that the convex subsets of Λ are
determined by the X-rays in any set of cΛ pairwise nonparallel Λ-directions.

Proof. To prove (a), it suffices by Fact 5.3 and Theorem 5.6 to take any set of four
pairwise nonparallel Λ-directions such that the cross ratio of their slopes, arranged
in order of increasing angle with the positive real axis, is not an element of the finite
set C(K+

Λ ). Since Λ is relatively dense, the set of Λ-directions is dense in S1. In
particular, this shows that the set of slopes of Λ-directions is infinite. For example
by fixing three pairwise nonparallel Λ-directions and letting the fourth one vary, one
sees from this that the set of cross ratios of slopes of four pairwise nonparallel Λ-
directions, arranged in order of increasing angle with the positive real axis, is infinite
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as well. The assertion follows. The additional statement follows immediately from
Fact 5.3. Part (b) is a direct consequence of Fact 5.3 and Theorem 5.6. �

The following result improves [28, Theorem 4.33] and in particular solves Prob-
lem 4.34 of [28]; cf. Example 3.11 and compare [15, Theorem 5.7].

Theorem 5.11. Let n ≥ 3 and let Λ be an n-cyclotomic Delone set.

(a) There are sets of four pairwise nonparallel Λ-directions such that the convex
subsets of Λ are determined by the corresponding X-rays. In addition, less
than four pairwise nonparallel Λ-directions never suffice for this purpose.

(b) There is a finite number cn ∈ N that only depends on n such that the
convex subsets of Λ are determined by the X-rays in any set of cn pairwise
nonparallel Λ-directions. In particular, one can choose c3 = c4 = 7, c5 =
11, c8 = 9 and c12 = 13.

Proof. Part (a) follows immediately from Theorem 5.10(a). Note that, by Fact 5.3
and Theorem 5.7, it suffices to take any set of four pairwise nonparallel Λ-directions
such that the cross ratio of their slopes, arranged in order of increasing angle with
the positive real axis, is not an element of the finite set C(Q(ζn)

+). Part (b) is a
direct consequence of Fact 5.3 in conjunction with Theorem 5.7. �

Remark 5.12. Remark 5.9 shows that, for any n-cyclotomic model set with n =
3, 4, 5, 8, 12, the number cn above is best possible with respect to the numbers of X-
rays used. As already explained in the introduction, for practical applications, one
additionally has to make sure that the Λ-directions used yield densely occupied lines
in Λ. For the practically most relevant case of n-cyclotomic model sets with n =
3, 4, 5, 8, 12, this can actually be achieved; cf. [15, Remark 5.8] and [28, Section 4] for
examples of suitable sets of four pairwise nonparallel Λ-directions in these cases.
For the latter examples also recall that, for any n-cyclotomic model set Λ, the
set of Λ-directions is precisely the set of Z[ζn]-directions; cf. Remark 3.10 and
Example 3.11. It was shown in [26, Proposition 3.11] that icosahedral model sets
Λ ⊂ R3 can be sliced orthogonal to a fivefold axis of their underlying Z-module
into 5-cyclotomic model sets. Applying Theorem 5.11 to each such slice, one sees
that the convex subsets of Λ are determined by the X-rays in suitable four and any
eleven pairwise nonparallel Λ-directions orthogonal to the slicing axis.

6. Determination of convex bodies by continuous X-rays

In [18], the following continuous version of Fact 5.3 was shown; compare Fact 5.4.
Here, the continuous X-ray of a convex body K ⊂ C (i.e. K is convex and compact
with nonempty interior) in direction u ∈ S1 gives the length of each chord of K
parallel to u and the concept of determination is defined as in the discrete case;
cf. [14], [18] for details.

Fact 6.1. Let U ⊂ S1 be a set of two or more pairwise nonparallel directions. The
following statements are equivalent:

(i) The convex bodies in C are determined by the continuous X-rays in the
directions of U .

(ii) There is no U -polygon.

In addition, if card(U) < 4, then there is a U -polygon. �

Employing Fact 6.1 instead of Fact 5.3, the following result follows from the
same arguments as used in the proofs of Theorems 5.10 and 5.11; compare [15,
Theorem 6.2]. Note that neither the uniform discreteness of Λ nor property (Hom)
are needed in the proof. More precisely, our proof of part (a) needs property (Alg)
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and the relative denseness of Λ, whereas part (b) and the additional statement hold
for arbitrary sets Λ with property (Alg) and (n-Cyc) (where n ≥ 3), respectively.

Theorem 6.2. Let Λ be an algebraic Delone set.

(a) There are sets of four pairwise nonparallel Λ-directions such that the convex
bodies in C are determined by the corresponding continuous X-rays. In
addition, less than four pairwise nonparallel Λ-directions never suffice for
this purpose.

(b) There is a finite number cΛ ∈ N such that the convex bodies in C are
determined by the continuous X-rays in any set of cΛ pairwise nonparallel
Λ-directions.

Moreover, for any n-cyclotomic Delone set Λ, there is a finite number cn ∈ N that
only depends on n such that the convex bodies in C are determined by the continuous
X-rays in any set of cn pairwise nonparallel Λ-directions. In particular, one can
choose c3 = c4 = 7, c5 = 11, c8 = 9 and c12 = 13. �

Remark 6.3. Employing the U -polygons from Remark 5.9, it is straightforward
to show that the above numbers cn, where n = 3, 4, 5, 8, 12, are best possible.
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