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The background image of the cover of this thesis has been drawn by the author.

The vertices of the illustrated graph represent equivalence classes of subgroups of

MC(3), as defined in Section 9.2, with respect to the equivalence relation H ∼ K

if and only if, for each j ∈ {1, 2, 3, 4}, the j-th widths, as defined in Section 2.3, of

H and K in MC(3) are the same. An edge is drawn between two vertices if there

are representatives H and K of the given vertices such that H is contained in K

with index 3 or vice versa. The color of each vertex is determined by the number

of conjugates in MC(3) of any representative of the equivalence class associated to

the vertex. Subgroups corresponding to white, blue, red, and yellow vertices have

respectively 1, 3, 9, and 27 conjugates in MC(3).
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Introduction

Let G be a group and let Aut(G) denote its group of automorphisms. An auto-

morphism α ∈ Aut(G) is intense if it sends each subgroup of G to a conjugate,

i.e., for every subgroup H of G there exists g ∈ G such that α(H) = gHg−1.

The collection of intense automorphisms is a normal subgroup of Aut(G), which

is denoted by Int(G).

Such automorphisms come to light in the field of Galois cohomology, as we will see

at the end of this introductory section. Additionally, they give rise to a very rich

theory. We study the case in which G is a finite p-group and show that, if Int(G)

is not itself a p-group, then the structure of G is almost completely determined by

its “class”.

If G is a finite abelian group, then the inversion map x 7→ x−1 is an intense au-

tomorphism of G and therefore, unless the exponent of G divides 2, the order

of Int(G) is even. It follows, for example, that if G is non-trivial abelian of odd

order, then G always has a non-trivial intense automorphism of order coprime to

its order. In Chapter 3 we prove the following result for groups of prime power

order.

Theorem A. Let p be a prime number and let G be a finite p-group. Then Int(G)

is isomorphic to a semidirect product SG⋊CG, where SG is a Sylow p-subgroup of

Int(G) and CG is a subgroup of the unit group F∗
p of the finite field Fp. Moreover,

if G is non-trivial abelian, then CG = F∗
p.

Theorem A is the same as Theorem 86 and is proven in Section 3.3. If p is an

odd prime number, then Theorem A guarantees the existence of infinitely many

p-groups, up to isomorphism, whose group of intense automorphisms is not itself

a p-group. Moreover, it is also clear from Theorem A that the order of the intense

automorphism group of a 2-group can never have prime divisors other than 2. We

define the intensity of a finite p-group G to be the order of CG and we denote it
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INTRODUCTION

by int(G). The main goal of this thesis is to classify all pairs (p,G) such that p

is a prime number and G is a finite p-group of intensity greater than 1. Theorem

A classifies all such pairs (p,G) for which G is abelian. . . but what happens in

general?

We proceed by separating into cases based on “how non-abelian" a group is. We

define the lower central series (Gi)i≥1 of a group G by

G1 = G and Gi+1 = [G,Gi] = 〈xyx−1y−1 : x ∈ G, y ∈ Gi〉

and we define the (nilpotency) class of G to be

cl(G) = #{k ∈ Z≥1 : Gk 6= 1}.

In other words, the class of a group G is the number of non-trivial elements of the

lower central series. The only group of class 0 is the trivial group and the groups

of class 1 are the non-trivial abelian groups. It is a classical result that, for any

finite p-group, the lower central series stabilizes at {1} and so the class is finite.

In Chapter 4 we look at finite p-groups of class 2 – the first non-abelian case we

treat – and prove the following result.

Theorem B. Let p be a prime number and let G be a finite p-group of class 2.

Then the following are equivalent.

1. One has int(G) > 1.

2. One has int(G) = p− 1 and p is odd.

3. The group G is extraspecial of exponent p.

Theorem B is the same as Theorem 105 and is proven in Section 4.3. As we explain

in Chapter 4, extraspecial groups of exponent p are exactly those of the form

(F2n+1
p , ∗), where ∗ is a twist of the usual + by an inner product on Fnp . Thanks

to their pleasant shape, it is not a surprise that they carry intense automorphisms

of order coprime to p. Moreover, they provide, for each odd prime p, an infinite

class of examples of p-groups of class 2 and intensity different from 1.

Passing to class at least 3, things drastically change: in Chapter 5, we prove the

following very restrictive result.

Theorem C. Let p be a prime number and let G be a finite p-group of class at

least 3. Then the following hold.

1. One has int(G) ≤ 2.

2. If int(G) = 2, then p is odd and |G : G2| = p2.
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INTRODUCTION

Theorem C is a reformulation of Theorem 125, which is proven in Section 5.2.

Moreover, Theorem C tells us that, for class greater than 2, a p-groupG always has

intensity 1 or 2; in the latter case, if p is odd, then the order of the abelianization

of G is “small”.

Starting from class 3, we want to understand the structure of the groups from

Theorem C(2). To this end, let p be an odd prime number and let G be a finite

p-group of class 3 with |G : G2| = p2. In Section 5.2, we prove that G/G3 is

extraspecial of exponent p and that the order of G is p4 or p5. Moreover, if we write

wi = logp |Gi : Gi+1|, then either (w1, w2, w3) = (2, 1, 1) or (w1, w2, w3) = (2, 1, 2).

As a consequence, for the given prime number p, there are, up to isomorphism,

only finitely many possibilities for G (for a sharp bound see for example [Ben27])

and so, contrarily to what happens for class 1 and 2, there are only finitely many

isomorphism classes of finite p-groups of class 3 and intensity greater than 1. The

fortunate outcome of our investigation in class 3 is the following.

Theorem D. Let p be an odd prime number and let G be a finite p-group of class

3. Then the following are equivalent.

1. One has int(G) = 2.

2. One has |G : G2| = p2.

The last theorem is a simplification of Theorem 124, whose proof is given in Sec-

tion 5.4. Thanks to Theorem D, we now know that the only condition, given an

odd prime number p, for a finite p-group of class 3 to have intensity 2 is just that

of having an abelianization of order p2. The most urgent problem at this point is

that of constructing examples of p-groups of class greater than 3 and intensity 2:

those will serve as a model for further investigation.

Example. Let p > 3 be a prime number and let Zp denote the ring of p-adic inte-

gers. Let t be a quadratic non-residue modulo p and denote by ∆p the quaternion

algebra ∆p = Zp + Zpi + Zpj + Zpij with defining relations i2 = t, j2 = p, and

ji = −ij. The algebra ∆p is equipped with a standard involution, which is given

by

x = a+ bi + cj + dij 7→ x = a− bi− cj− dij

and which is an anti-ring-automorphism of ∆p. Moreover, m = ∆pj is the unique

(2-sided/left/right) maximal ideal of ∆p and the residue field ∆p/m, as well as

every quotient m
k/mk+1, has cardinality p2. Via the natural isomorphisms of

groups (1 + m
k)/(1 + m

k+1) → m
k/mk+1, the multiplicative group 1 + m is then

seen to be a pro-p-subgroup of ∆∗
p. We define S(∆p) to be the subgroup of 1 + m

consisting of those elements x satisfying x = x−1. Being closed in 1+m, the group
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INTRODUCTION

S(∆p) is itself a pro-p-subgroup of ∆∗
p and, if (S(∆p)i)i≥1 denotes the lower central

series of S(∆p), then

(logp | S(∆p)i : S(∆p)i+1|)i≥1 = (2, 1, 2, 1, 2, 1, . . .).

We prove in Section 13.4.2 that each non-trivial discrete quotient of S(∆p) has

intensity greater than 1.

Because of the last example, we know that, whenever p is a prime larger than

3 and c is a positive integer, then there always exists a finite p-group of class c

and intensity greater than 1. We cannot however use the same strategy to build

examples of high class 3-groups of intensity 2. As a matter of fact, even though

the group S(∆p) can be defined also for p = 3, the image of the 3-torsion of S(∆3)

in S(∆3)/ S(∆3)2 is non-trivial. The next result, which is obtained by combining

Theorem 164 and Lemma 206(1), explains why this is a problem.

Theorem E. Let p be an odd prime number and let G be a finite p-group. Let

(Gi)i≥1 denote the lower central series of G and write wi = logp |Gi : Gi+1|.

Assume that the class of G is at least 4 and that int(G) = 2. Then the following

conditions are satisfied.

1. One has (w1, w2, w3, w4) = (2, 1, 2, 1).

2. The map x 7→ xp induces a bijection ρ : G/G2 → G3/G4.

Relying on results coming from Section 1.5, one can prove that, whenever p > 3,

the map ρ from Theorem E is a group isomorphism, while in the case of 3-groups

it never is: because of this structural difference, we separate the two cases.

We define a κ-group to be a finite 3-group G such that |G : G2| = 9 and such that

cubing induces a bijection κ : G/G2 → G3/G4. In particular, κ coincides with ρ

from Theorem E(2). In Chapter 9, we prove several structural results about κ-

groups: we show, for example, that in class 3 there is, up to isomorphism, a unique

κ-group and that the minimal extensions of that group to class 4 (which then have

order 729) have an elementary abelian commutator subgroup. The just-mentioned

results are presented in the form of Theorems 233 and 234. Our investigation of

κ-groups leads to the construction of the following example.

Example. Let R = F3[ǫ] be of cardinality 9, with ǫ2 = 0. Denote by ∆ the

quaternion algebra ∆ = R+Ri +Rj +Rij with defining relations i2 = j2 = ǫ and

ji = −ij. Let moreover the standard involution on ∆ be the R-linear map that is

given by (1, i, j, ij) = (1,−i,−j,−ij). Then, for each x, y ∈ ∆, one has xy = y x.

We write m = ∆i + ∆j, which is a nilpotent maximal 2-sided ideal of ∆ with

∆/m isomorphic to F3. We define additionally MC(3) to be the subgroup of the
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INTRODUCTION

multiplicative group 1 +m consisting of those elements x satisfying x = x−1. The

group MC(3) has order 729, class 4, and it is a κ-group. Moreover, int(MC(3)) = 2.

In Chapter 9 we prove the following result, which is a simplified version of Theorem

231.

Theorem F. Let G be a finite 3-group of class at least 4. Then the following

conditions are equivalent.

1. One has int(G) = 2.

2. The group G is isomorphic to MC(3).

Theorem F concludes the classification of finite 3-groups of intensity greater than

1. Except for the two infinite families of finite non-trivial abelian 3-groups and

extraspecial 3-groups of exponent 3, there are, up to isomorphism, exactly 17

groups in class 3 (specifically 4 of order 81 and 13 of order 243), and 1, namely

MC(3), in class 4. In class higher than 4, there are no 3-groups of intensity greater

than 1.

To continue our investigation, we let p > 3 be a prime number. In Chapter 10, we

define a p-obelisk to be a finite non-abelian p-group G such that |G : G3| = p3 and

Gp = G3. Among other things, we prove that p-obelisks of class at least 4 satisfy

both (1) and (2) from Theorem E and it is in fact true that, for each p-obelisk G,

one has

(logp |Gi : Gi+1|)i≥1 = (2, 1, 2, 1, . . . , 2, 1, f, 0, 0, . . .) with f ∈ {0, 1, 2},

where the index i ∈ {cl(G), cl(G) + 1} to which f corresponds is odd and larger

than 2. We will see in Chapter 13 that, for every prime number p > 3, each

non-abelian quotient of S(∆p) is a special kind of p-obelisk that we call “framed”.

Let p be a prime number and let G be a finite p-group. The Frattini subgroup of

G is Φ(G) = [G,G]Gp; then G/Φ(G) is the largest possible quotient of G that is

vector space over Fp. If p > 3, then a p-obelisk G is framed if the Frattini subgroup

of each maximal subgroup of G coincides with G3, i.e. for each maximal subgroup

M of G, one has Φ(M) = G3. Though it might not be evident at first sight,

asking for a p-obelisk to be framed is equivalent to imposing strong limitations to

the interaction of commutator maps and power maps in the group.

Using a wide range of techniques, we are able to prove the following character-

ization for p-groups of class at least 4, which coincides with the combination of
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INTRODUCTION

Theorems 343, 375, and 390. We denote by CG(G4) the centralizer of G4 in the

group G, i.e. CG(G4) =
⋂
g∈G4

{x ∈ G : [x, g] = 1}.

Theorem G. Let p > 3 be a prime number and let G be a finite p-group of class

at least 4. For each i ∈ Z≥1, write wi = logp |Gi : Gi+1|. Then int(G) = 2 if and

only if there exists α ∈ Aut(G) of order 2 such that α induces the inversion map

x 7→ x−1 on G/G2 and one of the following holds.

1. The group G is a p-obelisk of class 4.

2. The group G is a p-obelisk with w5 = 1 and Φ(CG(G4)) = G3.

3. The group G is a framed p-obelisk with w5 = 2.

Theorem G makes the role of p-obelisks in our theory clear and it can be used

to prove that any p-group of class at least 6 and intensity greater than 1 is a

framed p-obelisk. Class 5 is the highest class in which there still exist p-obelisks of

intensity greater than 1 that are not framed . . . but “semi-framed”. More precisely,

if, as in Theorem G(2), the group G is a p-obelisk with w5 = 1, then the class is

5, the order of G5 is p, and CG(G4) is a maximal subgroup; it is the only maximal

subgroup whose Frattini subgroup is required to coincide with G3.

Theorem G completes the classification of prime power order groups of intensity

greater than 1, modulo the existence of some special automorphism. Because of

their relevance in the theory of intense automorphisms, we give a name to such

an automorphism. If G is a group, we call an automorphism α ∈ Aut(G) concrete

if it has order 2 and the automorphism of G/G2 that is induced by α coincides

with the inversion map x 7→ x−1. To the present day, we know very little about

concrete automorphisms and how to construct them in general: finding necessary

and sufficient conditions for a p-obelisks to possess a concrete automorphism is an

interesting problem that we have not yet addressed.

In the following table, we summarize the results we have formulated so far. We

denote by p a prime number and by G a finite p-group of class c.

We now have a clear picture of the intensity of groups of prime power order,

according to their (finite) class. However, the theory of intense automorphisms

can be extended to a larger family of groups with a striking result. In Chapter 13,

we complete the picture by moving to infinite class and computing the “intensity”

of infinite pro-p-groups.

We call an automorphism α of a profinite group G topologically intense if, for each

closed subgroup H of G, there exists an element g in G such that α(H) = gHg−1.

The group of topologically intense automorphisms of a profinite groupG is denoted

by Intc(G) and it is itself profinite. As a consequence, several results concerning
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Intensity
❍
❍
❍
❍
❍❍

c

p
2 3 ≥ 5

0

1

1

1 p− 1

2 p− 1 if G extraspecial of exponent p;

1 otherwise

3 2 if |G : G2| = p2;

1 otherwise

4 2 if G ∼= MC(3); 2 if G is a p-obelisk with a concrete automorphism;

1 otherwise 1 otherwise

2 if G is a p-obelisk with |G5| = p, Φ(CG(G4)) = G3,

and G has a concrete automorphism;

≥ 5 1 2 if G is framed p-obelisk with |G5 : G6| = p2

and G has a concrete automorphism;

1 in all other cases

intense automorphisms of finite p-groups can be generalized to topologically intense

automorphisms of pro-p-groups. For example, Theorem 424 asserts that, if p is a

prime number and G is a pro-p-group, then Intc(G) decomposes as

Intc(G) = SG ⋊ CG,

where SG is a Sylow pro-p-subgroup of Intc(G) and CG is isomorphic to a subgroup

of F∗
p. Similarly to the finite case, we define the intensity int(G) of a pro-p-

group G to be the order of CG and we ask which are the infinite pro-p-groups of

intensity greater than 1. Surprisingly, this question can be answered much more

exhaustively than in the finite case, as follows.

Theorem H. Let p be a prime number and let G be an infinite pro-p-group. Then

int(G) > 1 if and only if exactly one of the following holds.

1. One has p > 2 and G is abelian.

2. One has p > 3 and G is topologically isomorphic to S(∆p).

Moreover, one has int(S(∆p)) = 2 and, if G is abelian, then int(G) = p− 1.

Theorem H tells us that, “in the limit”, for a given prime number p > 3, there is

a unique non-abelian pro-p-group, up to isomorphism, of intensity greater than 1.

From the point of view of finite groups, this last statement translates into saying

that, if p > 3 is a prime number, then each finite p-group G with int(G) > 1 shares
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a “relatively big” quotient (growing in size with the class of G) with the infinite

group S(∆p). In a more definite way, we present this result in Section 13.6.3, under

the name of Proposition 451.

We conclude our introductory section by giving a “cohomological context” to in-

tense automorphism. As we already mentioned at the beginning of this thesis,

intense automorphisms arise naturally as solutions to certain problems coming

from the field of Galois cohomology and we would like, with these last lines, to

make this statement a little less vague. We start by looking at some examples.

Example. Let k be a field and let n be a positive integer. Moreover, let a be a

non-zero element of k. Then the least degree of the irreducible factors of xn − a

divides all other degrees.

Example. Let k be a field and let Br(k) denote the group of similarity classes of

central simple algebras over k, endowed with the multiplication ⊗k. If [A] ∈ Br(k),

then an extension ℓ/k is said to split A if [A ⊗k ℓ] = [ℓ]. In [GT06, Ch. 4.5], it

is proven that the minimal degree of finite separable extensions of k that split a

given central simple algebra A over k divides all other degrees.

Example. Let k be a field and let C be a smooth projective absolutely irreducible

curve of genus 1 over k. As a consequence of the Riemann-Roch theorem, as ex-

plained for example in [LT58, §2], the least degree of the finite extensions of k for

which C has a rational point divides all other degrees.

In a quite simplified manner, the last three examples suggest the following ques-

tion: When does it happen that “a problem”, defined on a base field k, is solvable

over a field extension ℓ/k whose degree divides the degrees of all extensions m/k

over which the given problem can be solved? The difficulty of translating this last

question into rigorous mathematics is given by the fact that the known examples

are quite diverse; however, we can try to unify them from the perspective of Ga-

lois cohomology. A first attempt of getting closer to the observed phenomena is

Theorem I(1) from [Sta13].

Theorem I. Let G be a finite group. Then the following are equivalent:

1. For every G-module M , integer q, and c ∈ Ĥq(G,M), the minimum of the set

{ |G : H | : H ≤ G with ResGH(c) = 0 } coincides with its greatest common

divisor.

2. There exist nilpotent groups N and T of coprime orders and a homomorphism

φ : T → Int(N) such that G ∼= N ⋊φ T .

A way to interpret (1) from Theorem I is the following. In some sense, the non-

zero elements of a cohomology group are the obstructions to having solutions
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so, ideally, each subgroup H of G for which ResGH(c) = 0 corresponds to a field

extension “solving the problem”. The merit of Theorem I is that of giving a

splendid correspondence between a rather technical cohomological condition and a

very concrete requirement regarding intense automorphisms. More about Theorem

I and its proof can be found in [Sta13].

Generalizing Theorem I to profinite groups is an intriguing problem that is to the

present day still open.
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Chapter 1

Important tools

This chapter consists of a miscellaneous collection of definitions and easy facts.

Throughout the whole chapter we will fully respect the notation given in the List

of Symbols.

1.1 Bilinear maps and isotropic spaces

Let K be a field and let V , W , and Z be vector spaces over K. A map φ :

V ×W → Z is said to be K-bilinear (or simply bilinear) if, for all v ∈ V , the

map vφ : W → Z, defined by t 7→ φ(v, t), is K-linear and, for all w ∈W , the map

φw : V → Z, defined by u 7→ φ(u,w), is K-linear.

Definition 1. Let V , W , and Z be vector spaces over a field K and let φ :

V ×W → Z be a map. Then φ is non-degenerate if it is bilinear and both maps

V → Hom(W,Z), defined by v 7→ vφ, and W → Hom(V, Z), defined by w 7→ φw,

are injective.

Lemma 2. Let V , W , Z be finite-dimensional vector spaces over a field K and

let φ : V ×W → Z be a non-degenerate map. Assume moreover that dimK Z = 1.

Then the dimensions of V and W over K are the same.

Proof. The maps V → Hom(W,Z) and W → Hom(V, Z) are injective. It follows

that dim V ≤ dim Hom(W,Z) = dimW ≤ dim Hom(V, Z) = dim V , and therefore

the dimensions of V and W are the same.

Definition 3. Let V and Z be vector spaces over a field K. A map φ : V ×V → Z

is alternating if it is bilinear and, for all v ∈ V , one has φ(v, v) = 0.

A map φ : V × V → Z is antisymmetric if it is bilinear and, for every v, w ∈ V

one has φ(v, w) = −φ(w, v). As a direct consequence of their definitions, every

alternating map is antisymmetric.

1
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Lemma 4. Let K be a field and let U be a K-vector space of dimension 3. Then

∧ : U × U →
∧2

U is surjective.

Proof. Let (x, y, z) be a basis for U over K. Then (x∧ y, y∧ z, x∧ z) is a basis for∧2 U . Let now a = λ(x∧ y) +µ(y ∧ z) + ν(x∧ z) be an arbitrary element of
∧2 U .

If a = 0, then clearly a belongs to the image of ∧, so, without loss of generality,

we assume that λ ∈ K \ {0}. Since (λx − µz) ∧ (y + λ−1νz) = a, we are done.

Definition 5. Let K be a field and let V and Z be vector spaces over K. Let

φ : V × V → Z be an alternating map. A subspace T of V is called isotropic if

φ restricted to T × T equals the zero map. A subspace T is said to be maximal

isotropic if it is isotropic and it is not properly contained in any other isotropic

subspace of V .

Definition 6. Let K be a field and let V and Z be vector spaces over K. Let

φ : V × V → Z be an alternating map and let T be an isotropic subspace of V .

Then φT : V/T → Hom(T, Z) is defined by v + T 7→ (t 7→ φ(v, t)).

The map φT is well defined for every isotropic subspace T of V , because φ(T×T ) =

0, and it is linear.

Lemma 7. Let K be a field and let V and Z be vector spaces over K. Let

φ : V × V → Z be an alternating map and let T be an isotropic subspace of V .

Then T is maximal isotropic if and only if φT is injective.

Proof. The subspace T is not maximal isotropic if and only if there exists an

element v ∈ V \ T such that T ⊕ Kv is isotropic, which happens if and only if

v + T belongs to the kernel of φT .

Definition 8. Let K be a field and let V and Z be vector spaces over K. Let

φ : V ×V → Z be an alternating map. Let moreover W be a linear subspace of V .

The orthogonal complement W⊥ of W with respect to φ is the kernel of the map

V → Hom(W,Z) that is defined by v 7→ (w 7→ φ(v, w)).

With the notation of Definition 8, the orthogonal complement of a subspace W of

V is itself a subspace of V . Moreover, an alternating map being antisymmetric,

W⊥ is equal to the collection of all vectors v ∈ V , such that, for all w ∈ W , one

has φ(w, v) = 0. It follows directly from the definition that W ⊆ (W⊥)⊥ and that,

if U ⊆W , then U⊥ ⊇W⊥.

Lemma 9. Let K be a field and let V and Z be vector spaces over K. Let

φ : V ×V → Z be an alternating map. Let moreover W be a linear subspace of V .

Then W is isotropic if and only if W ⊆ W⊥. Moreover, W is maximal isotropic

if and only if W = W⊥.

2
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Proof. Easy exercise.

Lemma 10. Let V and Z be finite-dimensional vector spaces over a field K and

let φ : V × V → Z be a non-degenerate alternating map. Assume that Z has

dimension 1. Let W be a linear subspace of V . Then dimW + dimW⊥ = dim V .

Moreover, if W is maximal isotropic, then 2 dimW = dim V .

Proof. By definition of orthogonal complement, we have φ(W⊥ ×W ) = {0}, and

hence the bilinear map V/W⊥×W → Z that is induced from φ is non-degenerate.

It follows from Lemma 2 that dim V − dimW⊥ = dimW . If W is maximal

isotropic, then Lemma 9 yields dim V = 2 dimW .

Lemma 11. Let V and Z be finite-dimensional vector spaces over a field K and

let φ : V × V → Z be a non-degenerate alternating map. Assume that Z has

dimension 1. Let W be a linear subspace of V . Then (W⊥)⊥ = W .

Proof. The subspace W is always contained in (W⊥)⊥, and therefore we always

have dimW ≤ dim(W⊥)⊥. By Lemma 10, the dimension of V is equal to both

dimW + dimW⊥ and dimW⊥ + dim(W⊥)⊥, and therefore dimW = dim(W⊥)⊥.

It follows that W = (W⊥)⊥.

Lemma 12. Let V and Z be finite-dimensional vector spaces over a field K and

let φ : V × V → Z be a non-degenerate alternating map. Assume that Z has

dimension 1. Let moreover X be a maximal isotropic subspace of V . Then there

exists a maximal isotropic subspace Y of V such that V = X ⊕ Y .

Proof. Let Y be maximal among the isotropic subspaces of V that intersect X

trivially. We will show that Y is maximal isotropic and that V = X + Y . Lemma

9 guarantees Y ⊆ Y ⊥ and X = X⊥. We now claim that Y ⊥ is contained in X+Y .

Indeed, if v ∈ Y ⊥, then Y + Kv is an isotropic subspace containing Y . From the

maximality of Y , it follows that (Y +Kv) ∩X is non-trivial. Since Y ∩X = {0},

the element v belongs to X + Y , as claimed. Now, by Lemma 11, the subspaces

(Y ⊥)⊥ and Y are the same and, Y ⊥ being contained in X + Y , it follows that

Y = (Y ⊥)⊥ ⊇ (X + Y )⊥ ⊇ X⊥ ∩ Y ⊥ = X ∩ Y ⊥.

In particular, X ∩ Y ⊥ is contained in X ∩ Y , which is trivial by definition of Y .

As a consequence of Lemma 10, we get that

2 dimX = dim V ≥ dim(X ⊕ Y ⊥) = dimX + dim Y ⊥ =

dimX + dimV − dim Y = 3 dimX − dim Y ≥ 2 dimX,

and therefore dim Y ⊥ = dimX = dim Y . As a result, Y = Y ⊥, and thus V =

X ⊕ Y . The subspace Y is maximal isotropic, by Lemma 9, and the proof is

complete.
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1.2 Commutators and the lower central series

Let G be a group. The commutator map on G is the map G × G → G that is

defined by

(x, y) 7→ [x, y] = xyx−1y−1.

Given two subgroups H and K of G, we define [H,K] to be the subgroup of G

that is generated by all elements [h, k], where h ∈ H , k ∈ K. The groups [H,K]

and [K,H ] are equal, because, for all (h, k) ∈ H ×K, the inverse of [h, k] is [k, h].

Lemma 13. Let G be a group and let H be a subgroup of G. Let g ∈ G and denote

[g,H ] = {[g, h] : h ∈ H}. Then g ∈ NG(H) if and only if [g,H ] is contained in

H.

Proof. Let h ∈ H . Then ghg−1 = [g, h]h and ghg−1 is in H if and only if [g, h] is

in H .

Definition 14. Let G be a group. The lower central series of G is the series

(Gi)i≥1 that is obtained by defining recursively, for all i ∈ Z≥1, the subgroups

G1 = G and Gi+1 = [G,Gi]. One calls G2 the commutator subgroup of G.

Unless otherwise specified, we will stick to the notation from Definition 14 to refer

to the lower central series of a group (see also the List of Symbols). We remark

that, in Chapter 13, we will define the lower central series of a profinite group

G, by taking the closures of the elements of the lower central series of G as an

abstract group. In the case of finite groups, the two notions coincide.

A group G is said to be nilpotent if there exists i ∈ Z≥0 for which Gi+1 = 1 and, in

the latter case, one calls cl(G) = min{i ∈ Z≥0 : Gi+1 = 1} the (nilpotency) class

of G. The class of a nilpotent group is, in other words, the number of elements

of the lower central series that are distinct from {1}. Another way of deciding

whether a group is nilpotent is by looking at its upper central series.

Definition 15. Let G be a group. The upper central series of G is the series

(Zi)i≥0 that is obtained by defining recursively, for all i ∈ Z≥0, the subgroups

Z0 = 1 and Zi+1/Zi = Z(G/Zi).

It is a general result (see for example Chapter 4 in [Isa08]) that a group is nilpotent

if and only if its upper central series stabilizes at the group itself. In other words,

if G is a finite group and (Zi)i≥0 is its upper central series, then G is nilpotent if

and only if there exists r ∈ Z≥0 such that Zr = G. Moreover, one can show (see

for example in [Isa08, §1D]) that if the group G is nilpotent, then its class is equal

to min{r ∈ Z≥0 : Zr = G}.

Lemma 16. Let G be a finite group. Then G is nilpotent if and only if G is equal

to the direct product of its Sylow p-subgroups.

4
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Proof. This is a weaker version of Hauptsatz 2.3 from [Hup67, Ch. III].

Definition 17. Let G be a group and let m,n be integers with m ≤ n. Let

moreover {xi}
n
i=m be a subset of G. Then

n∏

i=m

xi = xmxm+1 . . . xn−1xn.

Lemma 18 (Multiplication formulas). Let G be a group and let x, y, z, t be ele-

ments of G. Let moreover n be a non-negative integer. Then the following hold.

1. [x, yz] = [x, y]y[x, z]y−1.

2. [xt, y] = x[t, y]x−1[x, y].

3. [xn, y][x, y]−n =
∏n−1
s=1 [x, [xn−s, y]].

4. [x, y]−n[x, yn] =
∏n−1
r=1 [[yr, x], y].

Proof. Easy exercise.

Lemma 19 (Three-subgroups Lemma). Let G be a group and let X, Y , Z, and

N be subgroups of G such that N is normal. Assume moreover that both [X, [Y, Z]]

and [Y, [Z,X ]] are contained in N . Then [Z, [X,Y ]] is contained in N .

Proof. See for example [Isa08, Corollary 4.10].

Lemma 20. Let G be a group and let (Gi)i≥1 be the lower central series of G.

Then, for all h, k ∈ Z≥1, one has [Gh, Gk] ⊆ Gh+k.

Proof. We work by induction on h. If h = 1, we are done by definition of the

lower central series. Let us now assume that h > 1 and, for all k ∈ Z>0, that

[Gh−1, Gk] ⊆ Gh+k−1. It follows that [G, [Gh−1, Gk]] ⊆ [G,Gh+k−1] ⊆ Gh+k

and [Gh−1, [Gk, G]] ⊆ [Gh−1, Gk+1] ⊆ Gh+k. By Lemma 19, also [Gh, Gk] =

[[G,Gh−1], Gk] is contained in Gh+k.

Let H , K, and L be groups. Let moreover φ : H × K → L. The map φ is

bilinear if, for all h ∈ H , the map hφ : K → L, defined by x 7→ φ(h, x), is a

homomorphism and, for all k ∈ K, the map φk : H → L, defined by x 7→ φ(x, k),

is also a homomorphisms. If φ is bilinear, then the left kernel and the right kernel

of φ, are defined as

kerleft φ =
⋂

h∈H

ker hφ, and kerright φ =
⋂

k∈K

kerφk.

Assume H = K. Then φ is alternating if it is bilinear and, for all x ∈ H , one has

φ(x, x) = 1.

5
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Definition 21. Let H, K, and L be groups. Let moreover φ : H ×K → L. Then

φ is non-degenerate if it is bilinear and both maps H → Hom(K,L), defined by

h 7→ hφ, and K → Hom(H,L), defined by k 7→ φk, are injective.

Lemma 22. Let G be a group and let H,L be subgroups of G. Let moreover

φ : H × L → G be defined by φ(x, y) = [x, y]. Then φ is bilinear if and only if

[H,L] is contained in the centre of the subgroup generated by H and L.

Proof. This follows directly from the multiplication formulas from Lemma 18.

Lemma 23. Let G be a group. Then for every h, k ∈ Z≥1 the commutator map

induces a bilinear map Gh/Gh+1 ×Gk/Gk+1 → Gh+k/Gh+k+1.

Proof. The integers h and k being positive, it follows from Lemma 20 that both

[Gh, Gh+k] and [Gk, Gh+k] are subgroups of Gh+k+1. Then Gh+k/Gh+k+1 is con-

tained in the centre of 〈Gh, Gk〉/Gh+k+1 and, by Lemma 22, the commutator

map Gh ×Gk → Gh+k/Gh+k+1 is bilinear. Again by Lemma 20, both subgroups

[Gh, Gk+1] and [Gh+1, Gk] are contained in Gh+k+1. The commutator map induces

hence a bilinear map Gh/Gh+1 ×Gk/Gk+1 → Gh+k/Gh+k+1.

Lemma 24. Let G be a group. Then for every i ∈ Z≥1 the commutator map

induces a bilinear map G/G2 × Gi/Gi+1 → Gi+1/Gi+2 whose image generates

Gi+1/Gi+2.

Proof. The commutator map induces a bilinear map γ : G/G2 × Gi/Gi+1 →

Gi+1/Gi+2 by Lemma 23. The image of γ generates Gi+1/Gi+2 by definition of

the lower central series of a group.

In Lemma 25 and throughout the whole manuscript, we write ⊗ instead of ⊗Z (in

concordance with the List of Symbols).

Lemma 25. Let G be a group and let (Gi)i≥1 be its lower central series. Then for

every i ∈ Z≥1 the commutator map induces a surjective homomorphism of groups

G/G2 ⊗Gi/Gi+1 → Gi+1/Gi+2.

Proof. This follows from Lemma 24 and the universal property of tensor products.

Lemma 26. Let G be a group of class at most 2. Then the commutator map

induces a non-degenerate alternating map G/Z(G)×G/Z(G)→ G2 whose image

generates G2.

Proof. By Lemma 24, the commutator map induces a bilinear map γ : G/G2 ×

G/G2 → G2 whose image generates G2. Moreover, γ is alternating because each

element of G commutes with itself. The class of G being at most 2, the subgroup

G2 is central and Z(G)/G2 is equal to both the right and the left kernel of γ. Then

γ factors as a non-degenerate map G/Z(G)×G/Z(G)→ G2.

6
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Lemma 27. Let G be a group and assume that G/Z(G) is cyclic. Then G is

abelian.

Proof. Since the quotient G/Z(G) is cyclic, the commutator subgroup of G is

contained in Z(G). In particular, G has class at most 2, and therefore, thanks

to Lemma 26, the commutator map induces a non-degenerate alternating map

γ : G/Z(G)×G/Z(G)→ G2 whose image generates G2. The image of γ is trivial,

because G/Z(G) is cyclic, and so G = Z(G).

Lemma 28. Let G be a group and let N be a normal subgroup of G. Assume that

G/N is cyclic. Then G2 = [G,N ].

Proof. Since N is normal, the subgroup [G,N ] is normal in G. We denote by

G = G/[G,N ] and we use the bar notation for the subgroups of G. By definition

of G, the subgroup N is contained in Z(G), and so G/Z(G) is cyclic. It follows

from Lemma 27 that G is abelian, and therefore G2 = [G,N ].

1.3 About p-groups

Let p be a prime number. A finite group G is a p-group if the order of G is a

power of p. The trivial group is a p-group for each prime p. Moreover, as a direct

consequence of Lemma 16, every finite p-group is nilpotent.

Lemma 29. Let p be a prime number and let G be a finite p-group. Let N be a

normal subgroup of G such that N ∩ Z(G) = {1}. Then N = {1}.

Proof. This is Satz 7.2(a) from [Hup67, Ch. III].

Lemma 30. Let p be a prime number and let G be a finite p-group of class c.

Let moreover N be a subgroup of G. Assume that, for all i ∈ {1, . . . , c}, if H is a

quotient of G of class i, then Z(H) = Hi. Then N is normal if and only if there

exists i ∈ Z>0 such that Gi+1 ⊆ N ⊆ Gi.

Proof. (⇐) Assume that Gi+1 ⊆ N ⊆ Gi. Then the quotient N/Gi+1 is contained

in Z(G/Gi+1), and so N is normal modulo Gi+1. In particular, N is normal in

G. (⇒) If N = {1}, the result is clear, because G is nilpotent. We assume N is a

non-trivial normal subgroup of G and we let i ∈ Z>0 be the minimum index such

that Gi+1 ⊆ N and Gi+1 6= N . We claim that N is contained in Gi. First assume

that Gi is contained in N . By the minimality of i, the subgroup Gi is equal to

N , so we are done with this case. We assume now that Gi is not contained in N .

Then the group G = G/(N ∩ Gi) has class i and, by assumption, the center of G

is equal to Gi. On the other hand, N is a normal subgroup of G that has trivial

intersection with Gi. Lemma 29 yields N = {1}, and thus N ⊆ Gi.

7
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Lemma 31. Let p be a prime number and let G be a finite p-group. Assume that

G/G2 is cyclic. Then G is abelian.

Proof. This is a weaker version of Hilfssatz 7.1(b) from [Hup67, Ch. III.7].

Definition 32. Let G be a group. Then, for all n ∈ Z, define

Gn = 〈xn : x ∈ G〉 and µn(G) = 〈x ∈ G : xn = 1〉.

Let p be a prime number. The Frattini subgroup Φ(G) of a finite p-group G

is the unique normal subgroup of G minimal with the property that G/Φ(G) is

elementary abelian: in other words Φ(G) = Gp[G,G].

Lemma 33. Let p be a prima number and let G be a finite p-group. Let H be a

subgroup of G such that G = HΦ(G). Then H = G.

Proof. This is a weaker reformulation of Satz 3.2(a) from [Hup67, Ch. III].

Lemma 34. Let p be a prime number and let G be a finite p-group. Then the map

φ : Aut(G)→ Aut(G/Φ(G)) given by α 7→ (xΦ(G) 7→ α(x)Φ(G)) is a well-defined

homomorphism. Moreover, the kernel of φ is a p-group.

Proof. This is a reformulation of Satz 3.18 from [Hup67, Ch. III].

Lemma 35. Let p be a prime number and let H be a finite p-group. Let moreover

K and N be normal subgroups of H such that K ⊆ N and K 6= N . Then there

exists a normal subgroup M of H such that K ⊆M ⊆ N and |N : M | = p.

Proof. See [Isa08, Lemma 1.23].

Lemma 36. Let p be a prime number and let G be a finite p-group. Assume that

|G : G2| = p2. Then one of the following holds.

1. The group G is abelian.

2. The group G2 is equal to Φ(G).

Proof. Assume that G is not abelian. It follows from Lemma 31 that G/G2 has

exponent p and so Gp is contained in G2. In particular, we have that G2 = G2G
p =

Φ(G).

Definition 37. Let G be a group and let p be a prime number. The p-central

series of G is the series (Pi(G))i≥1 that is obtained by defining recursively, for all

i ∈ Z≥1, the subgroups P1(G) = G and Pi+1(G) = [G,Pi(G)]Pi(G)p.

We remark that, if p is a prime number and G is a finite p-group, then saying

that the lower central series of G coincides with its p-central series is equivalent to

saying that all quotients of consecutive elements of the lower central series have

exponent dividing p.

8
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1.4 Extraspecial p-groups

In Section 1.4 we explore the world of extraspecial p-groups, a class of groups

that have been widely studied and whose structure is very well-understood (see

for example [Hup67, Ch. III.13]). Given a group G, we recall that (Gi)i≥1 denotes

its lower central series (see Section 1.2).

Definition 38. Let p be a prime number and let G be a finite p-group. Then G

is extraspecial if G2 is central and Z(G) is cyclic of order p.

Lemma 39. Let p be a prime number and let G be a finite extraspecial p-group.

If G is non-abelian, then Z(G) and G2 are equal and they both have order p.

Proof. Straightforward.

Lemma 40. Let p be a prime number and let G be a finite p-group. Assume

that G has class at most 2 and that the exponent of G2 divides p. Then Φ(G) is

contained in Z(G).

Proof. By Lemma 26, the map G/Z(G) ×G/Z(G) → G2 that is induced by the

commutator map is bilinear. Let now g, x ∈ G. Then [gp, x] = [g, x]p = [g, xp]

and [g, x]p = 1, since the exponent of G2 divides p. It follows that G/Z(G) is

annihilated by p and thus Φ(G) ⊆ Z(G).

Lemma 41. Let p be a prime number and let G be an extraspecial p-group. Then

there exists n ∈ Z≥0 such that |G| = p2n+1.

Proof. This is a reformulation of Satz 13.7(c) from [Hup67, Ch. III].

Lemma 42. Let p be a prime number and let X,Y, Z be finite-dimensional vector

spaces over Fp such that dimFp Z = 1. Let moreover θ : X × Y → Z be a non-

degenerate map. Call G = G(Z, Y,X, θ) the set Z × Y × X together with the

multiplication defined by (z, y, x)(z′, y′, x′) = (z+z′ +θ(x, y′), y+y′, x+x′). Then

the following hold.

1. One has that G is an extraspecial p-group and, if p is odd, then G has expo-

nent p.

2. The centre of G is Z × {0} × {0}.

3. The commutator map G×G→ G is given by

((z, y, x), (z′, y′, x′)) 7→ [(z, y, x), (z′, y′, x′)] = (θ(x, y′)− θ(x′, y), 0, 0).

Proof. Straightforward.

9
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Lemma 43. Let p be a prime number and let G be an extraspecial p-group of

exponent p. Then there exist finite-dimensional vector spaces X,Y, Z over Fp,

with Z of dimension 1, and a non-degenerate map θ : X × Y → Z such that

G ∼= G(Z, Y,X, θ).

Proof. If G is abelian, we take X = Y = 0, Z = G, and θ to be the zero map. Since

every group of exponent 2 is abelian, we are done when p = 2. Assume now that p

is odd and that G has class 2. In this case Z(G) = G2 and V = G/Z(G) is a finite-

dimensional vector space over Fp, as a consequence of Lemma 40. Write Z = Z(G)

and let π : G→ V denote the canonical projection. By Lemma 26, the commutator

map on G induces a non-degenerate map φ : V ×V → Z. Let now X be a maximal

isotropic subspace of V . By Lemma 12 there exists an isotropic subspace Y of

V such that V = X ⊕ Y . It follows that the map φ|X×Y : X × Y → Z is non-

degenerate. Now, we have that 0 = φ(X×X) = [π−1(X), π−1(X)], and so π−1(X)

is abelian of exponent p. As a result, the sequence 0→ Z → π−1(X)→ X → 0 of

Fp-modules is split and there is a homomorphism s : X → π−1(X) such that π◦s =

idX . The same argument applies to Y and there exists therefore a homomorphism

t : Y → π−1(Y ) such that π ◦ t = idY . To conclude, we denote θ = φ|X×Y and

we define ψ : G(Z, Y,X, θ)→ G by (z, y, x) 7→ zt(y)s(x). It is not difficult at this

point to check that ψ is an isomorphism.

Proposition 44. Let p be a prime number. Let moreover X,Y, Z,A,B,C be finite-

dimensional vector spaces over Fp with dimZ = dimC = 1. Let θ : X × Y →

Z and ψ : A × B → C be non-degenerate maps. Let f, g, h respectively belong

to Hom(X,A),Hom(Y,B),Hom(Z,C) and assume that the following diagram is

commutative.

X × Y
θ

✲ Z

A×B

f

❄

g

❄
ψ

✲ C

h

❄

Then (h, g, f) : G(Z, Y,X, θ) → G(C,B,A, ψ) is a homomorphism of groups and,

if f, g, h are isomorphisms, then (h, g, f) is an isomorphism.

Proof. Straightforward.

Lemma 45. Let T be a group and let S be a central subgroup of T . Let moreover ∆

denote the subgroup of Aut(T ) consisting of all those elements δ such that δ(S) = S

and such that δ induces the identity on both S and T/S. Then the map

∆→ Hom(T/S, S)

10
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that is defined by

δ 7→ (xS 7→ δ(x)x−1)

is bijective.

Proof. Let φ : ∆ → Hom(T/S, S) denote the map δ 7→ (xS 7→ δ(x)x−1), which

is well-defined because S is central in T . The map φ is clearly injective and it is

surjective because, given each homomorphism f ∈ Hom(T, S) with S ⊆ ker(f),

the map x 7→ xf(x) belongs to ∆.

Lemma 46. Let p be a prime number and let G be an extraspecial p-group. Let ∆

denote the subgroup of Aut(G) consisting of those automorphisms of G that induce

the identity on G/G2. Then ∆ = Inn(G).

Proof. If G is abelian, then Inn(G) is trivial and we are done. Assume now that G

is non-abelian. Then, by Lemma 39, the subgroups Z(G) andG2 are equal and they

both have order p. It follows from Lemma 26 that the commutator map induces

a non-degenerate map G/G2 ×G/G2 → G2 and so the homomorphism G/G2 →

Hom(G/G2, G2), defined by t 7→ (x 7→ [t, x]), is injective. Thanks to Lemma 40,

the quotient G/G2 is elementary abelian and thus G/G2 → Hom(G/G2, G2) is an

isomorphism. Now, by Lemma 60, each element δ of ∆ restricts to the identity on

G2 and so we derive from Lemma 45 that, for each element δ ∈ ∆, there exists

t ∈ G such that, for all x ∈ G, one has δ(x) = [t, x]x = txt−1. In particular, ∆

is contained in Inn(G). The inclusion Inn(G) ⊆ ∆ is clear and so the proof is

complete.

1.5 Regular p-groups

Most of the results from this section are taken from [Hup67], an excellent reference

for getting acquainted with regular p-groups. We recall here briefly the Hall-

Petrescu formula and we refer to Appendix A from [DdSMS91] for more detail. We

also refer to Definition 17 for a clear interpretation of the Hall-Petrescu formula.

Lemma 47 (Hall-Petrescu formula). Let G be a group and let (Gi)i≥1 denote

its lower central series. Let moreover x and y be elements of G. Then, for all

n ∈ Z>0, there exists (ck)nk=2 ∈
∏n
k=2 Gk such that

(xy)n = xnyn
n∏

k=2

c
(n

k)
k .

Proof. See [DdSMS91, Appendix A].

Corollary 48. Let p be a prime number and let G be a group. Denote by (Gi)i≥1

the lower central series of G. Then, for all x, y ∈ G, one has (xy)p ≡ xpyp mod

Gp2Gp.

11
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Proof. This follows directly from Lemma 47.

Definition 49. Let p be a prime number. A finite p-group G is regular if, for all

x, y ∈ G, there exists γ ∈ [〈x, y〉, 〈x, y〉]p such that (xy)p = xpypγ.

Lemma 50. Let p be a prime number and let G be a finite p-group of nilpotency

class at most p− 1. Then G is regular.

Proof. The class of each subgroup of G is at most that of G. The result now

follows directly from Corollary 48.

Let p be a prime number and let G be a p-group. We will denote by ρ the map

G → G that is defined by x 7→ xp. We remark that the map ρ is in general not

a homomorphism and that Gp
k

= 〈ρk(G)〉, for any integer k. We stick to the

notation from the List of Symbols.

Lemma 51. Let p be a prime number and let G be a finite p-group. Assume that

G is regular and that G2 has exponent dividing p. Then ρ is an endomorphism of

G.

Proof. This follows directly from the definition of regularity.

Lemma 52. Let p be a prime number and let G be a finite p-group. Assume that

G is regular. Then for all k ∈ Z≥0, the following hold.

1. One has Gp
k

= ρk(G).

2. One has µpk(G) = {x ∈ G : ρk(x) = 1}.

3. One has |µpk(G)| = |G : Gp
k

|.

Proof. The lemma is a combination of Satz 10.5 and Satz 10.7(a) from [Hup67],

Chapter 3.

We remark that p-groups satisfying conditions 1–3 from Lemma 52 are often re-

ferred to as power abelian.

Lemma 53. Let p be a prime number and let G be a finite p-group. If |G : Gp| <

pp, then G is regular.

Proof. The lemma is a simplified version of Satz 10.13 from [Hup67], Chapter

3.

Lemma 54. Let p be a prime number and let G be a finite regular p-group.

Let M,N be normal subgroups of G and let r, s be non-negative integers. Then

[ρr(M), ρs(N)] = ρr+s([M,N ]).

Proof. See [Hup67, Satz 10.8(a) from Ch. 3].

12
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Lemma 55. Assume G is a finite 3-group that can be generated by 2 elements. If

G is regular, then G2 is cyclic.

Proof. See Satz 10.3(b) from [Hup67], Chapter 3.
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Chapter 2

Coprime actions

The aim of this chapter is to create tools for later use, giving them however their

own chance to shine. In Section 2.1, we define actions through characters and

prove a fundamental result, Theorem 68, in the context of intense automorphisms

of groups. In Section 2.2, we prove some elementary, yet quite entertaining, re-

sults concerning involutions of groups of odd order. The results from Section 2.2

will spark throughout the thesis, starting with Chapter 5. The last section of this

chapter, Section 2.3, is dedicated to the theory of jumps. In some sense, through

jumps (and their width), we are able to recover structural information about sub-

groups of a given finite p-group. This theory will be heavily used when dealing

with p-obelisks (from Chapter 10 onwards).

2.1 Actions through characters

Until the end of Section 2.1, let p be a prime number. Every finite abelian p-group

G is naturally a Zp-module, with scalar multiplication Zp → End(G) defined by

m 7→ [x 7→ (m mod |G|)x] .

It follows directly from this definition that every homomorphism between abelian

p-groups is Zp-linear, a fact that we will make hidden use of in several proofs from

Chapter 2. To conclude, we remark that we have here adopted the additive nota-

tion for the abelian group G, but this will sadly not be the case through the whole

thesis. We will indeed often deal, instead of abelian groups, with abelian quotients

of non-abelian groups (for which the multiplicative notation will be used). The

first time we adopt the multiplicative notation in this context is in the proof of

Lemma 77.

Definition 56. Let A and G be groups. An action of A on G is a homomorphism

A→ Aut(G).
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Definition 57. Let A be a group acting on a set X. A subset Y of X is A-stable

(or stable under the action of A) if the action of A on X restricts to an action of

A on Y .

Definition 58. Let A be a group and let ZA denote its group ring over Z. An

A-module is a module over ZA.

With respect to the last definition, any finite abelian p-group is naturally a Z∗
p-

module. We stress that, if A is a group, then each A-module is, in particular, an

abelian group.

Definition 59. Let A be a group acting on two sets T and Z. A map φ : T → Z

is said to respect the action of A if, for all t ∈ T , a ∈ A, one has φ(at) = aφ(t).

Definition 60. Let A be a group and let G be a finite p-group that is also an

A-module. Let χ : A→ Z∗
p be a homomorphism. Then A acts on G through χ if,

for all a ∈ A and x ∈ G, one has ax = χ(a)x.

We want to emphasize the fact that Hom(A,Z∗
p) is a group under multiplication

(induced by that in Z∗
p). We will refer to the elements of Hom(A,Z∗

p) as characters

of A.

Lemma 61. Let X, Y , and Z be finite abelian p-groups. Let A be a group acting

on X, Y , and Z and let φ : X × Y → Z be a bilinear map respecting the action of

A. Let moreover, χ and ψ be group homomorphisms A→ Z∗
p such that A acts on

X and Y respectively through χ and ψ. Then A acts on 〈φ(X × Y )〉 through χψ.

Proof. Let (x, y) ∈ X × Y and a ∈ A. Then one has

aφ(x, y) = φ(ax, ay) = φ(χ(a)x, ψ(a)y) = χ(a)ψ(a)φ(x, y) = (χψ)(a)φ(x, y).

Since χ and ψ are homomorphisms, the action of A on φ(X×Y ) is through χψ.

Lemma 62. Let p be a prime number and let G be a finite p-group. Let moreover

A be a finite group acting on G and let χ : A→ Z∗
p be a homomorphism. Denote

by (Gi)i≥1 the lower central series of G and assume that the induced action of A

on G/G2 is through χ. Then, for all i ∈ Z≥1, the induced action of A on Gi/Gi+1

is through χi.

The elements of the lower central series of a group are characteristic subgroups and,

for each i ∈ Z≥1, the quotient Gi/Gi+1 is abelian. Lemma 62 is thus well-stated.

Proof. We will work by induction on i. If i = 1, we are done by hypothesis.

Suppose now that i > 1 and that the result holds for all indices smaller than i.

By Lemma 24 the commutator map induces a bilinear map G/G2 × Gi−1/Gi →

Gi/Gi+1 whose image generates Gi/Gi+1. By the induction hypothesis, the in-

duced action of A on Gi−1/Gi is through χi−1 and, by Lemma 61, the group A

acts on Gi/Gi+1 through χχi−1 = χi.
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Lemma 63. Let A be a group and let G and H be finite p-groups that are also

A-modules. Let moreover φ : G → H and χ : A → Z∗
p be group homomorphisms.

Assume that the action of A on G is through χ. If φ is surjective and φ respects

the action of A, then A acts on H through χ.

Proof. Let a ∈ A. If φ is surjective, then, for each h ∈ H there exists g ∈ G such

that φ(g) = h. If, moreover, the action of A is respected by φ, then ah = aφ(g) =

φ(ag) = φ(χ(a)g) = χ(a)φ(g) = χ(a)h.

Lemma 64. The short exact sequence of abelian groups

1 −→ 1 + pZp −→ Z∗
p −→ F∗

p −→ 1

has a unique section ω : F∗
p → Z∗

p.

The last is a classical result, which can be found for example in [Coh07, §4.3]. The

homomorphism ω : F∗
p → Z∗

p is called the Teichmüller character at p and its image

is contained in the torsion subgroup of Z∗
p. (For a reminder of the notation, see the

List of Symbols.) Moreover, if p is odd, then ω(F∗
p) is in fact equal to the torsion

subgroup of Z∗
p; for more information see for example Section 4.3 from [Coh07].

We remark that, if V is a vector space over Fp, then, for each v ∈ V and for each

a ∈ F∗
p, one has av = ω(a)v. It follows that the natural action of F∗

p on a vector

space over Fp is through the Teichmüller character.

Lemma 65. Let A be a finite group and let λ, µ : A → Z∗
p be distinct group

homomorphisms. Assume that p is odd. Then there exists a ∈ A such that the

element λ(a) − µ(a) belongs to Z∗
p.

Proof. Let π : Zp → Fp denote the canonical projection and let ω : F∗
p → Z∗

p be the

Teichmüller character. The group A being finite, the images of λ and µ live in the

torsion of Z∗
p, which is equal to ω(F∗

p). Let now a ∈ A be such that λ(a) 6= µ(a).

As a consequence of Lemma 64, each element of ω(F∗
p) is uniquely determined by

its image modulo p and, the characters being distinct, π(χ(a) − ψ(a)) ∈ F∗
p. It

follows that χ(a)− ψ(a) is invertible in Zp.

Lemma 66. Let A be a finite group and let G be a finite p-group that is also an

A-module. Let moreover λ, µ : A→ Z∗
p be distinct group homomorphisms. Assume

that p is odd and that A acts on G through both λ and µ. Then G = {0}.

Proof. Let x ∈ G and let a ∈ A be as in Lemma 65. Then λ(a)x = ax = µ(a)x

and (λ(a)− µ(a))x = 0. The element λ(a)−µ(a) being invertible in Zp, it follows

that x = 0. As the choice of x was arbitrary, we get G = {0}.

Definition 67. Let G be a group and let N be a normal subgroup of G. A subgroup

H of G is a complement of N in G if N ∩H = {1} and NH = G.
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Theorem 68. Assume that p is odd. Let A be a finite abelian group and let

0 −→ N
ι
−→ G

π
−→ G/N −→ 0

be a short exact sequence of A-modules. Let moreover λ, µ : A→ Z∗
p be two distinct

group homomorphisms and assume that the following hold.

1. The group G is a finite p-group.

2. The group A acts on N through λ.

3. The group A acts on G/N through µ.

Then ι(N) has a unique A-stable complement in G.

We will devote the remaining part of Section 2.1 to the proof of Theorem 68. For

this purpose, let R = ZpA be the group algebra of A over Zp and let σλ and σµ
be the homomorphisms of Zp-algebras R → Zp that are respectively induced, via

linear extension, by λ and µ. We define Iλ = kerσλ and Iµ = kerσµ.

Lemma 69. One has R = Iλ + Iµ.

Proof. We will construct an invertible element in Iλ + Iµ. Let a ∈ A be as in

Lemma 65. The element λ(a)−µ(a) = −(a−λ(a))+(a−µ(a)) belongs to Iλ+Iµ,

because a− λ(a) ∈ Iλ and a− µ(a) ∈ Iµ, and λ(a)− µ(a) is invertible because of

the choice of a.

Lemma 70. The subgroup ι(N) has an A-stable complement.

Proof. Let (e, f) ∈ Iλ×Iµ be such that e+f = 1 in R; the pair (e, f) exists thanks

to Lemma 69. As a direct consequence of the definition of Iµ, the group G/N is

annihilated by f and f(G) ⊆ ι(N). From the fact that f ≡ 1 mod Iλ, it follows

that f(G) = ι(N). With a similar argument, one shows that e(G) is isomorphic

to e(G/N) = G/N . We now have that

G = (e+ f)G = e(G) + f(G) = e(G) + ι(N)

and, the cardinalities of e(G) and ι(N) being respectively |G : N | and |N |, it

follows that G = e(G) ⊕ ι(N). The subgroup e(G) is thus a complement of ι(N)

in G. Furthermore, the ring R being commutative, for all a ∈ A, one has that

ae(G) = ea(G) is contained in e(G) and therefore e(G) is A-stable.

Lemma 71. There exists a unique A-stable complement of ι(N).

Proof. The subgroup ι(N) has an A-stable complement in G, by Lemma 70; as-

sume it has two. Then there exist maps f, f ′ : G→ N respecting the action of A

such that f ◦ ι = f ′ ◦ ι = idN . We fix such f, f ′ and write r = f − f ′; we will show
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that r = 0. Since f ◦ ι = f ′ ◦ ι, the subgroup ι(N) is contained in the kernel of r. It

follows that r ∈ Hom(G/ι(N), N), and so, thanks to Lemma 63, the group A acts

on the image of r through µ. On the other hand, the image of r is contained in N

and hence the action of A on r(G) is also through λ. It follows from Lemma 66

that r = 0, as claimed. In particular, f = f ′, and so ι(N) has a unique A-stable

complement in G.

In view of Lemma 71, Theorem 68 is proven.

2.2 Involutions

Let G be a finite group of odd order and let A = 〈α〉 be a multiplicative group of

order 2. It follows that the orders of G and A are coprime. Assume that A acts

on G and define

G+ = {g ∈ G : α(g) = g} and G− = {g ∈ G : α(g) = g−1} .

We will keep the notation we just introduced until the end of Section 2.2. We

remind the reader about the List of Symbols, at the beginning of this thesis.

Lemma 72. One has G+ ∩G− = {1}.

Proof. Let a ∈ G+ ∩G−. Then we have a = α(a) = a−1, so a2 = 1. The order of

G being odd, it follows that a = 1.

Proposition 73. The set G+ is a group. Moreover, G+ acts by conjugation on

the set G−.

Proof. The subset G+ is a group, because α is a homomorphism. Let now g be in

G+ and a in G−. Then we have that

α(gag−1) = α(g)α(a)α(g)−1 = ga−1g−1 = (gag−1)−1,

and so gag−1 belongs to G−.

Lemma 74. The map G/G+ → G− that is defined by xG+ 7→ xα(x)−1 is a

bijection. Moreover, |G| = |G+||G−|.

Proof. Denote by φ the map G/G+ → G− that is defined by xG+ 7→ xα(x)−1. To

show that φ is injective is a straightforward exercise. To prove that it is surjective,

we take b ∈ G−. Since the order of G is odd, there exists a unique a in G such

that a2 = b. The element a belongs to 〈b〉, ando so α(a) = a−1. As a consequence,

we have that aα(a)−1 = a2 = b. We have proven that φ is a bijection, from which

it follows that |G|/|G+| = |G−|.
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Lemma 75. The map G+ ×G− → G, defined by (x, y) 7→ xy, is a bijection.

Proof. Let (x, y) and (z, t) be elements of G+ × G− satisfying xy = zt. Then

ty−1 = z−1x. By Lemma 73, the set G+ is a subgroup of G, so z−1x ∈ G+. As a

consequence, we get that ty−1 = α(ty−1) = t−1y. It follows that t2 = y2 so, the

order of G being odd, the elements t and y coincide. Consequently, (x, y) = (z, t)

and the map is injective. Now by Lemma 74, the cardinalities of G+ ×G− and G

are the same and the given multiplication is also surjective.

Corollary 76. Assume G is abelian. Then G = G+ ⊕G−.

Proof. The sets G+ and G− are both subgroups of G, because G is abelian, and

G+ ∩G− = {1}, by Lemma 72. It follows from Lemma 75 that G = G+⊕G−.

Lemma 77. Let N be a normal A-stable subgroup of G such that the restriction

of α to N equals the map x 7→ x−1. Assume moreover that the automorphism of

G/N that is induced by α is equal to the inversion map g 7→ g−1. Then G = G−

and G is abelian.

Proof. From the assumptions it follows that, for each x ∈ G, the element α(x)x

belongs to N . Since the order of G is odd, if x ∈ G+, then x is actually an

element of N . It follows that G+ is contained in N , but N is contained in G−

by assumption. As a consequence of Lemma 72, the subgroup G+ is trivial so, as

a consequence of Lemma 75, the group G is equal to G−. Let now x and y be

elements of G. Then we have that

y−1x−1 = (xy)−1 = α(xy) = α(x)α(y) = x−1y−1,

and therefore [x, y] = 1. The choice of x and y being arbitrary, the group G is

abelian.

Lemma 78. Let N be a normal A-stable subgroup of G. Assume that the action

of A on N and the induced action of A on G/N are both trivial. Then G = G+.

Proof. Let x ∈ G. Then α(x)x−1 is an element of N . If x belongs to G−, then

x−2 belongs to N so, the order of G being odd, x itself is an element of N . It

follows that G− is a subset of N . The group N is however contained in G+ and,

as a consequence of Lemma 72, one gets G− = {1}. It follows from Lemma 75

that G = G+.

Lemma 79. Let 1→ N
f
−→ G

g
−→ Γ→ 1 is a short exact sequence of A-groups.

Denote by f ′ and g′ the restrictions of f and g respectively to N+ and G+. Then

1→ N+ f ′

−→ G+ g′

−→ Γ+ → 1 is a short exact sequence of A-groups.
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Proof. Since f and g are homomorphisms respecting the action of A, it suffices

to prove the surjectivity of g′. Let γ ∈ Γ+. Then there exists x ∈ G such that

g(x) = γ and, by Lemma 75, there exists (a, b) ∈ G+ × G− such that x = ab.

Now, (g(a), g(b)) ∈ Γ+ × Γ−, because g respects the action of A, and γ = g(x) =

g(ab) = g(a)g(b). It follows that g(b) = g(a)−1γ, and so g(b) ∈ Γ+ ∩ Γ−. Thanks

to Lemma 72, we get that g(b) = 1, so γ is equal to g(a).

Lemma 80. Let p be an odd prime number and assume that G is a finite p-group.

Let (Gi)i≥1 denote the lower central series of G and assume that the automorphism

of G/G2 that is induced by α equals the inversion map x 7→ x−1. Let H be an

A-stable subgroup of G and let O and E be the collections of respectively all odd

and all even positive integers. Then the following hold.

1. Let j ∈ Z≥1. Then H+∩Gj 6= H+∩Gj+1 if and only if H ∩Gj 6= H ∩Gj+1

and j ∈ E.

2. One has |H+| =
∏
j∈E |H ∩Gj : H ∩Gj+1|.

3. One has |H−| =
∏
j∈O |H ∩Gj : H ∩Gj+1|.

Proof. For all j ∈ Z≥1, we define Vj = (H ∩Gj)/(H ∩Gj+1) and we consider the

short exact sequence

1→ H ∩Gj+1 → H ∩Gj → Vj → 1

of A-groups. We first prove (1) and (2) together. If j ∈ Z≥1, we note that

(H ∩Gj)+ = H+ ∩Gj , so Lemma 79 yields

|H+ ∩Gj : H+ ∩Gj+1| = |V
+
j |.

From Lemma 62 it follows that A acts on Gj/Gj+1 by scalar multiplication by

(−1)j, and so, whenever j is an odd positive integer, Lemma 72 yields that the

cardinality of (Gj/Gj+1)+ is equal to 1. Since, for all j ∈ Z≥1, the groups Vj and

(H ∩Gj)Gj+1/Gj+1 are isomorphic, it follows that, for each odd j, the cardinality

of V +
j is equal to 1. Moreover, if j is even, then Vj is equal to V +

j . The cardinality

of H+ being equal to
∏
j≥1 |H

+ ∩Gj : H+ ∩Gj+1|, we get that

|H+| =
∏

j≥1

|V +
j | =

∏

j∈E

|V +
j | =

∏

j∈E

|Vj |.

This proves (1) and (2). We now prove (3). By Lemma 74, the cardinality of |H−|

is equal to |H |/|H+|. Since |H | =
∏
j≥1 |Vj |, it follows from (2) that

|H−| =

∏
j≥1 |Vj |∏
j∈E |Vj |

=
∏

j∈O

|Vj |.
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Lemma 81. Let H be an A-stable subgroup of G and let g be an element of G.

Then the following are equivalent.

1. The subgroup gHg−1 is A-stable.

2. The element g belongs to G+ NG(H).

Proof. Let I = NG(H); then I is A-stable, because H is. We first prove that (1)

implies (2). Assume that the subgroup gHg−1 is A-stable, so α(gHg−1) = gHg−1.

In particular, the element g−1α(g) belongs to I, and thus α(gI) = α(g)I = gI.

Since the cardinality of I is odd and A has order 2, there is an element x in I

such that α(gx) = gx. For such an element x, we then have that gx ∈ G+, so

g = gx · x−1 ∈ G+I. Assume now (2) is satisfied; we prove (1). Since g belongs

to G+ NG(H), there exists (γ, n) ∈ G+ ×NG(H) such that g = γn. For such pair

(γ, n), we have that gHg−1 = γHγ−1, and therefore α(gHg−1) = gHg−1. This

proves (1).

2.3 Jumps and width

Let p be a prime number and let G be a finite p-group. Denote by (Gi)i≥1 the

lower central series of G (see Section 1.2). If x is a non-trivial element of G, then

there exists a positive integer d such that x ∈ Gd \Gd+1. The number d is called

the depth of x (in G) and it is denoted by dptG(x). Let now H be a subgroup of

G and let j be a positive integer. The j-th width of H in G is

wtGH(j) = logp |H ∩Gj : H ∩Gj+1|.

We observe that, if πj : Gj → Gj/Gj+1 denotes the canonical projection, then

πj(H ∩Gi) has cardinality pwtG
H(j). An index j is a jump of H in G if wtGH(j) 6= 0

and, whenever it will be clear that j is a jump of H in G, we will refer to wtGH(j)

as the width of j in G. If G = H , we denote the j-th width of G by wtG(j)

instead of wtGG(j) and, in several results, we will lighten the notation even further

by writing wj = wtG(j). The width of G is defined as wt(G) = maxi≥1 wtG(i); for

a generalization to general pro-p-groups, see [KLGP97].

Lemma 82. Let p be a prime number and let j be a positive integer. Let moreover

G be a finite p-group and let H be a subgroup of G. Then j is a jump of H in G

if and only if H contains an element of depth j in G.

Proof. Straightforward.

Lemma 83. Let p be a prime number. Let moreover G be a finite p-group and let

H be a subgroup of G. Then, for all α ∈ Aut(G), the groups H and α(H) have

the same jumps in G.
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Proof. Let α be an automorpshism of G and let j be a positive integer. By

Lemma 82, the integer j is a jump of H if and only if there exists x ∈ H such that

dptG(x) = j. As the elements of the lower central series are characteristic in G,

we have that dptG(α(x)) = dptG(x), and thus we are done.

Lemma 84. Let p be a prime number and let G be a finite p-group. Let moreover

H be a subgroup of G and call J the collection of all jumps of H in G. Then

|H | =
∏
j∈J pwtG

H(j).

Proof. It follows directly from the definitions of jumps.

In the next proposition, we use the notation introduced in Section 2.2.

Lemma 85. Let p be an odd prime number and let G be a finite p-group. Let

A = 〈α〉 be a multiplicative group of order 2 acting on G. Let χ : A → {±1}

be an isomorphism. Let (Gi)i≥1 denote the lower central series of G and assume

that the automorphism of G/G2 that is induced by α equals the inversion map

x 7→ x−1. Let H be an A-stable subgroup of G and let O and E be the collections

of respectively all odd and all even jumps of H in G. Assume that the induced

action of A on G/G2 is through χ. Then the following hold.

1. One has |H+| =
∏
j∈E p

wtG
H (j) and E is the set of jumps of H+ in G.

2. One has |H−| =
∏
j∈O pwtG

H(j).

Proof. Apply the new dictionary to Lemma 80.
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Chapter 3

Intense automorphisms

Let G be a group. An automorphism α of G is intense if for every subgroup H of G

there exists g ∈ G such that α(H) = gHg−1. We denote by Int(G) the collection

of all intense automorphisms of G, which is easily seen to be a normal subgroup

of Aut(G).

In this chapter we will prove some basic properties of intense automorphisms and

formulate the main research question of this thesis. Among others, we will prove

the following result.

Theorem 86. Let p be a prime number and let G be a finite p-group. Then

Int(G) is isomorphic to S ⋊C, where S is a Sylow p-subgroup of Int(G) and C is

a subgroup of F∗
p. Moreover, if G is non-trivial abelian, then C = F∗

p.

3.1 Basic properties

Section 3.1 is devoted to basic properties of intense automorphisms. Most of the

notation used appears in the List of Symbols, at the beginning of this thesis.

Proposition 87. Let G be a group. Then Inn(G) ⊆ Int(G) ⊆ Aut(G) and Int(G)

is normal in Aut(G).

Proof. Straightforward application of the definitions.

We recall that, if A is a group acting on a set X , a subset Y of X is A-stable if

the action of A on X restricts to an action of A on Y (see Section 2.1).

Lemma 88. Let G be a group and let N be a normal subgroup of G. Then the

following hold.

1. The subgroup N is Int(G)-stable.
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2. The natural projection G → G/N induces a well-defined homomorphism

Int(G)→ Int(G/N), by means of α 7→ (xN 7→ α(x)N).

3. Assume N is contained in Z(G). Then the image of the homomorphism

Int(G)→ Aut(N), sending α to α|N , is contained in Int(N).

Proof. (1) Intense automorphisms send every subgroup to a conjugate and there-

fore each normal subgroup to itself. (2) The map is well-defined as a consequence

of (1) and it is a homomorphism by construction. (3) This follows from the fact

that conjugation in G restricts to the trivial map on each subgroup of Z(G).

In the following proposition, let ω : F∗
p → Z∗

p be the Teichmüller character at p as

defined in Section 2.1.

Lemma 89. Let p be a prime number and let V be a vector space over Fp. Then

there exists a unique injective homomorphism λ : Int(V ) → Z∗
p such that the

following hold.

1. The group Int(V ) acts on V through λ.

2. If V 6= 0, then λ(Int(V )) = ω(F∗
p).

Proof. If V = 0, define λ : idV 7→ 1. Assume V 6= 0. Since V is abelian, every

one-dimensional subspace of V is stable under the action of Int(V ). It follows

that, for all v ∈ V \ {0} and α ∈ Int(V ), there exists (a unique) µ(α, v) ∈ F∗
p such

that α(v) = µ(α, v)v. We will show that µ(α, v) is independent of the choice of

v. To this end, let α ∈ Int(V ) and let v and w be elements of V \ {0}. If v and

w are linearly dependent, then µ(α, v) = µ(α,w). We assume that v and w are

linearly independent. From the linearity of α, it follows that µ(α, v+w)(v+w) =

µ(α, v)v + µ(α,w)w. The vectors v and w are linearly independent, so µ(α, v) =

µ(α, v+w) = µ(α,w), as required. We fix v ∈ V \ {0} and define µ : Int(V )→ F∗
p

by α 7→ µ(α, v). The map µ is well-defined and it is an injective homomorphism

of groups by construction. Moreover, µ is surjective, because scalar multiplication

by any element of F∗
p is an intense automorphism of V . We define λ = ω ◦µ. Then

Int(V ) acts on V through λ and the image of λ is equal to ω(F∗
p) by construction.

The uniqueness of λ follows from Lemma 66.

We recall that, an action of a group C on a group B is a homomorphism C →

Aut(B) (see Section 2.1).

Definition 90. Let C be a finite group acting on a finite group B. Assume

moreover that both B and C act on a set X. The actions are said to be compatible

if for all x ∈ X, b ∈ B, and c ∈ C, one has c(bx) = (cb)(cx).
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Lemma 91 (Glauberman’s lemma). Let G and A be finite groups of coprime

orders. Assume that at least one of A and G is solvable. Assume A acts on G and

that each of them acts on some set X, where the action of G is transitive. Finally,

assume the three actions are compatible. Then there exists an A-stable element in

X.

Proof. See [Isa08, Lemma 3.24].

Lemma 92 (An equivalent condition). Let G be a finite group and let α ∈ Aut(G)

be of order coprime to the order of G. Let H and N be subgroups of G and assume

that α(N) = N . Then the following are equivalent.

1. There exists a ∈ N such that α(H) = aHa−1.

2. There exists b ∈ N such that bHb−1 is 〈α〉-stable.

Proof. (2)⇒ (1) By assumption there exists an element b ∈ N such that bHb−1 =

α(bHb−1) = α(b)α(H)α(b)−1. Define a = α(b)−1b. (1) ⇒ (2) Write X =

{gHg−1 : g ∈ N}. Then N acts on X by conjugation and 〈α〉 acts on X by

assumption. The actions are compatible and the action of N is transitive. By

Lemma 91, there exists an element of X that is fixed by α.

Lemma 93. Let G be a finite group and let α be an automorphism of G of order

coprime to |G|. Then α ∈ Int(G) if and only if each subgroup of G has an 〈α〉-

stable conjugate.

Proof. Take N = G in Lemma 92.

Lemma 94. Let G be a finite group and let α ∈ Int(G) be of order coprime to the

order of G. Let X be a collection of subgroups of G on which G acts by conjugation

and let X+ = {H ∈ X : α(H) = H}. Then

|X | ≤
∑

H∈X+

|G : NG(H)|.

Equality holds if and only if the elements of X+ are pairwise non-conjugate in G.

Proof. Let C be the collection of orbits of X under G. By Lemma 93, there exists

a subset R of X+ whose elements are representatives for the elements of C. It

follows that

|X | =
∑

C∈C

|C| =
∑

H∈R

|G : NG(H)| ≤
∑

H∈X+

|G : NG(H)|.

Equality holds if and only if R = X+.
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3.2 The main question

Let p be a prime number and let G be a finite p-group. We recall that Φ(G) =

[G,G]Gp and so G/Φ(G) is a vector space over Fp (see Section 1.3). In Section

3.2 we build the foundation for our theory and we give the dictionary that we will

use throughout the whole thesis. We will also prove the following result.

Proposition 95. Let G be a finite 2-group. Then Int(G) is a finite 2-group.

Definition 96. Let p be a prime number and let G be a finite p-group. The

intense character of G is the homomorphism χG : Int(G)→ Z∗
p that is gotten from

composition of the following.

◦ The homomorphism Int(G)→ Int(G/Φ(G)) from Proposition 88(2).

◦ The homomorphism λ : Int(G/Φ(G))→ Z∗
p from Proposition 89.

Lemma 97. Let p be a prime number and let G be a finite p-group. Let moreover

χG : Int(G) → Z∗
p be the intense character of G. Then the group kerχG is the

unique Sylow p-subgroup of Int(G).

Proof. If G is the trivial group, then Int(G) = kerχG = {1} and {1} is a Sylow

p-subgroup of Int(G). Assume now G is non-trivial and set V = G/Φ(G). By

Lemma 89, the map λ : V → Int(V ) is injective and so, with the notation of

Lemma 34, the subgroup kerχG is equal to Int(G) ∩ kerφ. As a consequence of

Lemma 34, the kernel of χG is a normal Sylow p-subgroup of Int(G). Since Int(G)

acts on the collection of its Sylow p-subgroup in a transitive manner, Int(G) has

a unique Sylow p-subgroup, namely kerχG.

Definition 98. Let p be a prime number and let G be a finite p-group. Let

χG : Int(G) → Z∗
p be the intense character of G. The intensity of G is the value

| Int(G) : kerχG| and it is denoted by int(G).

We remark that the intensity of a p-group G is equal to the size of the image of

the intense character χG inside ω(F∗
p). In particular, if G is a 2-group, then its

intensity is always 1.

Lemma 99. Let p be a prime number and let G be a finite p-group. Let moreover

χG : Int(G) → Z∗
p be the intense character of G. Then int(G) divides p − 1 and

kerχG has a cyclic complement in Int(G) of order int(G).

Proof. The image of χG is a subgroup of ω(F∗
p), which has order p− 1. It follows

that int(G) divides p− 1. Now, by Proposition 97, the kernel of χG is the unique

Sylow p-subgroup of G and it is therefore normal. The group kerχG has a com-

plement C in Int(G), by the Schur-Zassenhaus theorem, and C is cyclic because

it is isomorphic to a subgroup of F∗
p.
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Proposition 95 now follows from Lemmas 97 and 99.

The major goal of this thesis if classifying all pairs (p,G) where p is a prime number

and G is a finite p-group with int(G) > 1. Starting from the next chapter, we will

therefore often be working with odd primes. Explicit assumptions will be made at

the beginning of each section.

3.3 The abelian case

The main result of Section 3.3 is the following.

Proposition 100. Let p be a prime number and let G be a finite non-trivial

abelian p-group. Then int(G) = p− 1.

Lemma 101. Let p be a prime number and let G be a finite p-group. Let N be a

normal subgroup of G. If N 6= G, then int(G) divides int(G/N).

Proof. Assume N 6= G; then G is non-trivial. Let φ : Int(G) → Int(G/N) be as

in Lemma 88(2). The subgroup NΦ(G) is different from G, thanks to Lemma 33,

and therefore Φ(G)N/N 6= G/N . The groups (G/N)/Φ(G/N) and G/(Φ(G)N)

being isomorphic (and non-trivial!), it follows that χG = χG/N ◦ φ. The image of

χG is a subgroup of the image of χG/N and thus int(G) divides int(G/N).

We recall that a group A acts through a character on a finite abelian p-group G if

there exists a homomorphism χ : A→ Z∗
p such that, for all a ∈ A and x ∈ G, one

has ax = χ(a)x. For more details, see Section 2.1.

Lemma 102. Let p be a prime number and let G be a finite abelian p-group. Let

α be intense of order dividing int(G) and write χ = χG|〈α〉. Then 〈α〉 acts on G

through χ and, if G is non-trivial, then int(G) = p− 1.

Proof. Write A = 〈α〉. If G is the trivial group, then the only automorphism of G

is the identity, which is intense. Assume now G is non-trivial. The group ω(F∗
p)

acts on G (as described at the beginning of Section 2.1) via intense automorphisms

and it induces scalar multiplication by elements of F∗
p on G/Φ(G). The image of

the intense character of G is thus ω(F∗
p), and so, int(G) = p−1. Let now Ω denote

the image of ω(F∗
p)→ Int(G) and write Ω = 〈β〉. Then Int(G) = kerχG ⋊ Ω, and,

as a consequence of Schur-Zassenhaus, there exist m ∈ Z≥0 and γ ∈ kerχG such

that α = γβmγ−1. We get

χ(α) = χG(α) = χG(γβmγ−1) = χG(βm).

Since each homomorphism of abelian groups is Zp-linear and Ω acts on G through

χG|Ω, the group A acts on G through χ.
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We remark that Proposition 100 is a special case of Lemma 102. Moreover, The-

orem 86 is proven by combining Lemmas 97, 99, and Proposition 100.

Corollary 103. Let p be a prime number and let G be a finite p-group. Let more-

over α be an intense automorphism of G of order dividing int(G). Then 〈α〉 acts

on the centre of G through a character 〈α〉 → Z∗
p.

Proof. Let ζ : Int(G) → Int(Z(G)) be the map from Lemma 88(3) and define

σ = χZ(G)|〈ζ(α)〉
◦ ζ|〈α〉. Lemma 97 yields that 〈α〉 acts on Z(G) through σ.

Lemma 104. Let p be a prime number and let G be a finite p-group. Let α be

intense of order dividing int(G) and write χ = χG|〈α〉. Denote by (Gi)i≥1 the

lower central series of G. Then, for all i ∈ Z≥1, the induced action of 〈α〉 on

Gi/Gi+1 is through χi.

Proof. Denote A = 〈α〉. As a consequence of Proposition 88(2), the action of A

on G induces an action of A on G/G2. By Proposition 102, the action of A on

G/G2 is through χ. We now apply Lemma 62.
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Chapter 4

Intensity of groups of class 2

The main goal of this thesis, as stated in Section 3.2, is to classify all finite p-

groups whose group of intense automorphisms is not itself a p-group. We will

proceed to a classification by separating the cases according to the class of the

p-groups. We remind the reader that a finite p-group is always nilpotent and that

its (nilpotency) class is defined to be the number of non-trivial successive quotients

of the lower central series (see Section 1.2). If the class is 0, the group is trivial

and the intensity is 1. For the case in which the class is 1 (non-trivial abelian

case) we refer to Chapter 3. In this chapter we study the case in which the class

is equal to 2. We prove the following main result.

Theorem 105. Let p be a prime number and let G be a finite p-group of class 2.

Then the following are equivalent.

1. One has int(G) 6= 1.

2. The group G is extraspecial of exponent p.

3. The prime p is odd and int(G) = p− 1.

4.1 Small commutator subgroup

Let p be a prime number. We recall that a group A acts on a finite abelian p-group

G through a character if there exists a homomorphism χ : A→ Z∗
p such that, for

all x ∈ G, a ∈ A, one has ax = χ(a)x. For more detail about actions through

characters see Section 2.1.

Until the end of Section 4.1, the following assumptions will be valid. Let p be a

prime number and let G denote a finite p-group of nilpotency class 2 (see Section

1.2). Let moreover α be intense of order int(G). Write A = 〈α〉 and χ = χG|A.
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Assume that the intensity of G is greater than 1. It follows that G is non-trivial

and p is odd (see Sections 3.2 and 3.3). We will keep this notation until the end

of this section, together with the one from the List of Symbols.

Lemma 106. Assume G2 has exponent p. Then Φ(G) is central and A acts on

G2 is through χ2.

Proof. The Frattini subgroup of G is central by Lemma 40 and A acts on G2

through χ2 by Lemma 104.

Lemma 107. The homomorphisms χ, χ2 : A→ Z∗
p are distinct.

Proof. Assume χ = χ2. Then χ(α) = χ(α)2 and χ(α) = 1. It follows that the

intensity of G is equal to 1. Contradiction.

Lemma 108. Assume G2 has exponent p. Then Z(G) = Φ(G) = G2 and A acts

on Z(G) through χ2.

Proof. The group G2 is a non-trivial subgroup of Z(G) and, by Lemma 106, the

group A acts on G2 through χ2. By Corollary 103, the group A acts on Z(G)

through a character and, as a consequence of Lemma 66, the action of A on the

centre is through χ2. On the other hand, by Lemma 104, the induced action of

A on G/G2 is through χ. The group A acts hence on Z(G)/G2 both through χ

and χ2. The characters χ and χ2 being distinct, Lemma 66 yields Z(G) = G2. By

Lemma 106 the subgroup Φ(G) is central, and thus G2 = Φ(G) = Z(G).

Lemma 109. Assume G2 has order p. Then G is an extraspecial group of exponent

p.

Proof. Thanks to Lemma 108 we are only left with showing that G has exponent p.

Assume by contradiction there exists g ∈ G of order p2 and write H = 〈g〉. Then

Hp has order p. Now, Hp is contained in Φ(G) and, as a consequence of Lemma

108, the Frattini subgroup of G has itself order p. It follows that Hp = Φ(G) and,

in particular, H contains Φ(G). The group G2 is equal to Φ(G), by Lemma 108,

so the group H is normal. By Lemma 88(1), the subgroup H is A-stable. As a

consequence of Lemma 104, the actions of A on H/G2 and G2 are respectively

through χ and χ2 and, by Lemma 107, the characters χ and χ2 are distinct.

From Theorem 68 it follows that the groups H and (H/G2)⊕G2 are isomorphic.

Contradiction.

Lemma 110. Let Q be a finite p-group of both class and intensity greater than

1. Denote by (Qi)i≥1 the lower central series of Q. Then, for all i ∈ Z≥1, the

exponent of Qi/Qi+1 divides p.
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Proof. We work by induction on i and we start by assuming i = 1. Let M

be a normal subgroup of Q that is contained in Q2 with index p; the group M

exists by Lemma 35. Thanks to the isomorphism theorems, the groups Q/Q2 and

(Q/M)/(Q2/M) are isomorphic. We write Q = Q/M and use the bar notation for

the subgroups of Q. Then Q2 = [Q,Q] has order p and Q has intensity greater than

1, by Lemma 101. From Lemma 109, it follows that Q/Q2 is elementary abelian

and therefore so is Q/Q2. Assume now that i is greater than 1 and that the result

holds for all indices smaller than i. The property of being annihilated by p is

preserved by tensor products and surjective homomorphisms so, as a consequence

of Lemma 25, the exponent of Qi/Qi+1 divides p.

Corollary 111. Let Q be a finite p-group of nilpotency class 2. If int(Q) > 1,

then Z(Q) = Q2.

Proof. By Lemma 110, the commutator subgroup of Q has exponent p. To con-

clude, apply Lemma 108.

4.2 More general setting

Throughout this whole section (Section 4.2), let p be a prime number and let G

be a finite p-group of class 2 and intensity greater than 1. It follows from the

work done in Sections 3.2 and 3.3 that G is not trivial and p is odd. Let α be

intense of order int(G) and write A = 〈α〉 and χ = χG|A. We denote by V and

Z respectively G/G2 and G2 and by π the canonical projection G → V . From

Lemma 110 it follows that both V and Z are vector spaces over Fp. By Corollary

111, the non-trivial subgroup Z is equal to Z(G) and, as a consequence of Lemma

26, the map φ : V ×V → Z that is induced by the commutator map is alternating.

Lemma 112. Let H be a linear subspace of Z of codimension 1. Then the map

φH : V × V → Z/H, defined by (x, y) 7→ φ(x, y) +H, is non-degenerate.

Proof. The subgroup H is contained in the centre Z and is therefore a normal

subgroup of G. It follows from Lemma 101 that int(G/H) > 1. As a consequence

of Lemma 109, the group G/H is extraspecial, and so, thanks to Lemma 26, the

map φH : V × V → Z/H = [G/H,G/H ] is non-degenerate.

Corollary 113. There exists n ∈ Z>0 such that dim V = 2n.

Proof. Let H be a linear subspace of Z of codimension 1 and let φH be as in

Lemma 112. Then φH is non-degenerate, and so, by Lemma 10, the dimension of

V is even. The dimension is positive, because G has class 2.
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Lemma 114. Let G be a group, let N be a central subgroup, and let H be a

complement of N in G. Let moreover CN be the collection of complements of N

in G and, for all f ∈ Hom(H,N), call Gf = {f(h)h : h ∈ H}. Then the map

Hom(H,N)→ CN , given by f 7→ Gf , is well-defined and bijective.

Proof. Straightforward.

We recall that, as defined in Section 1.1, an isotropic subspace of V is a linear

subspace T of V such that φ(T × T ) = 0.

Lemma 115. Let T be a linear subspace of V . Then T is isotropic if and only if

π−1(T ) is abelian.

Proof. The subspace T is isotropic if and only if φ(T × T ) = 0, which happens if

and only if [π−1(T ), π−1(T )] = 1.

In the next lemma, we use the same notation as in Section 1.1. The map φT is

given in Definition 6.

Lemma 116. Let T be an isotropic subspace of V . Then the map φT : V/T →

Hom(T, Z), defined by v + T 7→ (t 7→ φ(v, t)), is surjective.

Proof. Let T be an isotropic subspace of V . The subgroup π−1(T ) is abelian,

by Lemma 115, and it contains Z. It follows that π−1(T ) is normal, and so, by

Proposition 88(1), it is A-stable. By Lemma 104, the actions of A on π−1(T )/Z

and on Z are respectively through χ and χ2, which are distinct by Lemma 107.

By Theorem 68 the subgroup Z has a unique A-stable complement H in π−1(T ),

which is isomorphic to T via π. We now show that φT is surjective. For this

purpose, let f ∈ Hom(T, Z) and note that Hom(T, Z) and Hom(H,Z) are naturally

isomorphic. We identify f with its image in Hom(H,Z). By Lemma 114, the set

L = {f(t)t | t ∈ H} is a complement of Z in π−1(T ) and so, being H the unique

A-stable complement of Z, Lemma 93 guarantees that there exists g ∈ G such

that L = gHg−1. Fix such an element g. Then, for each h ∈ H , there exists t ∈ H

such that [g, h]h = ghg−1 = f(t)t. It follows that ht−1 = [h, g]f(t) belongs to

both H and Z, but H and Z intersect trivially, so we get h = t. We have proven

that f is the map t 7→ [g, t]. It follows from Definition 6 that φT is surjective.

Corollary 117. Let T be an isotropic subspace of V . Then T is maximal isotropic

if and only if the map φT : V/T → Hom(T, Z), defined by v + T 7→ (t 7→ φ(v, t)),

is a bijection.

Proof. The map φT is surjective by Lemma 116 and it is injective by Lemma 7.
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Lemma 118. The dimension of Z is different from 2.

Proof. Assume by contradiction that Z has dimension 2. Let T be an isotropic

subspace of V of maximal dimension t and let d = dim V , which is positive.

From Corollary 117, it follows that d = 3t and in particular that t > 0. Let

L be a subspace of T of codimension 1, which is itself isotropic. Let moreover

φL : V/L→ Hom(L,Z) be defined by v+L 7→ (l 7→ φ(v, l)). The linear map φL is

surjective by Lemma 116. Let U be the kernel of φL and let φU : U × U → Z be

induced by φ. Then dimU = d−3(t−1) = 3 and φU is alternating. By the universal

property of wedge products, there exists a unique linear map ψ :
∧2 U → Z that,

composed with the canonical map U × U →
∧2

U , gives φU . The dimension of∧2 U being 3, the dimension of kerψ is positive and, as a consequence of Lemma

4, there are linearly independent elements s, r ∈ U such that ψ(s ∧ r) = 0. Set

R = L ⊕ Fps ⊕ Fpr. By construction, R is an isotropic subspace of V of dimension

t+ 1. Contradiction to the maximality of t.

Corollary 119. The group G is extraspecial of exponent p.

Proof. The commutator subgroup of G is non-trivial. If G2 has order p, then G

is extraspecial of exponent p, by Lemma 109. We claim that the order of G2 is

in fact p. Assume by contradiction that G2 has order larger than p. Then, by

Lemma 35, there exists a normal subgroup M of G that is contained in G2 with

index p2. The group G/M has class 2 and, by Lemma 101, its intensity is greater

than 1. This is a contradiction to Lemma 118, with G2/M in the role of Z.

We remark that Corollary 119 gives (1)⇒ (2) in Theorem 105. We complete the

proof in the next section.

4.3 The extraspecial case

In Section 4.3 we will see how the structure of extraspecial groups of exponent

p (see Section 1.4) is particularly suitable for explicit construction of intense au-

tomorphisms of order coprime to p. In this section, we conclude the proof of

Theorem 105.

Lemma 120. Let p be a prime number and let G be a non-abelian extraspecial

group of exponent p. Let moreover H be a subgroup of G that trivially intersects

G2. Then |G : NG(H)| = |Hom(H,G2)|.

Proof. The group G being non-abelian, Lemma 39 yields that Z(G) = G2 and G2

has order p. Since H ∩G2 is trivial, we have NG(H) = CG(H) and H is abelian.

By Lemma 22, the commutator map G×G→ G2 is bilinear, and moreover, since

H ∩ Z(G) is trivial, it induces a non-degenerate map G/CG(H)×H → G2. Now,
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both G/CG(H) and H are Fp-vector spaces and G2 has order p. It follows from

Lemma 2 that |G : NG(H)| = |G : CG(H)| = |H | = |Hom(H,G2)|.

Lemma 121. Let p be a prime number and let G be a non-abelian extraspecial

group of exponent p. Let α be an automorphism of G such that 〈α〉 acts on G/G2

through a character. Then α ∈ Int(G).

Proof. Let H be a subgroup of G and write A = 〈α〉. We want to show that H and

α(H) are conjugate in G. As G is non-abelian, Lemma 39 yields that G2 = Z(G)

and G2 has order p. It follows that either H contains G2 or the intersection of

H with G2 is trivial. In the first case, H/G2 is a linear subspace of G/G2, and is

therefore A-stable; in particular, also H is A-stable. We now consider the case in

which H ∩G2 = {1}. In this case, H is abelian and the group T = H ⊕G2 is A-

stable. The group G2 being A-stable, α(H) is a complement of G2 in T . Also each

G-conjugate of H is a complement of G2 in T , because G2 and T are both normal.

By Lemma 114, the number of complements of G2 in T equals the cardinality of

Hom(H,G2), which is equal to |G : NG(H)| by Lemma 120. It follows that the

number of complements of G2 in T is equal to the number of conjugates of H in G.

As all conjugates of H are themselves complements of G2 in T , we get that every

complement of G2 in T is conjugate to H in G. In particular, H and α(H) are

conjugate in G. The choice of H being arbitrary, it follows that α ∈ Int(G).

Lemma 122. Let p be a prime number and let G be a non-abelian extraspecial

p-group of exponent p. Then p is odd and int(G) = p− 1.

Proof. The prime p is odd, because all groups of exponent 2 are abelian. By

Proposition 43, we can write G in the form G(Z, Y,X, θ), where X , Y , and Z are

vector spaces over Fp and θ : X × Y → Z is bilinear. Now, the group F∗
p acts on

X , Y , and Z, as described in Section 2.1, and so each m ∈ F∗
p gives rise to an

automorphism of each of the three vector spaces. For each m ∈ F∗
p, the following

diagram is commutative because θ is bilinear.

X × Y
θ

✲ Z

X × Y

m

❄

m

❄
θ

✲ Z

m2

❄

By Proposition 44, for each m ∈ F∗
p there exists an automorphism am of G such

that the maps induced by am respectively onX×Y and Z are scalar multiplications

by m and m2. The set A = {am | m ∈ F∗
p} is a subgroup of Aut(G) that is

isomorphic to F∗
p. Thanks to Lemma 121, the subgroup A is contained in Int(G)

and therefore int(G) = p− 1.
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We remark that Lemma 122 is the same as (2) ⇒ (3) in Theorem 105. Since the

implication (3) ⇒ (1) is clear and (1) ⇒ (2) is given by Corollary 119, Theorem

105 is finally proven.

Proposition 123. Let p be a prime number and let G be a finite p-group. Denote

by (Gi)i≥1 the lower central series of G. Assume both the class and the intensity

of G are greater than 1. Then, for all i ∈ Z≥1, the exponent of Gi/Gi+2 divides p.

Proof. Let α be intense of order int(G) and write χ = χG|〈α〉. Let moreover

i be a positive integer. The case in which i = 1 is given by the combination

of Lemma 101 and Theorem 105; we assume that i > 1. As a consequence of

Lemma 20, the quotient Gi/Gi+2 is abelian. By Lemma 104, the action of 〈α〉 on

Gi/Gi+1 and Gi+1/Gi+2 is respectively through χi and χi+1, which are distinct

because int(G) 6= 1. It follows from Theorem 68 that the groups Gi/Gi+2 and

Gi/Gi+1 ⊕ Gi+1/Gi+2 are isomorphic. The exponent of Gi/Gi+2 divides p as a

consequence of Lemma 110.
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Chapter 5

Intensity of groups of class 3

The purpose of this chapter is giving a complete overview of the case in which the

class is 3. We will prove the following theorems.

Theorem 124. Let p be a prime number and let G be a finite p-group of class 3.

Then the following are equivalent.

1. One has int(G) > 1.

2. The prime p is odd and int(G) = 2.

3. The prime p is odd and |G : G2| = p2.

We remind the reader that, if G is a finite p-group and j is a positive integer, then

wtG(j) = logp |Gj : Gj+1|. For more detail, see Section 2.3.

Theorem 125. Let p be a prime number and let G be a finite p-group of class

at least 3. Assume that int(G) > 1. For each positive integer j, set moreover

wj = wtG(j). Then the following hold.

1. One has int(G) = 2.

2. One has (w1, w2, w3) = (2, 1, f), where f ∈ {1, 2}.

5.1 Low intensity

In Section 5.1 we derive some restrictions on the structure of finite p-groups of

class at least 3 and intensity greater than 1. We will prove the following main

result.

Proposition 126. Let p be a prime number and let G be a finite p-group of class

at least 3. Assume that int(G) > 1. Then the following hold.
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1. The prime p is odd.

2. One has int(G) = 2.

3. One has |G : G2| = p2.

Our main goal for this section being the proof of Proposition 126, we will work

under the following assumptions until the end of Section 5.1. Let p be prime

number and let G be a finite p-group of class at least 3. Assume that int(G) > 1

and let α be intense of order int(G). Write A = 〈α〉 and χ = χG|A, where χG
denotes the intense character of G (see Section 3.2). For the rest of the notation

we refer to the List of Symbols. We remark that, int(G) being greater than 1, the

prime p is odd and G is non-trivial. For more detail see Chapter 3.

Lemma 127. Assume that G has class 3. Then the following hold.

1. One has Gp ⊆ G3.

2. One has |G2 : G3| = p.

3. One has Z(G) = G3.

Proof. The subgroup G3 is contained in Z(G) because G has class 3. By Lemma

101 the intensity of G/G3 is greater than 1, and thus, by Theorem 105, the group

G/G3 is extraspecial of exponent p. It follows that G2/G3 has size p and that

Gp is contained in G3. Moreover, one has Z(G/G3) = G2/G3 and, since Z(G)/G3

is contained in Z(G/G3), we get G3 ⊆ Z(G) ⊆ G2. As the class of G is 3, the

subgroup Z(G) is different from G2, and so Z(G) = G3.

Lemma 128. Assume G has class 3. Then the following hold.

1. The group G2 is elementary abelian.

2. The group CG(G2) is abelian and A-stable.

Proof. (1) The group G4 is trivial and, as a consequence of Lemma 20, the sub-

group G2 is abelian. The exponent of G2 is equal to p, by Proposition 123. This

proves (1). We now prove (2). To lighten the notation, let C = CG(G2). The

subgroup G2 is central in C, by definition of C, and, as a consequence of Lemma

26, the commutator map induces a bilinear map φ : C/G2 × C/G2 → [C,C].

The subgroups C and [C,C] are characteristic in G and thus they are A-stable.

Thanks to Lemma 104, the group A acts on C/G2 through χ, and, by Lemma 61,

it acts on [C,C] through χ2. By Lemma 104, the action of A on G3 is through

χ3. The character χ not being trivial, one has χ2 6= χ3, and Lemma 66 yields

[C,C] ∩G3 = {1}. By Lemma 127(3), the group G3 is equal to Z(G) so the group

[C,C] is a normal subgroup of G that trivially intersects Z(G). It follows from

Lemma 29 that [C,C] = {1}.
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Lemma 129. Assume that G3 has order p. Then the following hold.

1. One has |G : CG(G2)| = p.

2. One has |G : G2| = p2.

3. One has |CG(G2)| = p3.

Proof. The group G3 having order p, it follows from Lemma 29 that G3 is central,

and so G has class 3. To lighten the notation, let C = CG(G2). Let moreover

V = G/G2, Z = G2/G3, and T = C/G2. The groups V , Z, and T are vector

spaces over Fp, as a consequence of Lemma 110. We prove (1). By Lemma 24, the

commutator map induces a bilinear map ψ : V × Z → G3 whose left kernel is T .

The centre of G is equal to G3, by Lemma 127(3), so the right kernel of ψ is trivial.

The map ψC : V/T ×Z → G3 that is induced from ψ is thus non-degenerate. The

dimension of Z is equal to 1, by Lemma 127(2), and Lemma 2 yields dim V/T = 1.

This proves (1). We prove (2) and (3) together. Let φ : V × V → Z be the

bilinear map from Lemma 24. The map φ is induced from the commutator map

and, by Lemma 128(2), the group C is abelian. It follows that T is isotropic.

As a consequence of (1) the space T has codimension 1 in V and T is maximal

isotropic, because φ is not the zero map. From Corollary 117, it follows that 1 =

dim(V/T ) = dim Hom(T, Z) = dim T and so dimV = 2. To conclude, we compute

|G : G2| = pdimV = p2 and |C| = |C : G2||G2 : G3||G3| = pdimT pdimZp = p3.

Lemma 130. Assume that χ2 6= 1 and that G has class 3. Then CG(G2) is

elementary abelian.

Proof. Let C = CG(G2). The group C is abelian and A-stable by Lemma 128(2).

We will show that C has exponent p. By Lemma 128(1) the groupG2 is elementary

abelian and G2 ⊆ C. The group A acts on C/G2 through χ, as a consequence

of Lemma 104, and, by Lemma 63, it acts on Cp also through χ. It follows

from Lemma 127(1) that Cp ⊆ G3. The action of A on G3 is through χ3, by

Lemma 128(2), and thus A acts on Cp both through χ and χ3. Since χ2 6= 1, the

characters χ and χ3 are distinct and, as a consequence of Lemma 66, the group C

has exponent p.

Lemma 131. Assume that χ2 6= 1 and that G3 has order p. Then CG(G2) is

a vector space over Fp and there exist unique A-stable subspaces C1 and C2 of

CG(G2), of dimension 1, such that CG(G2) = C1 ⊕ C2 ⊕G3.

Proof. To lighten the notation, let C = CG(G2). Since G3 has order p, it follows

from Lemma 29 that G3 is central so G has class 3. As a consequence of Lemmas

129(3) and 130, the group C is a vector space over Fp of dimension 3. The group

C is A-stable, by Lemma 128(2), and, by Lemma 104, the action of A on C/G2,
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G2/G3, and G3 is respectively through χ, χ2, and χ3. The three characters are

pairwise distinct because χ2 6= 1. We first apply Theorem 68 to C/G3. Then there

exists a unique A-stable complement D1/G3 of G2/G3. It follows that D1 ∩G2 =

G3. We now apply Theorem 68 to bothD1 andG2 to get unique A-stable subspaces

C1 and C2 of C satisfying D1 = C1 ⊕ G3 and G2 = C2 ⊕ G3. As a consequence

of Lemma 127(2), the subspace G2 has dimension 2, so both C1 and C2 have

dimension 1. Moreover, the intersection of D1 with G2 being equal to G3, it

follows that C = C1 ⊕ C2 ⊕G3.

Lemma 132. Assume that G3 has order p. Then int(G) = 2.

Proof. If χ2 = 1, then 1 < int(G) ≤ 2 and we are done. We assume now that

χ2 6= 1 and we will derive a contradiction. Let now C1 and C2 be as in Lemma 131

and denote by X be the collection of subspaces of dimension 1 of C. Since C is

normal, the group G acts on X by conjugation. By Lemma 129(1), the index of C

in G is equal to p and the size of each orbit of X under G is at most p. Moreover,

the elements of X that are stable under the action of A are precisely C1, C2, and

G3. Lemma 94 yields

p2 + p+ 1 = |X | ≤ |G : NG(C1)|+ |G : NG(C2)|+ |G : NG(G3)| ≤ 3p,

which is satisfied if and only if (p− 1)2 ≤ 0. Contradiction.

We can finally give the proof of Proposition 126. The prime p is odd as a conse-

quence of Proposition 95. Since G has class at least 3, the group G3 is non-trivial,

so, by Lemma 35, there exists a normal subgroup M of G that is contained in G3

with index p. By Lemma 101, the group G/M has intensity greater than 1 and,

as a consequence of Lemma 132, the intensity of G/M is equal to 2. From Lemma

101 it follows that 1 < int(G) ≤ int(G/M) = 2. Moreover, Lemma 129(2) yields

|G : G2| = |G/M : [G/M,G/M ]| = p2.

We remark that Proposition 126 gives (1) ⇔ (2) and (1) ⇒ (3) in Theorem 124

and Theorem 125(1). We give the full proof of Theorem 124 in Section 5.4 and

the full proof of Theorem 125 in Section 5.2.

Proposition 133. Let p be a prime number and let G be a finite p-group. Then

the following are equivalent.

1. One has int(G) > 1.

2. The prime p is odd and int(G) is even.

Proof. The implication (2) ⇒ (1) is clear. Assume now (1). Then G is non-

trivial and p is odd, by Proposition 95. Moreover, if G has class at least 3, then
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Proposition 126 yields int(G) = 2. On the other hand, if G has class at most

2, then we know from Theorems 86 and 105 that int(G) = p − 1, which is even

because p is odd.

Proposition 134. Let p be a prime number and let G be a finite p-group of class

at least 3. Let α be an intense automorphism of G of order int(G) and assume that

int(G) > 1. Then α has order 2 and, for all i ≥ 1, it induces scalar multiplication

by (−1)i on Gi/Gi+1.

Proof. Let χ denote the restriction of χG to 〈α〉. By Proposition 126, the intensity

of G is 2 and p is odd. In particular, χ(α) has order 2 in ω(F∗
p), so χ(α) = −1.

Lemma 104 draws the conclusion.

5.2 Groups of class 3

This section is devoted to understanding the structure of p-groups G of class 3

with the property that |G : G2| = p2. We will see in the next section that all these

groups have intensity 2. We also give the proof of Theorem 125.

Lemma 135. Let p be a prime number and let G be a finite p-group of class 3.

Assume that |G : G2| = p2. Then the following hold.

1. One has |G2 : G3| = p.

2. One has |G3| ∈ {p, p2}.

3. The subgroup G3 is elementary abelian.

Proof. The group G is non-abelian and, as a consequence of Lemma 36, the group

G/G2 is a vector space over Fp of dimension 2. By Lemma 25, the commutator

map induces a surjective homomorphism G/G2 ⊗ G/G2 → G2/G3 which factors

as a surjective homomorphism
∧2

(G/G2) → G2/G3 by the universal property

of wedge products. The space
∧2(G/G2) has dimension 1 and so |G2 : G3| =

p. Again applying Lemma 25, we derive that G3 is isomorphic to a quotient of

G/G2 ⊗G2/G3. In particular, one has

1 < |G3| ≤ |G/G2 ⊗G2/G3| = p2

and G3 is elementary abelian.

Thanks to Lemma 135, we can finally give the proof of Theorem 125. Indeed, if

p is a prime number and G is a finite p-group of class at least 3 with int(G) > 1,

then Proposition 126 yields int(G) = 2 and w1 = 2. We now apply Lemma 135,

with G/G4 in place of G, to get w2 = 1 and w3 ∈ {1, 2}. The proof of Theorem

125 is now complete.
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Lemma 136. Let p be an prime number and let G be a finite p-group of class 3.

Assume that |G : G2| = p2. Then the following hold.

1. One has G2 ⊆ CG(G2).

2. The commutator map induces an isomorphism G/CG(G2)⊗G2/G3 → G3.

3. One has |G : CG(G2)| = |G3|.

Proof. (1) As a consequence of Lemma 20, the group [G2, G2] is contained in

G4 = {1} and G2 centralizes itself. This proves (1). We now prove (2) and (3)

together. The subgroup G3 is central, because the class of G is 3, so, by Lemma

22, the commutator map γ : G×G2 → G3 is bilinear. The right kernel of γ is equal

to G2 ∩ Z(G), which is equal to G3 as a consequence of Lemma 135(1). The left

kernel of γ coincides with CG(G2) and, in particular, γ induces a non-degenerate

map γ1 : G/CG(G2)×G2/G3 → G3 whose image generates G3. Thanks to (1) the

quotient G/CG(G2) is abelian and, thanks to Lemma 36, it has exponent p. By

the universal property of tensor products, γ1 induces a surjective homomorphism

G/CG(G2)⊗G2/G3 → G3, which is also an isomorphism since the index |G2 : G3|

is equal to p. Moreover, we have |G : CG(G2)| = |G3|.

Lemma 137. Let p be a prime number and let G be a finite p-group of class 3.

Assume that |G : G2| = p2. Then the following hold.

1. One has |G3| = p if and only if |CG(G2) : G2| = p.

2. One has |G3| = p2 if and only if CG(G2) = G2.

Proof. By Lemma 136(3), we have |G : CG(G2)| = |G3|. By Lemma 136(1), the

subgroup G2 is contained in CG(G2), so (1) and (2) follow from the fact that

|G : G2| = p2.

Lemma 138. Let p be a prime number and let G be a finite p-group of class 3.

Assume that |G : G2| = p2. Then CG(G2) is abelian.

Proof. Write C = CG(G2). As a consequence of Lemma 137, the group C/G2 is

cyclic. It follows from Lemma 28 that [C,C] = [C,G2] = {1}.

Lemma 139. Let p be an odd prime number and let G be a finite p-group of class

3. Assume that |G : G2| = p2. Then G/G3 is extraspecial of exponent p.

Proof. We write G = G/G3 and we use the bar notation for the subgroups of G.

The group G has class 2 and G2 is contained in Z(G). By Lemma 135(1), the

order of G2 is equal to p and, as a consequence of Lemma 27, the groups G2 and

Z(G) coincide. In particular, G is extraspecial. We now show that G has exponent

p. Define C = CG(G2) and D = {x ∈ G : xp ∈ G3}. Then C 6= G, because G2
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is not central, and D is a group, thanks to Corollary 48. Let now x ∈ G \ C. As

a consequence of Lemma 36, the element xp belongs to G2. Moreover, by Lemma

136(2), the commutator map induces an isomorphism G/C ⊗G2/G3 → G3, so,

since x is not in the centralizer of G2, the element xp belongs to G3. It follows

that x ∈ D and, in particular, we have proven that G = C ∪ D. The group C is

different from G, thus the groups D and G are the same. It follows that G = D

and so G has exponent p.

Lemma 140. Let p be an odd prime number and let G be a finite p-group of class

3. Assume that |G : G2| = p2. Then G3 = Z(G).

Proof. The subgroup G3 is contained in Z(G), since G has class 3 and, as a

consequence of Lemma 139, the centre of G/G3 is equal to G2/G3. It follows

that Z(G)/G3 ⊆ G2/G3 and Z(G) ⊆ G2. Moreover, the group Z(G) does not

contain G2, because G has class 3. The group G2/G3 having order p, one gets

G3 = Z(G).

Lemma 141. Let p be an odd prime number and let G be a finite p-group of class

3. Assume that |G : G2| = p2. Then G2 is elementary abelian.

Proof. The group G2 is abelian as a consequence of Lemma 136(1). We prove

that it has exponent p. Let M be a maximal subgroup of G3; then M has index

p in G3 and it is normal, because G3 is central. We write G = G/M and use

the bar notation for the subgroups of G. The subgroup G3 has order p and

|G : G2| = |G : G2| = p2. It follows from Lemma 138 that CG(G2) is abelian and,

from Lemma 137(1), that it contains G2 with index p. Write C = CG(G2). As

a consequence of Lemma 139, the subgroup C
p

is contained in G3, so µp(C) is a

normal subgroup of G of order at least p2. Moreover, G3 is contained in µp(C),

so µp(C)/G3 is a non-trivial normal subgroup of G/G3. The quotient G/G3 is

extraspecial, by Lemma 139, so G2/G3 is equal to Z(G/G3). As a consequence of

Lemma 135(1), the quotient G2/G3 has order p, so Lemma 29 yields G2 ⊆ µp(C).

In particular, one has Gp2 ⊆ M . If M = {1} we are done, otherwise let N be

another maximal subgroup of G3. In this case, G3 is elementary abelian of order

p2, by Lemma 135(2-3), and Gp2 is contained in N ∩M = {1}, by the previous

arguments. The exponent of G2 is thus p.

5.3 Intensity given the automorphism

We recall that, for any group G, the lower central series of G is denoted (Gi)i≥1

and it consists of characteristic subgroups of G. For more detail see Section 1.2.

The main result of this section is the following.
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Proposition 142. Let p be an odd prime number and let G be a finite p-group

of class 3 such that |G : G2| = p2. Let moreover α be an automorphism of G of

order 2 that induces the inversion map x 7→ x−1 on G/G2. Then α is intense and

int(G) = 2.

The following assumptions will be valid until the end of Section 5.3. Let p be an

odd prime number and let G be a finite p-group of class 3 such that |G : G2| = p2.

Let α be an automorphism of G of order 2 and write A = 〈α〉. Let moreover

χ : A → {±1} be an isomorphism of groups and assume that the induced action

of A on G/G2 is through χ. We will prove that α is intense.

Lemma 143. Every subgroup of G that contains G3 has an A-stable conjugate in

G.

Proof. Let H be a subgroup of G that contains G3. By Lemma 139, the group

G/G3 is extraspecial of exponent p and by assumption A acts on G/G2 through

χ. As a consequence of Lemmas 121 and Lemma 93, there exists g ∈ G such that

α(gHg−1)/G3 = (gHg−1)/G3 and, G3 being A-stable, α(gHg−1) = gHg−1.

We remind the reader that, if H is a subgroup of G, then a positive integer j

is a jump of H in G if H ∩ Gj 6= H ∩ Gj+1. The j-th width of H in G is

wtGH(j) = logp |H ∩Gj : H ∩Gj+1|. For more information about jumps and width

see Section 2.3.

Lemma 144. Let H be a subgroup of G that trivially intersects G3. Then the

following hold.

1. If 1 is a jump of H in G, then wtGH(1) = 1.

2. If 2 is a jump of H in G, then H ⊆ CG(G2).

Proof. (1) Assume that 1 is a jump ofH inG. By Lemma 36, the Frattini subgroup

of G is equal to G2. The subgroup H does not contain G3 and thus H 6= G. By

Lemma 33, we have HΦ(G) 6= G so HΦ(G)/Φ(G) = HG2/G2 has order p. Since

HG2/G2 is isomorphic to (H ∩G1)/(H ∩G2), this proves (1). We now prove (2).

Assume that 2 is a jump of H in G. Then by Lemma 82 there exists an element

x ∈ (H ∩ G2) \ G3. Fix x. As a consequence of Lemma 135(1), the group G2 is

equal to 〈x,G3〉. The group G3 being central, it follows that [H,G2] = [H, 〈x〉].

The subgroup [H, 〈x〉] is contained in H ∩ [G,G2] = H ∩ G3, which is trivial by

assumption. In particular, H centralizes G2.

Lemma 145. Let H be a subgroup of G that trivially intersects G2. Then H has

an A-stable conjugate in G.
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Proof. The group H is abelian, because [H,H ] ⊆ H ∩ [G,G] = {1}. By Lemma

140, the groups G3 and Z(G) are equal, so the group T = H ⊕ G3 is abelian.

By Lemma 143, there exists g ∈ G such that gTg−1 is A-stable and, the group

G3 being characteristic, gTg−1 = gHg−1 ⊕ G3. We fix such element g and note

that gTg−1 ∩ G2 = G3. It follows from Lemma 63 that the induced action of A

on gTg−1/G3 is through χ. Moreover, by Lemma 62, the group A acts on G3

through χ3 = χ. From Lemma 77, it follows that α sends each element of gTg−1

to its inverse, so each subgroup of gTg−1 is A-stable. In particular, gHg−1 is

A-stable.

Lemma 146. Let H be a subgroup of G such that G2 = H ⊕G3. Then H has an

A-stable conjugate in G.

Proof. By Lemma 135(1), the index |G2 : G3| is equal to p, so H has order p.

By Lemma 62, the induced action of A on G2/G3 and G3 is respectively through

χ2 and χ3 = χ. By assumption, the characters χ and χ2 are distinct. Moreover,

by Lemma 136(1), the group G2 is abelian and so, by Theorem 68, there exists a

unique A-stable complement K of G3 in G2. We want to show that H and K are

conjugate in G. The groups G3 and Z(G) coincide, by Lemma 140, thus CG(H) =

CG(G2). Moreover, we have that H∩[H,G] ⊆ H∩G3 = {1}, so CG(H) = NG(H).

Let X be the collection of complements of G3 in G2. Then K and all conjugates

of H in G are in X . By Lemma 136(3), we have |G : CG(G2)| = |G3|. By Lemma

135(3), the subgroup G3 is elementary abelian and, by Lemma 114, the cardinality

of X is equal to the cardinality of Hom(H,G3), which coincides with |G3| because

H has order p. It follows that |X | = |G : CG(G2)| = |G : NG(H)| and, every

conjugate of H being in X , every complement of G3 in G2 is conjugate to H . In

particular, K and H are conjugate in G.

Lemma 147. Let H be a subgroup of G that is not contained in CG(G2) and that

has trivial intersection with G3. Then H has a conjugate that is A-stable.

Proof. As a consequence of Lemma 144(2), the subgroup H has trivial intersection

with G2. We now apply Lemma 145.

Lemma 148. Let H be a subgroup of CG(G2) of order p that has trivial intersec-

tion with G3. Then H has a conjugate that is A-stable.

Proof. Let us call T = H ⊕ G3. If T = G2, then H has an A-stable conjugate

by Lemma 146. Assume now that T ∩ G2 = G3. Then H ∩ G2 = H ∩ T ∩ G2 =

H ∩G3 = {1}, so we conclude applying Lemma 145.

We denote G+ = {x ∈ G : α(x) = x} and G− = {x ∈ G : α(x) = x−1}, in concor-

dance with the notation from Section 2.2. In the context of Section 5.3, we will

use this notation in Lemmas 149 and 150.
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Lemma 149. Let H be a subgroup of CG(G2) such that H ∩G3 = {1}. Then the

following hold.

1. The subgroup H is elementary abelian.

2. One has G+ NG(H) = NG(H).

Proof. (1) The subgroup CG(G2) is abelian, by Lemma 138, and therefore H is

abelian. Moreover, as a consequence of Lemma 139, the subgroup Hp is contained

in H ∩G3 = {1}, so H is elementary abelian. This proves (1). We now prove (2).

The subgroup G+ is contained in G2, thanks to Lemma 85, and G2 centralizes

C, by definition of C. It follows that G+ NG(H) ⊆ G2 NG(H) = NG(H). Since

NG(H) is contained in G+ NG(H), the proof is complete.

Lemma 150. Let H be a subgroup of G such that CG(G2) = H ⊕ G3. Then H

has a conjugate that is A-stable.

Proof. To lighten the notation, write C = CG(G2). If C = G2, then we are

done by Lemma 146. Assume now that C 6= G2. As a consequence of Lemma

137(1), the group C contains G2 with index p and G3 has order p. We define

X to be the collection of subgroups K of G such that C = K ⊕ G3 and denote

X+ = {K ∈ X | α(K) = K}. The centre of G is equal to G3, by Lemma 140,

and, as a consequence of Lemma 29, all elements of X are non-normal subgroups

of G. In particular, for any K ∈ X , one has |G : NG(K)| ≥ p. Now, by Lemma

149(1), the subgroup H is elementary abelian, and, G3 being central of order p,

it follows that C is naturally an Fp-vector space. Combining Lemmas 135(1) and

137(1), we get that dimC = 3. Write C+ = {x ∈ C : α(x) = x} and C− =

{x ∈ C : α(x) = x−1}. Then C = C+ ⊕ C−, thanks to Corollary 76 and, as a

consequence of Lemma 85, one has |C−| = p2 and |C+| = p. Moreover, C being

abelian, both C+ and C− are linear subspaces of C. It is not difficult to show at

this point that

X+ = {C+ ⊕ ℓ : ℓ ⊆ G−, ℓ ∩G3 = {1}, dim(ℓ) = 1}.

It follows that X+ has cardinality p, while the cardinality of X is p2. Moreover,

the combination of Lemmas 81 and 149(2), ensures that no two elements of X+

are conjugate in G. It follows from Lemma 94 that

p2 = |X | ≥
∑

K∈X+

|G : NG(K)| ≥
∑

K∈X+

p = |X+|p = p2,

and therefore every element of X is conjugate to an element of X+. In particular,

H has an A-stable conjugate.

Lemma 151. Every subgroup of G that trivially intersects G3 has an A-stable

conjugate in G.
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Proof. Let H be a subgroup of G such that H ∩ G3 = {1}. If H is contained in

CG(G2) and has order p, then we are done by Lemma 148. Assume now that H

is contained in CG(G2) and that H has order p2. The group CG(G2) is abelian,

by Lemma 138, and thus, as a consequence of Lemmas 135(1) and 137, one has

CG(G2) = H ⊕G3. The group H has an A-stable conjugate by Lemma 150. We

conclude by Lemma 147, in case H is not contained in CG(G2).

Lemma 152. Let H be a subgroup of G such that H ∩G3 6= {1}. Then H has a

conjugate that is A-stable.

Proof. Lemma 143 covers the case in which H contains G3. Assume now that

the group H ∩G3 is different from both {1} and G3. As a consequence of Lemma

135(2), the cardinality of G3 is p2, so H∩G3 has order p. We writeG = G/(H∩G3)

and use the bar notation for the subgroups of G. The group G has class 3 and

|G : G2| = p2. Moreover, H ∩G3 = {1}. Thanks to Lemma 151, the subgroup H

has an A-stable conjugate, and therefore so does H .

Lemma 153. The automorphism α is intense and int(G) = 2.

Proof. We will show that α ∈ Int(G). Thanks to Lemma 93, it suffices to show

that every subgroup of G has an A-stable conjugate. Let H be a subgroup of G.

If H ∩G3 = {1}, we are done by Lemma 151, otherwise apply Lemma 152.

Thanks to Lemma 153, Proposition 142 is proven.

5.4 Constructing intense automorphisms

The aim of Section 5.4 is giving the proof of Theorem 124. We will prove the

following essential result.

Proposition 154. Let p be an odd prime number and let G be a finite p-group

of class 3 such that |G : G2| = p2. Then there exists an automorphism α of G of

order 2 that induces the inversion map x 7→ x−1 on G/G2.

In order to prove Proposition 154, let p be an odd prime number and let G be a

finite p-group of class 3. Let moreover (Gi)i≥1 denote the lower central series of

G and assume that |G : G2| = p2. We will keep these assumptions and notation

until the end of Section 5.4. We will work to construct an automorphism α of G

and an isomorphism χ : 〈α〉 → {±1} in order to apply the results achieved in the

previous section.

Let F be the free group on the set S = {a, b} and let ι : S → G be a map such

that G = 〈ι(S)〉. By the universal property of free groups, there exists a unique

homomorphism θ : F → G such that θ(a) = ι(a) and θ(b) = ι(b). In particular,
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the map θ is surjective. We denote by (Fi)i≥1 the p-central series of F , which is

recursively defined as

F1 = F and Fi+1 = [F, Fi]F
p
i .

We want to stress the fact that the notation we use here for the p-central series of

F clashes with the notation we have adopted so far (see the section “Exceptions”

from the List of Symbols). Define additionally

L = F3F
p and E = [F,L]F p2 .

The notation we just introduced will be valid until the end of Section 5.4. We will

introduce some extra notation between Lemma 158 and Lemma 159. We refer to

the diagram given at the end of the present section for a visualization of the proof

of Proposition 154.

Lemma 155. One has θ−1(G2) = F2.

Proof. Since θ is a surjective homomorphism, one has θ(F2) = θ([F, F ]F p) =

G2G
p = Φ(G) and so, as a consequence of Lemma 36, we get θ(F2) = G2. In other

words, F2 ⊆ θ−1(G2). The group F being 2-generated, we have that |F : F2| = p2,

and so F2 = θ−1(G2).

Lemma 156. The commutator map induces an alternating map F/F2×F/F2 →

F2/L whose image generates F2/L. Furthermore, the index |F2 : L| is at most p.

Proof. We write F = F/L and we will use the bar notation for the subgroups of

F . The subgroup [F, [F, F ]] is contained in F3 and [F , F ] is central. Moreover, F

being annihilated by p, the subgroup F2 coincides with [F , F ]. As a consequence

of Lemma 22, the commutator map induces a bilinear map φ : F/F2×F/F2 → F2

whose image generates F2 = [F , F ]. The map φ is alternating because every ele-

ment of a group commutes with itself. By the universal property of the exterior

square, φ factors as a surjective homomorphism
∧2

(F/F2) → F2. As a conse-

quence of Lemma 36, the quotient F/F2 is a 2-dimensional vector space over Fp

and
∧2

(F/F2) has dimension 1. It follows that F2 has order at most p.

Lemma 157. One has θ−1(G3) = L and |F2 : L| = p.

Proof. As a consequence of Lemma 139, the group G3 contains Gp, from which it

follows that θ(L) = G3. In particular, the subgroup L is contained in θ−1(G3).

As a consequence of Lemma 155, the subgroup θ−1(G3) is contained in F2 and

θ−1(G3) 6= F2, because G3 6= G2. In particular, F2 is different from L. By

Lemma 156, the index |F2 : L| is at most p, and so we get that |F2 : L| = p and

θ−1(G3) = L.
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Lemma 158. One has E ⊆ ker θ ∩ F3.

Proof. The group E is contained in [F, F2]F p2 = F3, by definition of the p-central

series of F . As a consequence of Lemma 139, the image of L under θ is equal to G3

and, as a consequence of Lemma 141, the subgroup F p2 is contained in the kernel

of θ. It follows that θ(E) = θ([F,L]F p2 ) = [G,G3] = G4 = {1}.

Let β be the endomorphism of F sending a to a−1 and b to b−1, and note that β

exists by the universal property of free pro-p-groups. Then β2 is equal to idF , and

thus β is an automorphism of F . Write B = 〈β〉 and define the homomorphism

σ : B → {±1} by β 7→ −1. We will respect this notation until the end of Section

5.4.

Lemma 159. The induced action of B on F/F2 and F2/L is respectively through

σ and σ2.

Proof. By definition of β, every element of F is inverted by β modulo F2; in other

words, the action of B on F/F2 is through σ. By Lemma 156, the commutator

map induces a bilinear map φ : F/F2 × F/F2 → F2/L whose image generates

F2/L. The group B acts on F/F2 through σ and, by Lemma 61, the action of B

on F2/L is through σ2.

Lemma 160. The induced action of B on L/F3 is through σ.

Proof. We write F = F/F3 and we use the bar notation for its subgroups. Then

L is equal to F
p

and, since [F, [F, F ]] is contained in F3, the group F has class at

most 2. Moreover, we have that [F, F ]p ⊆ F p2 ⊆ F3, so [F , F ] is annihilated by p.

It follows from Lemma 48 that the p-power map is an endomorphism of F , and

therefore L is an epimorphic image of F/F2. By Lemma 63, the induced action of

B on L is through σ.

Lemma 161. The induced action of B on F3/E is through σ.

Proof. The group F2/L is cyclic, thanks to Lemma 157, so Lemma 28 yields

[F2, F2] = [F2, L]. It follows that [F2, F2] is contained in E. The group [F, F3]

is also contained in E and, as a consequence of Lemma 22, the commutator map

induces a bilinear map φ : F/F2 × F2/L→ F3/E. By definition of F3, the image

of φ generates F3/E. By Lemma 159, the induced actions of B on F/F2 and F2/L

are respectively through σ and σ2 and, by Lemma 61, the action of B on F3/E is

through σ3 = σ.

Lemma 162. The induced action of B on L/E is through σ. Moreover, the kernel

of θ is B-stable.
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Proof. As a consequence of Lemmas 160 and 161, the induced actions of B on

L/F3 and F3/E are both through σ. It follows from Lemma 77 that the action

of B on L/E is through σ. As a consequence of Lemmas 157 and 158, one has

E ⊆ ker θ ⊆ L, and, in particular, the action of B on L/E restricts to an action

of B on ker θ/E. It follows that ker θ is B-stable and the proof is complete.

Lemma 163. Given any two generators x and y of G, there exists an intense

automorphism of G such that α(x) = x−1 and α(y) = y−1.

Proof. Let x and y be generators of G. Without loss of generality, we assume that

ι(a) = x and ι(b) = y. Let moreover θ̄ : F/ ker θ → G be the isomorphism that is

induced from θ. By Lemma 162, the subgroup ker θ of F is B-stable, and therefore

β induces an automorphism β̄ of F/ ker θ. Define α : G → G by α = θ̄ ◦ β̄ ◦ θ̄−1.

Then α is an automorphism G of order 2 that inverts the generators x and y.

Proposition 142 yields that α is intense.

We remark that Proposition 154 follows directly from Lemma 163. Moreover, we

are also finally ready to give the proof of Theorem 124. Proposition 126 gives

(1)⇔ (2) and (1)⇒ (3). On the other hand, the implication (3)⇒ (2) is given by

the combination of Lemma 163 and Proposition 142. The proof of Theorem 124

is finally complete.

F ✲ G

F2

−

✲ G2

−

L = F3F
p

+

✲ G3

+

F3

−

ker θ ✲

−

1

−

E = [F,L]F p2

−−
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Chapter 6

Some structural restrictions

In this chapter we will see how the structure of finite p-groups whose intensity is

greater than 1 starts becoming more and more rigid, as soon as the class is at least

4. We recall that, if (Gi)i≥1 denotes the lower central series of G, then the class

of G is the number of indices i for which Gi 6= 1. Recall moreover that, for each

positive integer i, the i-th width of G is wtG(i) = logp |Gi : Gi+1| (see Section

2.3). The main results from Chapter 6 are the following.

Theorem 164. Let p be a prime number and let G be a finite p-group of class

at least 4. For all i ∈ {1, 2, 3, 4}, write wi = wtG(i). If int(G) > 1, then

(w1, w2, w3, w4) = (2, 1, 2, 1).

Theorem 165. Let p be a prime number and let G be a finite p-group of class at

least 3. For all i ∈ Z≥1, write wi = wtG(i). Assume that int(G) > 1. Then, for

all i ∈ Z≥1, one has wiwi+1 ≤ 2.

6.1 Normal subgroups

We devote Section 6.1 to understanding the normal subgroup structure of a finite

p-group of intensity greater than 1. We prove the following result.

Proposition 166. Let p be a prime number and let G be a finite p-group with

int(G) > 1. Let N be a subgroup of G. Then N is normal if and only if there

exists i ∈ Z≥1 such that Gi+1 ⊆ N ⊆ Gi.

The following assumptions will be satisfied until the end of Section 6.1. Let p

be a prime number and let G be a finite p-group of intensity greater than 1. It

follows that p is odd and that G is non-trivial (see Section 3.2). Denote by (Gi)i≥1

the lower central series of G and, for each positive integer i, write wi = wtG(i)

for the i-th width of G. Let α be intense of order 2 and write A = 〈α〉. Denote
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χ = χG|A, the restriction of the intense character of G to A (once again, we

refer to Section 3.2). In concordance with the notation from Section 2.2, let

G+ = {x ∈ G | α(x) = x} and G− = {x ∈ G | α(x) = x−1}. For a subgroup H of

G we will write H+ = H ∩G+ and H− = H ∩G−.

Lemma 167. Let H be an A-stable subgroup of G. If H is cyclic, then H ⊆ G+

or H ⊆ G−.

Proof. Assume that H is cyclic. As a consequence of Corollary 76, the subgroup

H decomposes as H = H+ ⊕H−. Then H is cyclic if and only if one of H+ and

H− is trivial. This concludes the proof.

We recall that, as defined in Section 2.3, if x is a non-trivial element of G, then

the depth dptG(x) of x is the unique positive integer d for which x ∈ Gd \Gd+1.

Lemma 168. Let x ∈ G \ {1}. Then the following hold.

1. The depth of x is even if and only if there exists g ∈ G such that gxg−1

belongs to G+.

2. The depth of x is odd if and only if there exists g ∈ G such that gxg−1

belongs to G−.

Proof. The automorphism α being intense, it follows from Lemma 93 that there

exists g ∈ G such that 〈gxg−1〉 is A-stable. Write d = dptG(x) = dptG(gxg−1)

and H = 〈gxg−1〉. By Lemma 167, the subgroup H is contained either in G+ or

in G−. By Lemma 104, the action of A on (HGd+1)/Gd+1 is through χd and the

choice between G+ and G− only depends from the parity of d. If d is even, then

χd = 1 and H is contained in G+. Otherwise, H is contained in G−.

We recall that, if H is a subgroup of G, then a jump of H in G is a positive integer

j such that H ∩Gj 6= H ∩Gj+1.

Lemma 169. All jumps of a cyclic subgroup of G have the same parity.

Proof. Let H be a cyclic subgroup of G. The automorphism α being intense, it

follows from Lemma 93 that there exists g ∈ G such that gHg−1 is A-stable. By

Lemma 167, the subgroup gHg−1 is contained in G+ or in G−. We conclude by

applying Lemma 168.

Lemma 170. Let c ∈ Z≥1 denote the class of G. Then the following hold.

1. The induced action of A on Z(G) is through χc.

2. If c is even, then Z(G) ⊆ G+.

3. If c is odd, then Z(G) ⊆ G−.
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Proof. The subgroup Gc is contained in Z(G) and, by Lemma 104, the group A

acts on Gc through χc. From the combination of Corollary 103 with Lemma 66,

it follows that A acts on Z(G) through χc. If c is even, then χc = 1 and Z(G) is

contained in G+. Otherwise, χc = χ and Z(G) is a subset of G−.

Lemma 171. Let c ∈ Z≥1 be the class of G. Then, for all i ∈ {1, . . . , c}, if H is

a quotient of G of class i, then Z(H) = Hi.

Proof. If i = 1 the result is clear; we assume that i is at least 2 and that the

result holds for i − 1. Let H be a quotient of G of class i, which has, thanks to

Lemma 101, intensity greater than 1. Let β be intense of order 2 and let B = 〈β〉

and ψ = χH |B. The subgroup Hi is central in H , so Z(H)/Hi is isomorphic to a

subgroup of Z(H/Hi). By the induction hypothesis Z(H/Hi) = Hi−1/Hi and it

follows that Hi ⊆ Z(H) ⊆ Hi−1. By Lemma 104, the group B acts on Hi−1/Hi

and Hi, respectively through ψi−1 and ψi, which are distinct characters since

ψ 6= 1. Moreover, the induced action of B on Z(H) is through ψi, by Lemma

170(1). Lemma 66 yields Z(H) = Hi.

We remark that, to prove Proposition 166, it now suffices to combine Lemma 171

with Lemma 30.

6.2 About the third width

Let p be a prime number and let G be a finite p-group. If i is a positive integer,

we recall that the i-th width of G is defined to be wtG(i) = logp |Gi : Gi+1|, where

(Gi)i≥1 denotes the lower central series of G. Thanks to Theorem 125(2), we

know that, if G has class at least 3 and int(G) > 1, then (wtG(1),wtG(2)) = (2, 1)

and wtG(3) is either 1 or 2. In the case in which the class of G equals 3, then

both situations wtG(3) = 1 and wtG(3) = 2 occur. What about higher nilpotency

classes? We prove the following.

Proposition 172. Let p be a prime number and let G be a finite p-group of class at

least 4. For each positive integer i, denote wi = wtG(i). Assume that int(G) > 1.

Then (w1, w2, w3) = (2, 1, 2).

Until the end of Section 6.2, the following assumptions will hold. Let p be a prime

number and let G be a finite p-group. Let (Gi)i≥1 denote the lower central series

of G and, for each positive integer i, denote wi = wtG(i). We assume that G has

class 4 and that (w1, w2, w3, w4) = (2, 1, 1, 1). We will show that int(G) = 1.

Lemma 173. Assume that p is odd. Then Z(G) = G4.

Proof. The class of G being 4, the subgroup G4 is contained in Z(G). Now, the

group Z(G)/G4 is contained in Z(G/G4) and, as a consequence of Lemma 140, the
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centre of G/G4 is equal to G3/G4. It follows that G4 ⊆ Z(G) ⊆ G3. The groups

Z(G) and G3 are distinct, because the class of G is 4, so, the index |G3 : G4| being

p, we get that G4 = Z(G).

Lemma 174. The subgroup G2 is abelian.

Proof. The group G2/G3 is cyclic, because w2 = 1, so [G2, G2] = [G2, G3], by

Lemma 28. It follows from Lemma 20 that [G2, G2] ⊆ G5 = {1}, and thus G2 is

abelian.

Lemma 175. Assume that p is odd. Then the following hold.

1. The subgroup [CG(G3), G2] is contained in G4.

2. One has |CG(G3) : G2| = p.

Proof. To lighten the notation, write C = CG(G3). We first prove (1). The

group [G2, [G,C]] is contained in [G2, G2] so it follows from Lemma 174 that

[G2, [G,C]] = {1}. Moreover, [C, [G2, G]] = [C,G3] = {1}, by definition of C.

Thanks to Lemma 19, the subgroup [G, [C,G2]] is trivial, and thus [C,G2] is

contained in Z(G). The centre of G is equal to G4, by Lemma 173, and (1) is

proven. We prove (2). Let D be the unique subgroup of G containing G4 such

that D/G4 = CG/G4
(G2/G4). Then one has [[G,D], G2] ⊆ [G2, G2] = {1} and

[[D,G2], G] ⊆ [G4, G] = {1}. Lemma 19 yields that [D,G3] = [D, [G,G2]] = {1}

and therefore D is contained in C. It follows from Lemma 137(1) that

p ≤ |C : G2| ≤ |G : G2| = p2.

The group G3 is not central, and so |C : G2| = p.

Lemma 176. If int(G) > 1, then CG(G3) is abelian.

Proof. Assume that int(G) > 1. As a consequence of Proposition 95, the prime p

is odd. Let α be an intense automorphism of G of order 2 and write A = 〈α〉 and

χ = χG|A. To lighten the notation, write C = CG(G3). By Lemma 175(2), the

index of G2 in C is p, so it follows from Lemma 28 that [C,C] = [C,G2]. Moreover,

[C,G2] is contained in G4, by Lemma 175(1), and G4 = Z(G) by Lemma 173. By

Lemma 22, the commutator map C ×G2 → G4 is bilinear and, as a consequence

of Lemma 174, it factors as φ : C/G2 ×G2/G3 → G4. By Lemma 104, the group

A acts on C/G2 and G2/G3 respectively through χ and χ2, so, as a consequence

of Lemma 61, the group A acts on [C,G2] through χ3 = χ. By Lemma 104, the

group A acts on G4 through χ4 = 1. Since χ 6= 1, it follows from Lemma 66 that

[C,C] is trivial, and therefore C is abelian.
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We recall here that, if A = 〈α〉 is a multiplicative group of order 2 acting on

a finite group B of odd order, then one defines B+ = {x ∈ B : α(x) = x} and

B− = {x ∈ B : α(x) = x−1}. (See Section 2.2.)

Lemma 177. Assume that int(G) > 1 and let α be an intense automorphism of

G of order 2. Write C = CG(G3). Then C = C+ ⊕ C− and |C+| = |C−| = p2.

Proof. The group C is A-stable and it is abelian by Lemma 176. From Corollary

76, it follows that C = C+ ⊕C−. The cardinalities of C+ and C− are both equal

to p2, as a consequence of Lemma 85.

Lemma 178. Assume that int(G) > 1 and let α be an intense automorphism of

G of order 2. Write C = CG(G3). Then C+ is cyclic if and only if C− is cyclic.

Proof. The subgroup C is A-stable and C = C+⊕C− , by Lemma 177. Moreover,

both C+ and C− have cardinality p2. The subgroup Cp is characteristic in G, so

Cp is A-stable. The group G has class 4 and, as a consequence of Lemma 170(2),

the subgroup Z(G) is contained in G+. We first prove the implication from right

to left. Assume that C− is cyclic. Then Cp is a non-trivial subgroup of the p-

group G. From Lemma 29, it follows that Cp has non-trivial intersection with the

centre of G and, in particular, Cp ∩ G+ 6= {1}. The group C+ is cyclic, because

it has order p2 and exponent different from p. To prove the implication from left

to right, assume that C+ is cyclic. As a consequence of Lemma 85, the group C+

is contained in G2. We claim that there exists an element x ∈ C \G2 of order p2.

If not, then it means that C is equal to the union of two of its proper subgroups,

namely C ∩G2 with µp(C), which is impossible. It follows that there exists x ∈ C

of order p2, with dptG(x) = 1. Fix such x. By Lemma 168, there exists g ∈ G

such that gxg−1 belongs to G−. Since both C− and 〈x〉 have order p2, the group

C− is cyclic.

Lemma 179. Let H be a subgroup of CG(G3). If int(G) > 1, then H has at most

p conjugates in G.

Proof. Assume that int(G) > 1. The group CG(G3) is abelian, by Lemma 176,

and therefore CG(G3) normalizes H . It follows that |G : NG(H)| is at most

|G : CG(G3)|. By Lemma 175(2) the index |G : CG(G3)| is equal to p, and thus H

has at most p conjugates in G.

Lemma 180. Assume that int(G) > 1 and let α be an intense automorphism of

G of order 2. Write C = CG(G3). Then C+ is cyclic.

Proof. Assume the contrary. Then, as a consequence of Lemma 178, both C+ and

C− are elementary abelian. From Lemma 177 it follows that C is an Fp-vector
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space of dimension 4. Let X be the collection of 1-dimensional subspaces of C;

then we have

|X | =
p4 − 1

p− 1
= p3 + p2 + p+ 1.

Let moreover X+ = {H ∈ X : α(H) = H}. As a consequence of Lemma 167,

the set X+ consists of the 1-dimensional subspaces of C that are contained in

C+∪C−. Then |X+| = 2(p+1). By Lemma 179, each element of X+ has at most

p conjugates in G, so it follows from Lemma 94 that

2p(p+ 1) = p|X+| ≥
∑

H∈X+

|G : NG(H)| ≥ |X | = p3 + p2 + p+ 1.

Contradiction.

Lemma 181. The intensity of G is equal to 1.

Proof. Assume by contradiction that int(G) > 1 and let α be an intense automor-

phism of G of order 2. Write C = CG(G3). The group C is abelian, by Lemma

176, and C = C+ ⊕ C−, by Lemma 177. Moreover, C+ and C− have both car-

dinality p2. By Lemma 180, the subgroup C+ is cyclic so, by Lemma 178, the

subgroup C− is also cyclic. Let X be the collection of cyclic subgroups of C of

order p2 and let X+ be the subset of X consisting of the A-stable ones. It follows

from Lemma 167 that X+ = {C+, C−} and the cardinality of X+ is thus 2. On

the other hand, the cardinality of X is equal to

|X | =
p4 − p2

p2 − p
= p(p+ 1).

By Lemma 179, each element of X+ has at most p conjugates, so it follows from

Lemma 94 that

2p ≥ p|X+| ≥ |X | = p2 + p.

Contradiction.

We conclude Section 6.2 by giving the proof of Proposition 172. Let Q be a finite

p-group of class at least 4 with int(Q) > 1. The class of Q being 4, the subgroup

Q4 is non-trivial and, by Lemma 35, there exists a normal subgroup M of Q

that is contained in Q4 with index p. Fix M and denote Q = Q/M . Thanks to

Lemma 101, the intensity of Q is greater than 1, so it follows from Theorem 125(2)

that (wtQ(1),wtQ(2),wtQ(3),wtQ(4)) = (2, 1, f, 1), where f ∈ {1, 2}. Lemma 181

yields f = 2 and the proof of Proposition 172 is complete.
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6.3 A bound on the width

From Section 2.3, we recall that, given a finite p-group G and a positive integer i,

the i-th width of G is defined to be wtG(i) = logp |Gi : Gi+1|. The unique purpose

of Section 6.3 is to prove the following result.

Proposition 182. Let p be a prime number and let G be a finite p-group. Let

c denote the class of G. Assume c ≥ 3 and int(G) > 1. Then, for each i in

{1, 2, . . . , c− 1}, one has wtG(i) wtG(i+ 1) ≤ 2.

We devote the remaining part of this section to the proof of Proposition 182. Until

the end of Section 6.3 we work thus under the assumptions of Proposition 182. As

a consequence of Proposition 95, the prime p is odd.

Lemma 183. One has wtG(1) wtG(2) = 2.

Proof. This follows directly from Theorem 125(2).

Lemma 184. Let φ : G/G2 → Hom(Gc−1/Gc, Gc) be the function defined by

xG2 7→ (aGc 7→ [x, a]). Then φ is a homomorphism.

Proof. The map φ is induced from the surjective homomorphism from Lemma 25

and φ is thus itself a homomorphism of groups.

Lemma 185. The group Gc−1 is abelian.

Proof. By Lemma 20, the group [Gc−1, Gc−1] is contained in G2c−2, which is itself

contained in Gc+1 because c ≥ 3. Since Gc+1 = {1}, the group Gc−1 is abelian.

Lemma 186. Let α be an intense automorphism of G of order int(G) and write

A = 〈α〉. Then Gc has a unique A-stable complement in Gc−1.

Proof. Denote by χ the restriction of the intense character of G to A (see Section

3.2). The group Gc−1 is abelian, by Lemma 185, and, by Lemma 104, the group A

acts on Gc−1/Gc and Gc respectively through χc−1 and χc. The characters χc−1

and χc are distinct, because χ 6= 1, so, by Theorem 68, the subgroup Gc has a

unique A-stable complement in Gc−1.

Lemma 187. The homomorphism φ from Lemma 184 is surjective.

Proof. Let α be an intense automorphism of G of order int(G) and write A = 〈α〉.

By Lemma 185, the group Gc−1 is abelian and, by Lemma 186, there exists a

unique A-stable complement M of Gc in Gc−1. Now the group A acts in a nat-

ural way on the set of complements of Gc in Gc−1 and, the automorphism α

being intense, it follows from Lemma 93 that all complements of Gc in Gc−1 are
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conjugate to M in G. On the other hand, by Lemma 114, the set of comple-

ments of Gc in Gc−1 consists of the elements {mf(m) : m ∈M} as f varies in

Hom(M,Gc). It follows that, for each f ∈ Hom(M,Gc), there exists x ∈ G,

such that {mf(m) : m ∈M} = xMx−1. Fix the pair (f, x). Then, for all

m ∈ M , there exists n ∈ M such that mf(m) = xnx−1 = [x, n]n. It follows that

n−1m = [x, n]f(m)−1 belongs to M ∩ Gc = {1}, so m = n. We have proven that

f(m) = [x,m]. Now, the groups Hom(Gc−1/Gc, Gc) and Hom(M,Gc) are isomor-

phic and, the choice of f being arbitrary, each homomorphism f : Gc−1/Gc → Gc
is of the form mGc 7→ [x,m], for some x ∈ G. In other words, we have proven

surjectivity of φ.

Lemma 188. One has wtG(c− 1) wtG(c) ≤ 2.

Proof. The groups Gc−1/Gc and Gc are Fp-vector spaces, as a consequence of

Lemma 110. It follows that the dimension of Hom(Gc−1/Gc, Gc) is equal to

wtG(c − 1) wtG(c). Thanks to Lemma 187, the product wtG(c − 1) wtG(c) is

at most wtG(1), which is equal to 2, by Theorem 125(2). We get thus that

wtG(c− 1) wtG(c) ≤ 2.

The proof of Proposition 182 is now an easy exercise, which we spell out here. If

i = 1, then we are done by Lemma 183. Assume that i > 1. For all indices j ≤ i,

the quotient G/Gj+1 has class j so, without loss of generality, we assume that

c = i+ 1. We conclude by applying Lemma 188.

We remark that Theorem 165 is the same as Proposition 182. Moreover, Theorem

164 is given by the combination of Propositions 172 and 182.
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Chapter 7

Higher nilpotency classes

The aim of this chapter is to gain better control of the p-power map on finite

p-groups of intensity greater than 1. We remind the reader that, if n is a positive

integer andG is a group, then Gn is equal to the subgroup ofG that is generated by

the n-th powers of the elements of G, i.e. Gn = 〈xn : x ∈ G〉 (see List of Symbols).

One of the most important results we achieve in Chapter 7 is the following.

Theorem 189. Let p be a prime number and let G be a finite p-group. Assume

that the class of G is at least 4 and that int(G) > 1. Then Gp = G3.

We remark that, whenever p is larger than 3, Theorem 189 cannot be extended to

groups of class 3. There are indeed examples, for p > 3, of finite p-groups of class

3, intensity greater than 1, and exponent p. We deal extensively with the case of

3-groups in Chapter 9.

7.1 Groups of class 4

In Section 7.1 we start the preparation for the proof of Theorem 189, which will be

given in Section 7.3. This very section will thus just consist of structural lemmas,

which will be later of use.

The following assumptions will be valid until the end of Section 7.1. Let p be

a prime number. Let moreover G be a finite p-group of class 4 and denote by

(Gi)i≥1 the lower central series of G. For i ∈ {1, 2, 3, 4}, we define wi to be

wtG(i) = logp |Gi : Gi+1| (see Section 2.3).

Lemma 190. Assume that (w1, w2, w3, w4) = (2, 1, 2, 1) and Z(G) = G4. Then

the commutator map induces a non-degenerate map G/G2 ×G3/G4 → G4.

Proof. The commutator map induces a bilinear map γ : G/G2 × G3/G4 → G4

whose image generates G4, by Lemma 24. The subgroup G4 has dimension 1 as
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an Fp-vector space, while w1 = w3 = 2. The quotient G/G2 has exponent p,

thanks to Lemma 36, and the exponent of G3/G4 is equal to p, as a consequence

of Lemma 25 (the property of being elementary abelian is preserved by surjective

homomorphisms and tensor products). Moreover, the centre of G being G4, the

right kernel of γ is trivial. It follows from Lemma 2 that the left kernel of γ has

also dimension 0, so γ is non-degenerate.

Lemma 191. Assume that (w1, w2, w3, w4) = (2, 1, 2, 1). Let C be a maximal

subgroup of G. Then C contains G2 and |G : C| = |C : G2| = p.

Proof. The subgroup C being maximal, it has index p in G and it contains the

Frattini subgroup of G. Since G2 is contained in Φ(G) and |G : C| = p, we get

|C : G2| = p.

Lemma 192. Assume that int(G) > 1. Then (w1, w2, w3, w4) = (2, 1, 2, 1) and G

has order p6. Moreover, one has Z(G) = G4.

Proof. The quadruple (w1, w2, w3, w4) is equal to (2, 1, 2, 1) by Theorem 164 and

the order of G is equal to p6, as a consequence of Lemma 84. The centre of G is

equal to G4 thanks to Lemma 171.

Lemma 193. Let C be a maximal subgroup of G and assume that int(G) > 1.

Then G4 ⊆ Z(C) ⊆ G3 and |G3 : Z(C)| = |Z(C) : G4| = p.

Proof. We assume that int(G) > 1. By Lemma 192, the subgroups G4 and Z(G)

are the same and (w1, w2, w3, w4) = (2, 1, 2, 1). Moreover, by Lemma 190, the

commutator map induces a non-degenerate map G/G2 ×G3/G4 → G4. It follows

from Lemma 2 that G3 ∩ Z(C) has index p in G3. Now the subgroup Z(C) is

normal in G, because it is characteristic in the normal subgroup C, and therefore

Proposition 166 yields Z(C) ⊆ G3. We get that |G3 : Z(C)| = |Z(C) : G4| = p.

Lemma 194. Let M be a normal subgroup of G that contains G4 with index p.

If int(G) > 1, then CG(M) is a maximal subgroup of G.

Proof. We assume that int(G) > 1. Then, by Lemma 192, we have that Z(G) = G4

and (w1, w2, w3, w4) = (2, 1, 2, 1). Let now M be a normal subgroup of G that

contains G4 with index p. As a consequence of Proposition 166, the subgroup M

is contained in G3. The commutator map from Lemma 190 being non-degenerate,

it follows from Lemma 2 that CG(M) is maximal in G.

Lemma 195. Assume that int(G) > 1. Let M be the collection of maximal

subgroups of G and let N be the collection of normal subgroups of G that contain

G4 with index p. Let f :M→ N be defined by N 7→ Z(N). Then f is a bijection

with inverse f−1 : M 7→ CG(M).
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Proof. The map f is well-defined, as a consequence of Lemma 193. Also the map

g : N → M, sending M to CG(M), is well-defined thanks to Lemma 194. It is

now easy to show that f and g are inverses to each other.

7.2 Class 4 and p-th powers

The goal of this section is to prove some technical lemmas regarding the p-th

powering on finite p-groups of intensity greater than 1. We will use such lemmas

in Section 7.3, where Theorem 189 is proven.

Through the whole of Section 7.2, the following assumptions will be valid. Let p

be a prime number. Let moreover G be a finite p-group of class 4 and denote by

(Gi)i≥1 the lower central series of G. Let ρ : G → G be defined by x 7→ xp; this

is the first time we introduce this notation, which can be also found in the List of

Symbols. For each i ∈ {1, 2, 3, 4}, we will write wi = wtG(i) for the i-th width of

G (see Section 2.3). Assume that int(G) > 1. It follows from Proposition 95 that

G is non-trivial and p is odd.

Lemma 196. The map ρ induces a map ρ : G/G2 → G3/G4.

Proof. For each index i ∈ Z≥1, the subset ρ(Gi) is contained in Gi+2, as a con-

sequence of Proposition 123. In particular, ρ(G2) is contained in G4. By Lemma

192, the subgroup Z(G) is equal to G4 and (w1, w2, w3, w4) = (2, 1, 2, 1). Let x be

an element of G and define C = 〈x,G2〉; denote by (Ci)i≥1 the lower central series

of C. The quotient C/G2 is cyclic, so, thanks to Lemma 28, the subgroups C2 and

[C,G2] are equal. It follows that C3 = [C,C2] is contained in G4, and, the prime p

being odd, we get that Cp2Cp is contained inG4. Let now y ∈ G2. By Lemma 48, we

have that ρ(xy) ≡ ρ(x)ρ(y) mod Cp2Cp, and therefore ρ(xy) ≡ ρ(x)ρ(y) mod G4.

Since the element ρ(y) belongs to G4 and the choices of x and y were arbitrary,

the map ρ is well-defined.

Lemma 197. Let C be a maximal subgroup of G and assume that ρ(C \G2)∩G4

is not empty. Then ρ(C) ⊆ G4.

Proof. By Lemma 196, the map ρ induces a function ρ : G/G2 → G3/G4, which

then becomes a homomorphism whenever we restrict it to a cyclic subgroup of

G/G2. Since ρ−1(G4) ∩ (C \ G2) is non-empty, it generates C modulo G2, and

thus ρ(C/G2) ⊆ G4. It follows that ρ(C) ⊆ G4.

Lemma 198. Let C be a maximal subgroup of G and assume that ρ(C \G2)∩G4

is not empty. Then ρ(C \G2) = {1}.

Proof. Let α be an intense automorphism of G of order 2 and set A = 〈α〉. Let H

be a cyclic subgroup of C, not contained in G2, and such that ρ(H) ⊆ G4. Without
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loss of generality we assume that H is A-stable (otherwise we can take a conjugate

of H that is A-stable, thanks to Lemma 93). As a consequence of Proposition 134,

the automorphism α induces scalar multiplication by−1 onH/(H∩G2), so, thanks

to Lemma 63, the restriction of α to Hp coincides with scalar multiplication by

−1. However, the subgroup Hp being contained in G4, it follows from Proposition

134 that α coincides with the identity map on Hp. Lemma 66 yields Hp = {1},

and, the choiche of H being arbitrary, we get ρ(C \G2) = {1}.

7.3 Class 4 and intensity

The unique purpose of Section 7.3 is to give the proof of the following proposition.

Proposition 199. Let p be a prime number and let G be a finite p-group of class

at least 4. Denote by (Gi)i≥1 the lower central series of G. If int(G) > 1, then

Gp = G3.

Until the end of Section 7.3, the following assumptions will hold. Let p be a prime

number and let G be a finite p-group of class 4. Let ρ : G → G be defined by

x 7→ xp (see also the List of Symbols). Assume that int(G) > 1. It follows that p

is odd and the group G is non-trivial (see Section 3.2). Let α denote an intense

automorphism of G of order 2 and write A = 〈α〉. Set G+ = {g ∈ G : α(g) = g}

and G− = {g ∈ G : α(g) = g−1}. For each maximal subgroup C of G, define

moreover YC to be the collection of abelian subgroups of G that can be written as

〈x〉 ⊕ 〈y〉, with x ∈ C \G2 and y ∈ Z(C) \G4. We will call Y +
C the set consisting

of the A-stable elements of YC .

Lemma 200. Let C be a maximal subgroup of G and assume that ρ(C\G2)∩G4 is

not empty. Let H be an element of YC . Then H has exponent p and H∩G4 = {1}.

Proof. Let H = 〈x〉⊕〈y〉 be an element of YC , where x ∈ C\G2 and y ∈ Z(C)\G4.

The group Z(C) is normal in G, because Z(C) is characteristic in the normal

subgroup C, and, by Lemma 193, the group G3 contains Z(C). From Proposition

123, it follows that Z(C) has exponent p, and thus yp = 1. The element xp is

1, by Lemma 198, and so Hp = {1}. To conclude, assume that xayb ∈ H ∩ G4.

Then xa = (xayb)y−b belongs to H ∩ G3, so a ≡ 0 mod p. From the fact that

〈y〉 ∩G4 = {1}, we conclude that H ∩G4 = {1}.

Lemma 201. Let C be a maximal subgroup of G and assume that ρ(C \G2)∩G4

is not empty. If H ∈ Y +
C , then H ⊆ G−.

Proof. Let H = 〈x〉⊕〈y〉 be an element of Y +
C , where x ∈ C\G2 and y ∈ Z(C)\G4.

By Lemma 200, the group H has exponent p and so the order of H is p2. The
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element x has depth 1 and the depth of y is 3, as a consequence of Lemma 193.

It follows from Lemma 85 that

|H | ≥ |H ∩G−| = pwtG
H (1)pwtG

H(3) ≥ p2 = |H |.

All inequalities are in fact equalities and H ∩G− = H .

Lemma 202. Let C be a maximal subgroup of G and assume that ρ(C \G2)∩G4

is not empty. Then the cardinality of Y +
C is equal to p.

Proof. Write C− = C ∩G− and Z(C)− = Z(C) ∩G−. Thanks to Lemma 201 we

are reduced to count the subgroups of the form 〈x〉 ⊕ 〈y〉, with x ∈ C− \G2 and

y ∈ Z(C)− \ G4. By Lemma 193, the subgroup Z(C) contains G4. By Lemma

192, the quadruple (wtG(1),wtG(2),wtG(3),wtG(4)) is equal to (2, 1, 2, 1) so, as

a consequence of Lemma 85, the cardinalities of C− \ G2 and Z(C)− \ G4 are

respectively p3 − p2 and p − 1. Fix now a basis (x, y) for a subgroup H , where

x ∈ C− \ G2 and y ∈ Z(C)− \ G4. Thanks to Lemma 200, the set of equivalent

bases for H is B = {(xayb, yc) : a, c ∈ F∗
p, b ∈ Fp}, and thus |B| = p(p− 1)2. The

cardinality of Y +
C is

|Y +
C | =

|C− \G2| |Z(C−) \G4|

|B|
=

(p3 − p2)(p− 1)

p(p− 1)2
= p.

Lemma 203. Let C be a maximal subgroup of G and assume that ρ(C \G2)∩G4

is not empty. Then the cardinality of YC is equal to p4.

Proof. We want to count the subgroups of the form 〈x〉⊕〈y〉, with x ∈ C \G2 and

y ∈ Z(C)\G4. The quadruples (wtG(1),wtG(2),wtG(3),wtG(4)) and (2, 1, 2, 1) are

the same, by Lemma 192, and so |C|−|G2| = p5−p4. Moreover, thanks to Lemma

193, the set Z(C)\G4 has cardinality p2−p. Fix now (x, y) a basis for an element

H ∈ YC , such that x ∈ C \ G2 and y ∈ Z(C) \ G4. As a consequence of Lemma

200, the set of equivalent bases for H is B = {(xayb, yc) : a, c ∈ F∗
p, b ∈ Fp}, and

so B has cardinality p(p− 1)2. It follows that

|YC | =
|C \G2| |Z(C) \G4|

|B|
=

(p5 − p4)(p2 − p)

p(p− 1)2
= p4.

Lemma 204. Let C be a maximal subgroup of G and assume that ρ(C \G2)∩G4

is not empty. Let H be an element of Y +
C . Then one has NG(H) = HG4 and

|G : NG(H)| ≤ p3.
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Proof. Let H be an arbitrary element of Y +
C . By Lemma 192, the subgroup G4

is central of order p so, as a consequence of Lemma 200, the cardinality of HG4

is at least p3. Moreover, by Lemma 192, the cardinality of G is equal to p6.

The subgroup HG4 is contained in the normalizer of H and, in particular, |G :

NG(H)| ≤ |G : HG4| ≤ p3. Assume by contradiction that there exists K ∈ Y +
C

such that NG(K) 6= KG4. Then |G : NG(K)| < p3, and thus it follows from

Lemma 94 that

|YC | ≤
∑

H∈Y +

C

|G : NG(H)| < |Y +
C | p

3.

By Lemma 202, the cardinality of Y +
C is equal to p, so we get a contradiction to

Lemma 203.

Lemma 205. One has ρ−1(G4) ⊆ G2.

Proof. Assume by contradiction that there exists a maximal subgroup C of G

such that ρ(C \ G2) ∩ G4 is not empty. Thanks to Lemma 204, the normalizer

of each element H of Y +
C is equal to HG4. It follows from the definition of YC

that, given any H ∈ Y +
C , the A-stable subgroup NG(H) does not contain G2. As

a consequence of Lemma 85, the subgroup G+ is not contained in NG(H). From

the combination of Lemmas 81 and 94, we get that |YC | <
∑
H∈Y +

C
|G : NG(H)|.

By Lemma 204, the normalizer of each element of Y +
C has index at most p3 in

G, so, together with Lemmas 202 and 203, we obtain p4 = |YC | < |Y
+
C | p

3 = p4.

Contradiction.

Lemma 206. Let ρ be as in Lemma 196. Let moreover C be a maximal subgroup

of G. Then the following hold.

1. The map ρ is a bijection.

2. One has Z(C) = Cp.

Proof. The restriction of ρ to any cyclic subgroup of G/G2 is a homomorphism, in

particular the restriction to C/G2. As a consequence of Lemma 205, the subgroup

ρ(C/G2) has size p, and so Cp is not contained in G4. The subgroup Cp is

characteristic in the normal subgroup C, and therefore Cp is normal in G. It

follows from Lemma 166 that Cp contains G4, and so, if x ∈ C \G2, then Cp =

〈xp, G4〉. By Lemma 190, the commutator map induces a non-degenerate map

γ : G/G2 × G3/G4 → G4 and, if x ∈ C, then γ(xG2, x
pG4) = 1. It follows

that γ(C/G2, ρ(C/G2)) = 1 and so Cp ⊆ Z(C). Since γ is non-degenerate, we get

Cp = Z(C), and thus (2) is proven. We now prove (1). Denote byM the collection

of maximal subgroups of G. As a consequence of Lemma 195, the quotient G3/G4

is equal to
⋃
N∈M Z(N)/G4 =

⋃
N∈M ρ(N/G2) and so ρ is surjective. By Lemma

192, the indices |G1 : G2| and |G3 : G4| are equal, so the map ρ is a bijection.
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We remark that Theorem 189 is the same as Proposition 199, which we now

prove. Let Q be a finite p-group of class at least 4. Assume that int(G) > 1. As

a consequence of Lemma 101, the group Q/Q5 has intensity greater than 1, so

Lemma 206 yields Q3 = QpQ5. The subgroup Qp being normal in Q, it follows

from Lemma 166 that Qp = Q3. The proof of Proposition 199 is now complete.

7.4 Groups of class 5

In analogy with Sections 7.1 and 7.3, this section serves as foundations for the

results in Section 7.5.

Until the end of Section 7.4, the following assumptions will hold. Let p be a prime

number and let G be a finite p-group. Let ρ : G → G denote the p-the powering

on G, i.e. the map x 7→ xp. Denote by (Gi)i≥1 the lower central series of G and,

for each positive integer i, write wi = wtG(i). Assume that |G5| = p, so G has

class 5. Furthermore, assume that int(G) > 1, so p is odd. Let α be an intense

automorphism of G of order 2 and write A = 〈α〉.

Lemma 207. One has (w1, w2, w3, w4, w5) = (2, 1, 2, 1, 1) and the order of G is

p7. Moreover, one has Z(G) = G5.

Proof. As a consequence of Lemma 101, the intensity of G/G5 is greater than 1.

The group G/G5 has class 4, so from Lemma 192 it follows that (w1, w2, w3, w4) =

(2, 1, 2, 1) and that the order of G/G5 is p6. Since G5 has order p, the order of G

is equal to p7. The centre of G is equal to G5 by Lemma 171.

Lemma 208. The subgroup G3 is abelian and G2 ⊆ CG(G4).

Proof. The group G6 being trivial, both claims follow from Lemma 20.

Lemma 209. One has |G3 : CG3
(G2)| ≤ p.

Proof. To lighten the notation, let C = CG3
(G2). By Lemma 23, the com-

mutator map induces a bilinear map γ : G2/G3 × G3/G4 → G5 whose right

kernel is equal to C/G4. It follows that γ induces an injective homomorphism

G3/C → Hom(G2/G3, G5). By Lemma 207, both w2 and w5 are equal to 1, so

Hom(G2/G3, G5) has order p. In particular, we get |G3 : C| ≤ p.

Lemma 210. The restriction of ρ to G2 is an endomorphism of G2.

Proof. Thanks to Lemma 207, the group G2/G3 is cyclic and so [G2, G2] =

[G2, G3]. From Lemma 20, it follows that [G2, G2] is contained in G5, which

is equal to the centre of G by Lemma 207. In particular, the class of G2 is at

most 2 and, p being odd, Lemma 50 yields that G2 is regular. Now the commu-

tator subgroup of G2 is contained in G5, whose order is p, so, by Lemma 51, the

restriction of ρ to G2 is an endomorphism of G2.
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7.5 Class 5 and intensity

We recall that, if G is a finite group, we denote by (Gi)i≥1 the lower central series

of G (see List of Symbols). In this section, we prove the following result.

Proposition 211. Let p be a prime number and let G be a finite p-group of class

at least 5. If int(G) > 1, then Gp2 = G4.

We will keep the following assumptions until the end of Section 7.5. Let p be

a prime number and let G be a finite p-group. For any positive integer i, write

wi = wtG(i) and assume that w5 = 1. Then the class of G is 5. Assume moreover

that int(G) > 1, so, thanks to Proposition 95, the prime p is odd. Let α be an

intense automorphism of G of order 2 and write A = 〈α〉. In concordance with the

notation from Section 2.2, write G+ = {x ∈ G : α(x) = x}. In conclusion, define

X to be the collection of all subgroups of G whose jumps in G are exactly 2 and 4

and denote X+ = {H ∈ X : α(H) = H}. In this section, the List of Symbols will

be fully respected.

Lemma 212. The elements of X have order p2.

Proof. Let H be an element of X . As a consequence of Lemma 207, both widths

wtGH(2) and wtGH(4) are equal to 1. Now apply Lemma 84.

Lemma 213. Assume that G2 has exponent p. Let H be a subgroup of G. Then

H ∈ X if and only if there exist x ∈ G2\G3 and y ∈ G4\G5 such that H = 〈x〉⊕〈y〉.

Proof. If H = 〈x〉 ⊕ 〈y〉, with x ∈ G2 \G3 and y ∈ G4 \G5, then H belongs to X ,

thanks to Lemma 82. We prove the converse. The subgroup H has order p2, by

Lemma 212, and H cannot be cyclic, because it is contained in G2. The jumps of

H in G being 2 and 4, it follows from Lemma 82 that there exist elements x and

y in H of depths respectively 2 and 4 in G. As a consequence of Lemma 208, the

subgroup H decomposes as H = 〈x〉 ⊕ 〈y〉.

Lemma 214. Assume that G2 has exponent p. Then |X | = p4.

Proof. Thanks to Lemma 213, all elements H of X are of the form H = 〈x〉 ⊕ 〈y〉,

with x ∈ G2 \G3 and y ∈ G4 \G5. Let (x, y) ∈ (G2 \G3)× (G4 \G5) and let H be

the Fp-vector space that is spanned by x and y. The collection of equivalent bases

for H is B = {(xayb, yc) : a, c ∈ F∗
p, b ∈ Fp} and so B has cardinality p(p − 1)2.

From Lemma 207 it follows that the cardinalities of G2 \ G3 and G4 \ G5 are

respectively p5 − p4 and p2 − p. We conclude by computing

|X | =
|G2 \G3| |G4 \G5|

|B|
=

(p5 − p4)(p2 − p)

p(p− 1)2
= p4.
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Lemma 215. One has X+ = {G+}.

Proof. From Lemmas 85 and 207, it follows that G+ has order p2. Let now H be

an element of X+. It follows from Lemma 85 that H ∩G+ has cardinality p2 and,

thanks to Lemma 212, the subgroups H and G+ are the same. In particular, the

only element of X+ is G+.

Lemma 216. The exponent of G2 is different from p.

Proof. We work by contradiction, assuming that the exponent of G2 is p. To

lighten the notation, write C = CG3
(G2) and N = CG+. The group C is char-

acteristic in G, so N is a subgroup of G. Moreover, G+ is contained in G2,

thanks to Lemma 85, so N is a subgroup of NG(G+). By Lemma 209, the group

C is contained in G3 with index at most p and, by Lemma 207, the quadruple

(w2, w3, w4, w5) is equal to (1, 2, 1, 1). It follows from Lemma 84 that the order of

N is at least p4. The order of G is p7, by Lemma 207, and thus |G : N | ≤ p3. By

Lemma 215, the set X+ has only one element, namely G+, so Lemma 94 yields

|X | ≤ |G : NG(G+)| ≤ |G : N | ≤ p3.

Contradiction to Lemma 214.

Lemma 217. One has ρ(G2) = G4.

Proof. As a consequence of Lemma 210, the set ρ(G2) is a characteristic subgroup

of G and, by Lemma 216, it is non-trivial. By Lemma 207, the centre of G is

equal to G5 so, as a consequence of Lemma 29, the intersection G5 ∩ ρ(G2) is

non-trivial. The order of G5 being p, the subgroup ρ(G2) contains G5. Thanks to

Proposition 123, the quotient G2/G4 is elementary abelian and so G5 ⊆ ρ(G2) ⊆

G4. By Lemma 207, the dimension of G4/G5 is 1 and therefore there are only

two possibilities: either ρ(G2) = G4 or ρ(G2) = G5. In the first case we are

done, so assume by contradiction the second. Then, by Lemma 169, each element

of G2 \ G3 has order p. It follows that G2 is equal to the union of two proper

subgroups, namely ker ρ|G2
and G3. Contradiction.

We are finally ready to prove Proposition 211. To this end, let Q be a finite

p-group of class at least 5 with int(Q) > 1. Then the group Q/Q6 has class 5

and, as a consequence of Lemma 101, the intensity of Q/Q6 is greater than 1. By

Lemma 217, the subgroups (Q2/Q6)p and Q4/Q6 are equal, and so Qp2Q6 = Q4.

The subgroup Qp2 being normal in G, it follows from Lemma 166 that Qp2 = Q4.

This concludes the proof of Proposition 211.

We remark that Proposition 211 can be easily derived, when p is greater than 3,

from Theorem 189. We will show a way of doing so in Section 8.1.
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Chapter 8

A disparity between the primes

The main result of Chapter 8 is Theorem 218. We recall that, if G is a finite

p-group and i is a positive integer, then wtG(i) = logp |Gi : Gi+1|, where (Gi)i≥1

denotes the lower central series of G.

Theorem 218. Let p > 3 be a prime number and let G be a finite p-group with

int(G) > 1. Let c denote the class of G and assume that c ≥ 3. If i is a positive

integer such that wtG(i) wtG(i+ 1) = 1, then i = c− 1.

An equivalent way of formulating Theorem 218 is that of saying that, if G satisfies

the assumptions of Theorem 218 and we writw wi = wtG(i), then

(wi)i≥1 = (2, 1, 2, 1, . . . , 2, 1, f, 0, 0, . . .) where f ∈ {0, 1, 2}.

The restriction to primes greater than 3 in Theorem 218 is superfluous; it is how-

ever not worth the effort proving the result in general, since, as we will see in the

next chapter, 3-groups of intensity greater than 1 have class at most 4 and we

know from Theorems 125(2) and 164 that Theorem 218 is valid when c is 3 or 4.

8.1 Regularity

In Section 8.1 we make a distinction, for the first time, among the odd primes:

namely we separate the cases p = 3 and p > 3. The main result of this section is

Proposition 219. We refer to Section 1.5, for an overview of regular p-groups.

Proposition 219. Let p be a prime number and let G be a finite p-group. Assume

that int(G) > 1. Then the following are equivalent.

1. The group G is not regular.

2. The class of G is larger than 2 and p = 3.
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We will give the proof of Proposition 219 at the end of Section 8.1.

Lemma 220. Let p > 3 be a prime number and let G be a finite p-group. Assume

that int(G) > 1. Then the following hold.

1. The group G is regular.

2. If the class of G is at least 4, then G3 = ρ(G).

Proof. If the class of G is at most 4, the group G is regular by Lemma 50. We

assume that G has class at least 4. It follows from Lemma 101 that int(G/G5)

is larger than 1, and so, thanks to Lemma 192, the index |G : G3| is equal to p3.

From Theorem 189, we get that Gp = G3, and therefore |G : Gp| < pp. The group

G is regular, by Lemma 53, so, thanks to Lemma 52, the subgroup Gp coincides

with ρ(G). The proof is now complete.

We would like to stress that, for p > 3, Proposition 220(2) is a stronger version of

Theorem 189. In fact, not only G3 = Gp = 〈ρ(G)〉 but G3 coincides with the set

of p-th powers of elements of G.

Lemma 221. Let G be a finite 3-group with int(G) > 1. Then G is regular if and

only if G has class at most 2.

Proof. If G has class at most 2, then G is regular by Lemma 50. Assume by

contradiction that G is regular of class at least 3. As a consequence of Theorem

125(2), the group G is 2-generated, and so, by Lemma 55, the subgroup G2 is

cyclic. Proposition 123 yields that G3 = {1}. Contradiction.

We now give the proof of Proposition 219. To this end, let p be a prime number

and let G be a finite p-group with int(G) > 1. The intensity of G being greater

than 1, it follows from Proposition 95 that p is odd. The implication (2) ⇒ (1)

is given by Lemma 221. We prove (1) ⇒ (2). Assume that G is not regular.

Then Lemma 220 yields p = 3. Moreover, the class of G is larger than 2, as a

consequence of Lemma 50. The proof of Proposition 219 is complete.

8.2 Rank

The rank of a finite group G is the smallest integer r with the property that each

subgroup of G can be generated by r elements. We denote the rank of G by rk(G).

We will prove the following.

Proposition 222. Let p > 3 be a prime number and let G be a finite p-group of

class at least 4. If int(G) > 1, then rk(G) = 3.

72



8. A DISPARITY BETWEEN THE PRIMES

We recall that, if G is a group and n is a positive integer, then the subgroup µn(G)

is defined to be 〈x ∈ G : xn = 1〉.

Lemma 223. Let p be a prime number and let G be a non-trivial finite p-group.

Then rk(G) ≤ logp |µp(G)|.

Proof. This is is Corollary 2 from [Laf73].

Lemma 224. Let p > 3 be a prime number and let G be a finite p-group of class

at least 4. If int(G) > 1, then rk(G) ≤ 3.

Proof. Assume that int(G) > 1. By Theorem 189, the subgroup Gp is equal to

G3 so, by Lemma 52(3), the order of µp(G) is equal to |G : Gp| = |G : G3|. As a

consequence of Theorem 164, the index |G : G3| is equal to p3, and thus Lemma

223 yields rk(G) ≤ logp |G : G3| = 3.

We can now finally prove Proposition 222. In order to do this, let p be a prime

number and let G be a finite p-group of class at least 4, with int(G) > 1. Thanks

to Lemma 224, it suffices to present a subgroup of G whose minimum number of

generators is at least 3. The group G/G5 has class 4 and, thanks to Lemma 101, it

has intensity greater than 1. As a consequence of Theorem 164, the index |G2 : G4|

is equal to p3 and, thanks to Proposition 123, the quotient G2/G4 is elementary

abelian. It follows that Φ(G2) ⊆ G4 and the minimum number of generators for

G2 is at least logp(|G2 : G4|) = 3. Proposition 222 is now proven.

We would like to remark that, if p = 3, then Proposition 222 is not valid. We will

see indeed in the next chapter that finite 3-groups of class 4 and intensity larger

than 1 have a commutator subgroup that is elementary abelian of order p4, so the

rank of such groups is at least 4.

8.3 A sharper bound on the width

The aim of Section 8.3 is to give the proof of Proposition 225, which is the same

as Theorem 218.

Proposition 225. Let p > 3 be a prime number and let G be a finite p-group

with int(G) > 1. Let c denote the class of G and assume that that c ≥ 3. If i is a

positive integer such that wtG(i) wtG(i + 1) = 1, then i = c− 1.

We list here a number of assumptions that will hold until the end of Section 8.3.

Let p > 3 be a prime number and let G be a finite p-group with lower central

series (Gi)i≥1. Let c denote the class of G and, for each positive integer i, write

wi = wtG(i). Assume that int(G) > 1. Then, as a consequence of Proposition 95,

the prime p is odd and G is non-trivial. Let α be an intense automorphism of G

of order 2 and write A = 〈α〉.
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Lemma 226. Let i ∈ Z≥1 be such that wiwi+1 = 1. Then i > 1.

Proof. The subgroup Gi+1 being non-trivial, Lemma 31 yields i > 1.

Lemma 227. Assume that w2w3 = 1. Then c = 3.

Proof. The widths w2 and w3 are both equal to 1, so Theorem 164 yields c = 3.

Lemma 228. Let i ∈ Z≥1 be such that wiwi+1 = 1. If c > 3, then i ≥ 4.

Proof. Assume that the class of G is at least 4. Then, by Lemma 101, the

group G/G5 has intensity greater than 1. Theorem 164 yields (w1, w2, w3, w4) =

(2, 1, 2, 1) and therefore i ≥ 4.

Lemma 229. Let i ∈ Z≥1 be minimal such that wiwi+1 = 1. If c > 3, then i is

even and wi−1 = 2.

Proof. Assume c > 3. Then Lemma 228 yields i−1 > 1. The width wi−1 is at most

2, as a consequence of Theorem 165, and thus, i being minimal with the property

that wiwi+1 = 1, it follows that wi−1 = 2. Another consequence of the minimality

of i is that i is even. Indeed, thanks to Theorem 165 and the minimality of i,

whenever j < i, the product wjwj+1 is equal to 2. Moreover, by Theorem 125(2),

we have that w1 = 2, so i is even.

Lemma 230. Let i ∈ Z≥1 be minimal such that wiwi+1 = 1. Assume that c > 3

and that wi+2 = 1. Then Gi−1/Gi+3 has exponent p.

Proof. We write G = G/Gi+3 and we will use the bar notation for the subgroups

of G. The intensity of G is larger than 1 thanks to Lemma 101. The group

[Gi−1, Gi−1] is contained in G2i−2, by Lemma 20, and, by Lemma 228, the index

i is larger than 3. It follows that [Gi−1, Gi−1] ⊆ G2i−2 ⊆ Gi+2, and therefore

Gi−1 has class at most 2 and [Gi−1, Gi−1]p = {1}. As a consequence of Corollary

48, the p-power map is an endomorphism of Gi−1. Now, thanks to Proposition

123, the subgroup G
p

i−1 is contained in Gi+1 and, from Lemmas 52(3) and 229,

it follows that |µp(Gi−1)| = |Gi−1 : G
p

i−1| ≥ |Gi−1 : Gi+1| = p3. Also the order

of Gi is equal to p3 and, as a consequence of Proposition 166, the subgroup Gi is

contained in µp(Gi−1). Hence the p-power map factors thus as a homomorphism

Gi−1/Gi → Gi+1. By Lemma 229, the index i is even, and so, by Proposition 134,

the automorphism of Gi−1/Gi that is induced by α is equal to the inversion map.

It follows from Lemma 63 that α restricts to the inversion map on G
p

i−1. Moreover,

again by Proposition 134, the action of A on Gi+2 is trivial. It follows from Lemma

66 that G
p

i−1∩Gi+2 = {1}. The subgroup G
p

i−1 is clearly characteristic in G, while

the subgroup Gi+2 is equal to the centre of G, by Lemma 171. Lemma 29 yields

G
p

i−1 = {1}.
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We conclude Section 8.3 with the proof of Proposition 225. By Lemma 226, the

integer i is larger than 1. If i = 2, then Lemma 227 yields c = 3 = i + 1. We

assume that i is greater than 2, so c > 3, and, without loss of generality, that i is

minimal with the property that wiwi+1 = 1. In particular, the subgroup Gi+1 is

non-trivial. If Gi+2 = {1}, then the class of G is equal to i + 1, and so i = c− 1.

Assume now by contradiction that Gi+2 is non-trivial. By Lemma 35, there exists

a normal subgroup N of G that is contained in Gi+2 with index p. We fix N and

denote the quotient G/N by G. Lemma 101 yields int(G) > 1. By Lemma 229,

the width wtG(i− 1) = wi−1 is equal to 2 so, by Lemma 84, the order of Gi−1 is

equal to p5. By Lemma 228, the index i is at least 4, and thus, as a consequence

of Lemma 20, the subgroup [Gi−1, Gi] is contained in Gi+3 = {1}. It follows that

Gi−1 and Gi centralize each other. Let now M be a maximal subgroup of Gi−1

that contains Gi. The index |M : Gi| is equal to p, because wi−1 = 2, and so

Lemma 28 gives [M,M ] = [M,Gi] = {1}. Moreover, the order of M is equal to p4

and M has exponent p, because of Lemma 230. In particular, M is a 4-dimensional

vector space over Fp. Contradiction to proposition 222.
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Chapter 9

The special case of 3-groups

Let R = F3[ǫ] be of cardinality 9, with ǫ2 = 0. Denote by A the quaternion algebra

A = R+Ri +Rj +Rk

with defining relations i2 = j2 = ǫ and k = ji = −ij. Let the bar map on A be

defined by

x = a+ bi + cj + dk 7→ x = a− bi− cj− dk.

We write m = Ai+Aj, which is a 2-sided nilpotent ideal of A, and we define MC(3)

to be the subgroup of 1 + m consisting of those elements x satisfying x = x−1.

The main result of this chapter is the following.

Theorem 231. Let G be a finite 3-group. Then the following are equivalent.

1. The group G has class at least 4 and int(G) > 1.

2. The group G has class 4, order 729, and int(G) = 2.

3. The group G is isomorphic to MC(3).

A considerable part of the present chapter is devoted to the proof of Theorem 231,

which is given in Section 9.7. An essential contribution to it is given by the theory

of “κ-groups” we develop.

Definition 232. A κ-group is a finite 3-group G such that |G : G2| = 9 and with

the property that the cubing map on G induces a bijective map κ : G/G2 → G3/G4.

Our interest in κ-groups arises from Lemma 206(1), which asserts that, if p is an

odd prime number and G is a finite p-group of class at least 4 with int(G) > 1,

then the map x 7→ xp induces a bijection ρ : G/G2 → G3/G4. As a consequence

of Theorem 125, each finite 3-group of class at least 4 and intensity greater than 1
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is a κ-group, where κ coincides with ρ. The reason why, in this chapter, we work

exclusively with 3-groups is that they are more “difficult to deal with”: several

techniques that apply to the case in which p is a prime larger than 3 do not apply

to the case of 3-groups of higher class, as the results from Chapter 8 suggest. For

example, it is not difficult to show, using results from Section 1.5, that, whenever

p > 3 and G is a finite p-group, the map ρ : G/G2 → G3/G4 from Lemma 206 is

an isomorphism of groups, while, if G is a κ-group, then, given any two elements

x, y ∈ G/G2, one has

κ(xy) ≡ κ(x)κ(y)[xy−1, [x, y]] mod G4,

as we show in Lemma 237. What plays in our favour is that a finite 3-group G is

a κ-group if and only if G/G4 is a κ-group: to detect κ-groups it is thus sufficient

to be able to detect κ-groups among the finite 3-groups of class 3. We will prove

the following result.

Theorem 233. Let G be a finite 3-group of class 3. Then G is a κ-group if and

only if G is isomorphic to MC(3) /MC(3)4.

In Section 9.4, we prove Theorem 233 by building κ-groups as quotients of a free

group: we give a sketch of the proof here. Let F be the free group on 2 generators

and let (Fi)i≥1 be defined recursively by F1 = F and Fi+1 = [F, Fi]F
3
i . Then

V = F/F2 is a vector space over F3 of dimension 2. Let moreover L = F3F
3

and set F = F/([F,L]F 3
2 ); we use the bar notation for the subgroups of F . We

will show that the cubing map on F induces a map V → L, which we denote by

c, and we will construct, in Sections 9.3 and 9.4, isomorphisms of the following

Aut(F )-sets, all having cardinality 3.

IV = {k ⊆ End(V ) subfield : |k| = 9}

↓

KV = {κ : V → V ⊗
∧2

(V ) bijective : for all x, y ∈ V, one has

κ(x+ y) = κ(x) + κ(y) + (x− y)⊗ (x ∧ y)}

↓

P = {π ∈ Hom(L,F3) : π ◦ c is bijective, π|F̄3
= idF̄3

}

↓

N3 = {N ⊆ F normal subgroup : F/N is a κ-group of class 3}.

We will then prove that the natural action of Aut(F ) on IV is transitive and so

it will follow that Aut(F ) acts transitively on N3, leading to the fact that all κ-

groups of class 3 are isomorphic to the κ-group MC(3) /MC(3)4. To extend the

investigation of κ-groups to class 4, we consider the “smallest possible case” and
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look at extensions of MC(3) /MC(3)4 by a group of order 3. In Section 9.5, we

prove the following result.

Theorem 234. Let G be a κ-group such that G4 has order 3. Then G2 is ele-

mentary abelian.

It would be interesting to explore the world of κ-groups more extensively, however

Theorems 233 and 234 provide us with sufficient information on the structure of

κ-groups to be able to go into the proof of Theorem 231. Let G be a finite 3-group

of class at least 4. We have seen that a necessary condition for int(G) to be greater

than 1 is that of being a κ-group, however we can only hope to construct an intense

automorphism of G of order 2 if

(∗) there exists an automorphism of G of order 2 that inverts all elements of G

modulo G2.

We proved in Section 5.4 that such an automorphism can always be constructed

for G/G4, so we want to understand which conditions we need to impose on the

structure of G to be able to lift such an automorphism from G/G4 to G. For this

purpose, we define

N4 = {N ⊆ F normal subgroup : F/N is a κ-group of class 4 with

wtF/N (4) = 1 and satisfying (∗)}.

Via building a bijection N4 → N3, we will be able to prove that the natural action

of Aut(F ) on N4 is transitive and so that, given M and N in N4, the quotients

F/M and F/N are isomorphic. The group MC(3) being a κ-group of class 4

with wtMC(3)(4) = 1 and (∗), it follows that each quotient F/N , with N ∈ N4,

is isomorphic to MC(3). Since MC(3) has an elementary abelian commutator

subgroup, Proposition 211 yields that each finite 3-group of intensity greater than

1 has class at most 4.

9.1 The cubing map

In this section we prove some structural properties about κ-groups of class 4. We

remind the reader that, if G is a finite 3-group and i is a positive integer, then the

i-th width of G is defined to be wtG(i) = log3 |Gi : Gi+1| (see Section 2.3). We

warn the reader that we will make a set of assumptions, which will hold until the

end of Section 9.1, right after Lemma 239.

Lemma 235. Let G be a group of order 81 and class 3. Then the exponent of G

is different from 3.
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Proof. The class of G is 3 so, thanks to Lemma 31, the quotientG/G2 is non-cyclic.

The order of G being 81, it follows that (wtG(1),wtG(2),wtG(3)) = (2, 1, 1). Let

now C = CG(G2). Then, by Lemma 137(1), the subgroup C contains G2 with

index 3 and, by Lemma 140, the centre of G is equal to G3. Let (a, b) ∈ G×C be

such that {a, b} generates G and define c = [a, b], which is an element of G2 \G3.

Let moreover d be a generator for G3. Assume by contradiction that the exponent

of G is 3. As a consequence of Lemma 138, the subgroup C is elementary abelian

and, in particular, G2 = 〈c〉 ⊕ 〈d〉. Since G2 is central modulo G3 and d generates

G3, there exists an integer k such that aca−1 = cdk. The element dk is not equal

to the identity element, because a and c do not centralize each other. Keeping in

mind that C is abelian, we compute

1 = (ba)3 = bababa = b(cba)(cba)a = b2cacba2 =

b2c2dkaba2 = b2c2dkcba3 = b3c3dk = dk.

Contradiction.

We recall here that, if G is a group and n is a positive integer, then Gn is defined

to be Gn = 〈xn : x ∈ G〉.

Lemma 236. Let G be a finite 3-group of class 3 such that |G : G2| = 9. Then

G3 = G3.

Proof. The class of G is equal to 3 and so G3 is central in G. By Lemma 135(1),

the index |G2 : G3| is equal to 3 and, by Lemma 135(2), the order of G3 is either

3 or 9. As a consequence of Lemma 139, moreover, the subgroup G3 is contained

in G3. Assume by contradiction that G3 6= G3. Then, by Lemma 35, there exists

a normal subgroup M of G such that G3 ⊆ M ⊆ G3 and |G3 : M | = 3. Fix such

M . Then the quotient G/M has class 3 and order 81. Moreover, the exponent of

G/M is equal to 3. Contradiction to Lemma 235.

Lemma 237. Let G be a group of class at most 3 and assume that G2 has exponent

dividing 3. Then, for all x, y ∈ G, one has (xy)3 = x3y3[xy−1, [x, y]].

Proof. The class of G is at most 3, so the subgroup G3 is central. Fix x and y in
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G. Then we have

(xy)3 = xyxyxy

= xyx[y, x]xy2

= xyx[[y, x], x]x[y, x]y2

= xyxx[y, x]y2[[y, x], x]

= x[y, x]xyx[y, x]y2[[y, x], x]

= x[[y, x], x]x[y, x]yx[y, x]y2 [[y, x], x]

= x2[y, x]yx[y, x]y2[[y, x], x]2

= x2[y, x]2xy[y, x]y2[[y, x], x]2

= x2[y, x]2[xy, [y, x]][y, x]xy3[[y, x], x]2

= x2[y, x]3xy3[[y, x], x]2[xy, [y, x]].

The commutator subgroup of G being annihilated by 3, the element [y, x]3 is

trivial. Moreover, thanks to Lemma 24, the commutator map induces a bilinear

map G/G2 ×G2/G3 → G3. It follows that

(xy)3 = x3y3[[y, x], x]2[xy, [y, x]]

= x3y3[[y, x], x2][[y, x], (xy)−1]

= x3y3[[y, x], x2y−1x−1]

= x3y3[[y, x], xy−1]

= x3y3[xy−1, [x, y]].

The proof is now complete.

Lemma 238. Let G be a finite 3-group of class at least 3 and assume that

|G : G2| = 9. Then the cubing map induces a map κ : G/G2 → G3/G4.

Proof. We assume without loss of generality that G4 = {1}. As a consequence

of Lemma 236, the image of the cubing map is contained in G3 and, by Lemma

141, the commutator subgroup of G has exponent 3. We now prove that the

map κ : G/G2 → G3, given by κ(xG2) = x3, is well-defined. To this end, let

(x, y) ∈ G×G2. Then y3 = 1 and [y, x] belongs to G3, a central subgroup. From

Lemma 237, we get

(xy)3 = x3y3[[y, x], xy−1] = x3y3 = x3

so every element of xG2 has the same cube x3 in G, as claimed.

We remark that, in concordance with Definition 232, the real requirement for a

3-group G satisfying |G : G2| = 9 to be a κ-group is that the map from Lemma

238 is a bijection. The reason why we are interested in κ-groups is given by the

following lemma.
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Lemma 239. Let G be a finite 3-group of class 4 and denote by (Gi)i≥1 the lower

central series of G. Assume that int(G) > 1. Then G is a κ-group.

Proof. Take p = 3 in Lemma 206(1).

In the remaining part of this section, we will prove some structural results about

κ-groups. Until the end of Section 9.1, let thus G be a finite 3-group of class 4.

Let (Gi)i≥1 denote the lower central series of G and, for each i ∈ Z≥1, denote

wi = wtG(i). Assume that (w1, w2, w3, w4) = (2, 1, 2, 1) and, to conclude, let

κ : G/G2 → G3/G4 be the map from Lemma 238.

Lemma 240. The group G2 is abelian.

Proof. The quotient G2/G3 being cyclic, it follows from Lemma 28 that [G2, G2] =

[G2, G3], so, thanks to Lemma 20, we get [G2, G3] ⊆ G5. The class of G is 4, so

G5 = {1} and G2 is abelian.

Lemma 241. The commutator map G × G2 → G3 induces an isomorphism

G/G2 ⊗G2/G3 → G3/G4.

Proof. By Lemma 25, the commutator map induces a surjective homomorphism

G/G2⊗G2/G3 → G3/G4. The induced map is bijective because |G/G2⊗G2/G3| =

3w1w2 = 9 = 3w3 = |G3 : G4|.

We recall that, if C is a group and n is a positive integer, then Cn and µn(C) are

respectively defined as Cn = 〈xn : x ∈ C〉 and µn(C) = 〈x ∈ C : xn = 1〉.

Lemma 242. Let C be a maximal subgroup of G. Then G4C
3 ⊆ Z(C).

Proof. The subgroup G4 is central in G, because the class of G is 4, so G4 is

contained in Z(C). By Lemma 25, the commutator map induces a homomorphism

γ : G/G2⊗G3/G4 → G4 and, C/G2 being cyclic, the subgroup γ(C/G2⊗κ(C/G2))

is trivial. The quotient G4C
3/G4 being equal to κ(C/G2), it follows that G4C

3 is

contained in the centre of C.

Lemma 243. There exists at most one maximal subgroup C of G such that G3 ⊆

Z(C).

Proof. Let C and D be maximal subgroups of G such that G3 is contained in

Z(C) ∩ Z(D). Then CD centralizes G3 and, the class of G being equal to 4, the

subgroup CD is different from G. It follows that C = D.

Lemma 244. Assume that G is a κ-group. Then Z(G) = G4.
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Proof. We first claim that G4 ⊆ Z(G) ( G3. The subgroup G4 is contained in

Z(G) and, as a consequence of Lemma 140, one has Z(G)/G4 ⊆ Z(G/G4) = G3/G4.

Since the class of G is 4, the inclusion Z(G) ⊆ G3 is not an equality so the claim

is proven. Now, by Lemma 36, the subgroup G2 is equal to Φ(G) and so, the

dimension w1 being equal to 2, the group G has precisely 4 maximal subgroups.

Thanks to Lemma 243, there exist two distinct maximal subgroups C and D

of G such that both Z(C) and Z(D) do not contain G3. Fix such C and D.

Since κ is a bijection and w3 = 2, Lemma 242 yields Z(C) ∩ G3 = C3G4 and

Z(D) ∩ G3 = D3G4. Now, the subgroup Z(G) contains G4 and is contained in

Z(C) ∩ Z(D) ∩ G3 = C3G4 ∩ D3G4. The map κ being a bijection, the subgroup

C3G4 ∩D3G4 is equal to G4 and therefore Z(G) = G4.

Lemma 245. Let C be a maximal subgroup of G. Assume moreover that G is a

κ-group and that G2 has exponent 3. Then [C,C] ∩ Z(C) = G4.

Proof. The quotient C/G2 is cyclic of order 3 so, by Lemma 28, the subgroups

[C,C] and [C,G2] are equal. It follows that [C,C] is contained in G3 and, from

Lemma 241, that the index of ([C,C]G4)/G4 in G3/G4 is equal to |G : C| = 3.

In particular, [C,C] is non-trivial. Now, the subgroup [C,C] is characteristic in

the normal subgroup C and therefore it is itself normal in G; Lemma 29 yields

[C,C] ∩ Z(G) 6= 1. By Lemma 244, the centre of G is equal to G4 and thus [C,C]

contains G4. As a result, [C,C] is equal to [C,C]G4 and it has thus cardinality 9.

In an analogous way, since G is a κ-group, the normal subgroup C3 is non-trivial

and it contains therefore G4. However, C3 is different from G4 because G is a κ-

group. We have proven that G4 is contained in [C,C] ∩ Z(C). We assume now by

contradiction that [C,C]∩Z(C) is different from G4. It follows that [C,C]∩Z(C)

has cardinality at least 9, which is the same as the cardinality of [C,C]. We get

that [C,C] is contained in Z(C) and so, as a consequence of Lemmas 50 and 51,

the cubing map is an endomorphism of C. By assumption, the exponent of G2 is

3, and so it follows that

|C3| = |C : µ3(C)| ≤ |C : G2| = 3.

Since C3 contains G4, we get that C3 = G4. Contradiction.

Lemma 246. Assume that G is a κ-group. Then G3 has exponent 3.

Proof. The subgroup G2 is abelian, by Lemma 240, and G3
2 is contained in G4,

as a consequence of Lemma 238. It follows that µ3(G2) has cardinality at least

|G2 : G4| = 27. Set N = µ3(G2) ∩ G3. We denote G = G/N and use the bar

notation for the subgroups of G. If G3 = {1}, then G3 is contained in µ3(G2)

and we are done. Assume by contradiction that G3 is non-trivial. Then G3 has

cardinality at least 3 so, µ3(G2) consisting of at least 27 elements, it follows that
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µ3(G2) is non-trivial. However, µ3(G2) has trivial intersection with G3, which is

equal to Z(G), thanks to Lemma 140. Contradiction to Lemma 29.

9.2 A specific example

This section is entirely devoted to understanding the structure of the group MC(3),

which is defined at the beginning of the present chapter. The name MC(3) refers

to the fact that MC(3) turns out to be an example of maximal class among the

finite 3-groups of intensity greater than 1. Moreover, as stated in Theorem 231,

given any finite 3-group G of class at least 4, either int(G) = 1 or G is isomorphic

to MC(3). We recall the definition of MC(3).

Let R = F3[ǫ] be of cardinality 9, with ǫ2 = 0, and let A denote the quaternion

algebra
(
ǫ,ǫ
R

)
. In other words, A is given by

A = R+Ri +Rj +Rk

with defining relations i2 = j2 = ǫ and k = ji = −ij. The ring A has a unique

(left/right/2-sided) maximal ideal m = Ai + Aj and the residue field k = A/m is

equal to F3. The algebra A is also equipped with a natural anti-automorphism of

order 2, which is defined by

x = s+ ti + uj + vk 7→ x = s− ti− uj− vk.

We define MC(3) to be the subgroup of 1 + m consisting of those elements x

satisfying x = x−1. We denote by (MC(3)i)i≥1 the lower central series of MC(3)

and, for each i ∈ Z≥1, we define Mi = (1 + m
i) ∩ G. One easily shows that

(Mi)i≥1 is central and that, for each i ≥ 1, the commutator map induces a map

M1/M2 ×Mi/Mi+1 → Mi+1/Mi+2 whose image generates Mi+1/Mi+2. For each

i ≥ 1, it follows that Mi+1 = [M1,Mi] and, since M1 = G, we have that

MC(3)i = MC(3)∩(1 + m
i).

The rest of the present section is devoted to the proof of some technical Lemmas

that we will use in the proof of Theorem 231.

Lemma 247. The group MC(3) has class 4 and order 729.

Proof. We start by proving that MC(3) has order 729. The cardinality of R is

equal to 9 and therefore the cardinality of A is 94. Since A/m is isomorphic to F3,

the cardinality of m is equal to (94/3) = 37 and therefore also 1+m has cardinality

37. Now, asking for an element x ∈ 1 + m to satisfy xx = 1 lowers our freedom in

the choice of coordinates of x by 1 and therefore G has cardinality 36 = 729. To

conclude the proof, we note that MC(3)5 is trivial, because m
5 = {0}, while 1 + ǫk

is a non-trivial element of MC(3)4. It follows that MC(3) has class 4.
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Lemma 248. Set G = MC(3) and, for each i ∈ Z≥1, denote wi = wtG(i). Then

the following hold.

1. One has (w1, w2, w3, w4) = (2, 1, 2, 1).

2. There exist generators a and b of G such that a3 ≡ [b, [a, b]]−1 mod G4 and

b3 ≡ [a, [a, b]] mod G4.

Proof. (1) Let i ∈ {1, 2, 3, 4}. Then the function G → m that is defined by

x 7→ x − 1 induces an injective homomorphism di : Gi/Gi+1 → m
i/mi+1, which

commutes with the bar map of A. Now, for each element x ∈ Gi, one has that

x− 1 + (x − 1) belongs to m
i+1 and therefore the image of di is contained in

Di = {y + m
i+1 : y ∈ m

i, y + y ∈ m
i+1}. With an easy computation, one shows

that Di coincides with the image of di and, consequently, that (w1, w2, w3, w4) =

(2, 1, 2, 1). To prove (2), define

a = 1− ǫ+ i and b = 1− ǫ+ j

and note that a and b belong to G. Since w1 = 2 and a and b are linearly

independent modulo G2 = G ∩ (1 + m
2), the group G is generated by a and b.

Using the defining properties of A, we compute a3 = 1 + ǫi and b3 = 1 + ǫj. Define

c = [a, b], d = [a, c], and e = [b, c]. Then, working modulo G3, we get

c = abab ≡ (1 − ǫ+ i)(1− ǫ+ j)(1− ǫ− i)(1− ǫ− j)

≡ (1 + ǫ+ i + j + k)(1 + ǫ− i− j + k)

≡ 1− k mod G3.

Thanks to Lemma 24, one has d ≡ [a, 1+k] mod G4 and e ≡ [b, 1+k] mod G4 and

it is now easy to compute d ≡ 1 + ǫj mod G4 and e ≡ 1 − ǫi mod G4. It follows

that both ea3 and d−1b3 belong to G4 and so the proof is complete.

We remind the reader that, in concordance with Definition 232, a κ-group is a

finite 3-group G such that |G : G2| = 9 and such that the cubing map on G

induces a bijection G/G2 → G3/G4.

Lemma 249. The group MC(3) is a κ-group.

Proof. Write G = MC(3) and, for each i ∈ Z≥1, denote wi = wtG(i). By Lemma

247, the group G has class 4 and, by Lemma 248(1), one has (w1, w2, w3, w4) =

(2, 1, 2, 1). Let κ : G/G2 → G3/G4 be as in Lemma 238; we want to show that

κ is a bijection. Let a and b be as in Lemma 248(2) and define d = [a, [a, b]] and

e = [b, [a, b]]. Then κ(a) ≡ e−1 mod G4 and κ(b) ≡ d mod G4. Moreover, since

w2 = 1, it follows from Lemma 241 that d and e generate G3 modulo G4. We claim

that κ is surjective. Let r, s be integers and let y = dser. If r = 0 or s = 0, then
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κ(bs) ≡ y mod G4 or κ(a−r) ≡ er mod G4. The quotient G3/G4 being elementary

abelian, we may now assume that r and s are both non-zero modulo 3 and they

satisfy therefore r2 ≡ s2 ≡ 1 mod 3. Define x = arb−s. Working modulo G4, we

get from Lemma 237 that

κ(x) ≡ a3rb−3s[arbs, [ar, b−s]]

≡ e−rd−s[a, [a, b]]−r
2s[b, [a, b]]−rs

2

≡ e−r−rs2

d−s−r2s

≡ e−2rd−2s

≡ y mod G4.

We have proven that κ is surjective so, the widths w1 and w3 being the same, it

follows that κ is a bijection.

Lemma 250. Define α : MC(3)→ MC(3) by

x = s+ ti + uj + vk 7→ α(x) = s− ti− uj + vk.

Then α is an automorphism of order 2 of MC(3). Moreover, α induces the inver-

sion map on MC(3) /MC(3)2.

Proof. Set G = MC(3). It is easy to check that α is an automorphism of order

2 of G, so we prove that α induces the inversion map on G/G2. The subgroup

G2 is equal to G ∩ (1 + m
2) and, thanks to Lemma 248(1), the order of G/G2

is 9. It follows from Lemma 36(2) that G/G2 is elementary abelian. We define

a = 1− ǫ+ i and b = 1− ǫ+ j. Then a and b span G modulo G2 and

α(a) = ā = a−1 and α(b) = b̄ = b−1.

The quotient G/G2 being commutative, the map G/G2 → G/G2 that is induced

by α is equal to the inversion map x 7→ x−1.

We conclude Section 9.2 by remarking that another characterization of MC(3) has

been provided by Derek Holt and Frieder Ladisch; this characterization was found

using computer algebra systems. The group MC(3) turns out to be isomorphic to

a Sylow 3-subgroup of the Schur cover 3.J3 of the simple Janko-3 group J3. If S is

a Sylow 3-subgroup of 3.J3 and N denotes the normalizer of S in 3.J3, then conju-

gation under any element of order 2 of N restricts to an automorphism of order 2

of S that induces the inversion map on the abelianization. The isomorphism class

of MC(3) is denoted by [729, 57] in the GAP system.
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9.3 Structures on vector spaces

Until the end of Section 9.3, the following notation will be adopted. Let V be

a 2-dimensional vector space over F3. A κ-structure on V is a bijective map

κ : V → V ⊗
∧2

V such that, for each x, y ∈ V , one has

κ(x+ y) = κ(x) + κ(y) + (x− y)⊗ (x ∧ y). (A1)

We denote by KV the collection of κ-structures of V and by IV the collection of

subfields of End(V ) of cardinality 9. We remark that, for each element k of IV ,

there exists i ∈ End(V ) such that i2 = −1 and k = F3[i]. Moreover, V is naturally

a vector space of dimension 1 over each of the elements of IV . The rest of Section

9.3 will be devoted to the proof of the following result. Until the end of Section

9.3, all tensor and wedge products will be defined over F3.

Proposition 251. Let V be a 2-dimensional vector space over F3 and let the map

sV : IV −→ KV be defined by

k = F3[i] 7→ (x 7→ ix⊗ (ix ∧ x)).

Then sV is a bijection. Moreover, the cardinality of KV is equal to 3.

As the goal of this section is to prove Proposition 251, we will respect the notation

of the very same proposition until the end of Section 9.3.

We put a field structure on V , via an F3-linear isomorphism with F9. We define

then Λ to be the collection of bijective maps λ : V → V such that, for all x, y ∈ V ,

one has

λ(x + y) = λ(x) + λ(y) + (x− y)(xy3 − x3y). (A2)

We let moreover σV : IV → ΛV be defined by

k = F3[i] 7→ (x 7→ ix((ix)x3 − (ix)3x)).

Lemma 252. The map V → V , defined by x 7→ x5, is an element of Λ.

Proof. The group of units of V has order 8 and, since 8 and 5 are coprime, the

map x 7→ x5 is a bijection V ∗ → V ∗ which extends to a bijection V → V . Let

now x and y be elements of V . Keeping in mind that V has characteristic 3, one

computes

(x + y)5 =

5∑

k=0

(
5

k

)
xky5−k = x5 − xy4 + x2y3 + x3y2 − x4y + y5

= x5 + y5 + (x− y)(xy3 − x3y)

and therefore x 7→ x5 satisfies (A2).
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Lemma 253. The map σV is well-defined.

Proof. Let k = F3[i] be an element of IV . The group k∗ is cyclic of order 8 and

there are therefore exactly two square roots of −1 in k, namely i and −i. Now,

for each element x of V , we have

ix((ix)x3 − (ix)3x)) = −ix((−ix)x3 − (−ix)3x))

and thus k gives a map V → V . Let now k → V denote an isomorphism of fields

and identify i with its image in V . Then, for each x ∈ V , we have

ix((ix)x3 − (ix)3x) = x(ix)2(x2 − (ix)2) = −x3(x2 + x2) = x5

and so, as a consequence of Lemma 252, the map σV is well-defined.

Lemma 254. Let PV denote the collection of 1-dimensional subspaces of V .

Then the natural homomorphism Aut(V ) → Sym(PV ) induces an isomorphism

Aut(V )/F∗
3 → Sym(PV ).

Proof. The natural homomorphism Aut(V ) → Sym(PV ) factors as an injective

homomorphism Aut(V )/F∗
3 → Sym(PV ), which is in fact also surjective, because

|Aut(V ) : F∗
3| = 48/2 = 24 = | S4 | = | Sym(PV )|.

Lemma 255. The set IV has cardinality 3. Moreover, the action by conjugation

of Aut(V ) on IV is transitive.

Proof. Let f : IV → Aut(V )/F∗
3 be defined by k = F3[i] 7→ iF∗

3 and observe that,

since F3[i] = F3[−i], the map f is well-defined. Moreover, since each element

of IV is uniquely determined, modulo F∗
3, by a square root of −1, the map f

is injective. Let PV denote the collection of 1-dimensional subspaces of V and

let ǫ : Aut(V )/F3∗ → S4 be the composition of the isomorphism Aut(V )/F∗
3 →

Sym(PV ) from Lemma 254 with a given isomorphism Sym(PV ) → S4. Then

(ǫ ◦ f)(IV ) consists of elements of order 2. Now, each element k of IV can be

written as k = F3[i], with i2 = −1, and this suffices to show that (ǫ ◦ f)(IV ) is in

fact contained in the Klein subgroup V4 of S4. The set V4 \ {1} forms a unique

conjugacy class in S4 and thus the elements of IV form a unique orbit under the

action by conjugation of Aut(V ). Since the set V4 \ {1} has cardinality 3, the

cardinality of IV is also equal to 3.

Lemma 256. Write V = F3[i], with i2 = −1. Then the map
∧2

V → F3i that is

defined by x ∧ y 7→ xy3 − x3y is an isomorphism of vector spaces.

Proof. Let φ : V × V → V be defined by (x, y) 7→ xy3 − x3y. It is easy to show

that φ is alternating and that φ(V × V ) is contained in F3i, the eigenspace of

the Frobenius homomorphism that is associated to −1. Moreover, the map φ is
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non-zero. It follows that φ induces a linear homomorphism φ′ :
∧2

V → F3i that

is non-trivial. Since both
∧2

V and F3i have dimension 1 over F3, the map φ′ is

an isomorphism.

Lemma 257. Write V = F3[i], with i2 = −1. Then the map µ : V ⊗ F3i → V

that is defined by x⊗ y 7→ xy is an isomorphism of vector spaces.

Proof. The map V ×F3i→ V that is defined by (x, y) 7→ xy is a bilinear surjective

map. By the universal property of tensor products, it factors as the surjective

homomorphism µ : V ⊗ F3i → V . The dimensions of V ⊗ F3i and V being the

same, µ is an isomorphism.

Write V = F3[i] with i2 = −1. Define θ : V ⊗
∧2

V → V ⊗ F3i by

θ(a⊗ (x ∧ y)) = a⊗ (xy3 − x3y)

and note that θ is an isomorphism of vector spaces, as a consequence of Lemma

256. Let µ be as in Lemma 257. We keep this notation until the end of Section

9.3.

Lemma 258. The map lV : KV → Λ that is defined by κ 7→ µ ◦ θ ◦ κ is bijective.

Proof. Let κ be an element of KV . Then lV (κ) is bijective, because it is the

composition of bijective maps, and, for each x, y ∈ V , one has

lV (κ)(x + y) = µ ◦ θ ◦ κ(x+ y)

= µ ◦ θ(κ(x) + κ(y) + (x − y)⊗ (x ∧ y))

= lV (κ)(x) + lV (κ)(y) + µ ◦ θ((x − y)⊗ (x ∧ y))

= lV (κ)(x) + lV (κ)(y) + (x − y)(xy3 − x3y).

We have proven that lV (κ) belongs to Λ and so lV is well-defined. Moreover, lV
is bijective, because µ and θ are bijective.

Lemma 259. Let lV be as in Lemma 258. Then σV = lV ◦ sV and sV is well-

defined.

Proof. Let k = F3[i] be an element of IV . Let moreover κ and λ respectively

denote sV (k) and σV (k). Then one has

lV (κ)(x) = µ ◦ θ(ix⊗ ix ∧ x)

= µ(ix⊗ ((ix)x3 − (ix)3x))

= ix((ix)x3 − (ix)3x)

= λ(x)

and so, the choices of k and x being arbitrary, σV = lV ◦ sV . As a consequence,

the map sV is well-defined.
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Lemma 260. The map sV is injective.

Proof. Let k and k′ be elements of IV and let i, j ∈ End(V ) be such that k = F3[i],

k′ = F3[j], and i2 = j2 = −1. Assume moreover that sV (k) = sV (k′). For each

x ∈ V , we have F3x+F3ix = V = F3x+F3jx and therefore there exists ωx ∈ {±1}

such that ix ≡ ωxjx mod F3x. For each x ∈ V , it then follows that

jx⊗ (jx ∧ x) = ix⊗ (ix ∧ x) = ix⊗ ((ωxjx) ∧ x) = ωxix⊗ (jx ∧ x)

and, µ ◦ θ being bijective, the elements jx and ωxix are the same. The choice of

x being arbitrary, we get

V = {x ∈ V : ix = jx} ∪ {x ∈ V : ix = −jx}

and so, V being equal to the union of two subgroups, either i = j or i = −j. In

either case, i and j are linearly dependent over F3 and so k = k′.

Lemma 261. Let φ be an F3-linear endomorphism of V . Then there exist unique

a, b ∈ V such that, for each x ∈ V , one has φ(x) = ax3 + bx.

Proof. The characteristic of V being 3, for each pair (a, b) in V 2, the map x 7→

ax3 + bx is an F3-linear endomorphism of V . The order of End(V ) being equal

to the order of V 2, it follows that each element ψ of End(V ) is of the form x 7→

ax3 + bx, where a, b ∈ V are uniquely determined by ψ. In particular, this holds

for φ.

Lemma 262. Let λ ∈ Λ. Then there exist a, b ∈ V such that, for each x ∈ V ,

one has λ(x) = x5 + ax3 + bx.

Proof. Because of (A2), the difference of any two elements of Λ belongs to End(V ),

so, thanks to Lemma 252, we have λ ∈ (x 7→ x5) + End(V ). It now follows

from Lemma 261 that there exist a, b ∈ V such that, for each x ∈ V , we have

λ(x) = x5 + ax3 + bx.

Lemma 263. Let m be a positive integer and let q be a prime power. Then

∑

x∈Fq

xm =

{
−1 when (q − 1)|m

0 otherwise

Proof. This is Lemma 2.5.1 from [Coh07].

Lemma 264. Let λ ∈ Λ. Then there exists b ∈ V such that, for each x ∈ V , one

has λ(x) = x5 + bx.
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Proof. Let a, b ∈ V be as in Lemma 262. By definition of Λ, the map λ is bijective

so each element of V belongs to the image of λ. With x replaced by λ(x), Lemma

263 yields

0 =
∑

x∈V

λ(x)2 =
∑

x∈V

(x5 + ax3 + bx)2 =
∑

x∈V

2ax8 = −2a.

It follows that a = 0 and therefore, for each x ∈ V , one has λ(x) = x5 + bx.

Lemma 265. The cardinality of Λ is at most 3.

Proof. Let λ ∈ Λ and let b ∈ V be as in Lemma 264. The map λ is bijective and

so, with x replaced by λ(x), Lemma 263 gives

0 =
∑

x∈V

λ(x)4 =
∑

x∈V

(x5 + bx)4

=
∑

x∈V

(x10 − bx6 + b2x2)2

=
∑

x∈V

(bx16 + b3x8)

= −b(1 + b2).

It follows that there are at most 3 choices for b in V and thus Λ has cardinality at

most 3.

We conclude Section 9.3 by giving the proof of Proposition 251. The function

sV : IV → KV is injective by Lemma 260 and, by Lemma 255, the cardinality of

IV is equal to 3. It follows that KV has at least 3 elements. Now, as a consequence

of Lemma 258, the set Λ has the same cardinality as KV and thus, as a consequence

of Lemma 265, the cardinality of KV is equal to 3. From its injectivity, it now

follows that sV is bijective. The proof of Proposition 251 is complete.

9.4 Structures and free groups

We recall that a κ-group is a finite 3-group G such that |G : G2| = 9 and such that

the cubing map on G induces a bijection G/G2 → G3/G4. In the present section,

we consider κ-groups of class 3 and we prove the following main result.

Proposition 266. Let G be a κ-group of class 3. Then G is isomorphic to

MC(3) /MC(3)4.

As a consequence of Lemma 36(2), each κ-group is 2-generated. Our strategy,

for proving Proposition 266, will be that of constructing all κ-groups of class 3 as

quotients of a free group. To this end, the following assumptions will be valid until
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the end of Section 9.4. Let F be the free group on two generators and let (Fi)i≥1

denote the lower 3-series of F , which we recall from Section 5.4 to be defined by

F1 = F and Fi+1 = [F, Fi]F
3
i .

We remark that the notation we use for the lower 3-series is not concordant with

our usual notation (see Exceptions in List of Symbols). We denote

V = F/F2, L = F3F
3, and E = [F,L]F 3

2 .

The group V is a vector space of dimension 2 over F3, by construction, so we let

KV be defined as in Section 9.3. We write moreover F = F/E and we use the bar

notation for the subsets of F . We define additionally N3 to be the collection of

normal subgroups N of F with the property that F/N is a κ-group of class 3.

Lemma 267. The map c3 : F → L/F3, defined by x 7→ x3F3, is surjective.

Moreover, c3 induces an isomorphism V → L/F3 and |L : F3| = 9.

Proof. The map c3 is well-defined, by definition of L, and L/F3 = (F 3F3)/F3. As

a consequence of Lemma 48, the map c3 is a surjective homomorphism, which,

F 3
2 being contained in F3, factors as a surjective homomorphism c2 : F/F2 →

L/F3. Since V = F/F2 has order 9, the order of L/F3 is at most 9. Let now

A = Z/9Z× Z/9Z and let ψ : F → A be a surjective homomorphism. The group

A being abelian, we have that F3 is contained in kerψ. Moreover, since L = F 3F3,

the group ψ(L) is equal to 3Z/9Z× 3Z/9Z, which has order 9. As a consequence,

L/F3 has cardinality at least 9 and so |L : F3| = 9. In addition, the map c2 is an

isomorphism of groups.

Lemma 268. One has |F3 : E| ≥ 9.

Proof. Thanks to Lemma 248, we have |MC(3) : MC(3)2 | = 9 and therefore, as a

consequence of Lemma 36(2), the group MC(3) is 2-generated. We fix a surjective

homomorphism φ : F → MC(3) and we denote by π the canonical projection

π : MC(3)→ MC(3) /MC(3)4. The homomorphism π ◦ φ : F → MC(3) /MC(3)4

is surjective and so, from Lemma 157, we get L = (π◦φ)−1(MC(3)3 /MC(3)4). As

a consequence, L is equal to φ−1(MC(3)3) and thus φ(L) = MC(3)3. Moreover,

thanks to Lemma 141, we know that MC(3)
3
2 is contained in MC(3)4 and therefore

φ(F 3
2 ) ⊆MC(3)4. It follows that

φ(F3) = φ([F, F2])φ(F 3
2 ) = [MC(3),MC(3)2] MC(3)3

2 = MC(3)3

and also that

φ(E) = φ([F,L])φ(F 3
2 ) = [MC(3),MC(3)3] MC(3)

3
2 = MC(3)4 .

As a result, the index |F3 : E| is at least |MC(3)3 : MC(3)4 |, which is, by Lemma

248(1), equal to 9.
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Z/9Z× Z/9Z ✛ F ✲ MC(3)

3Z/9Z× 3Z/9Z

9

F2

9

✲ MC(3)2

9

0

9

L = F3F
3

3

✲

✛

MC(3)3

3

F3

✲

9

✛

MC(3)4

9

E = [F,L]F 3
2

✲

9

Lemma 269. The commutator map F × F2 → F3 induces an isomorphism of

groups δ : F/F2 ⊗ F2/L→ F3. Moreover, |F3 : E| = 9.

Proof. The subgroup F3 is central in F , by definition of E, and so, by Lemma 22,

the commutator map F×F2 → F3 is bilinear. Moreover, the quotient F2/L is cyclic

of order 3, thanks to Lemma 157, and so, by Lemma 28, the subgroup [F2, F2] is

equal to [F2, L]. The commutator map factors thus as a surjective homomorphism

δ : F/F2 ⊗ F2/L → F3 and therefore |F3 : E| ≤ |F/F2 ⊗ F2/L| = 9. Now, the

group F3 has order at least 9, by Lemma 268, and therefore |F3 : E| = 9 and δ is

an isomorphism.

Lemma 270. The group L is an F3-vector space of dimension 4.

Proof. By the definition of E, the group L is central in F and so it is abelian.

Moreover L3 is contained in F 3
2 , which is itself contained in E. It follows that L

is naturally a vector space over F3. The dimension of L is equal to 4, thanks to

the combination of Lemmas 267 and 269.

Lemma 271. The commutator map F × F2 → F3 induces an isomorphism of

groups γ : V ⊗
∧2

V → F3.
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Proof. The subgroup F2 is central modulo L so, thanks to Lemma 22, the com-

mutator map F × F → F2/L is bilinear. Since [F, F2] is contained in L, we get a

bilinear map V × V → F2/L, which is also alternating. By the universal property

of wedge products, the last map factors as a homomorphism θ :
∧2 V → F2/L

mapping x ∧ y to [x, y]. By Lemma 157, the cardinality of F2/L is equal to 3,

which is the same as the cardinality of
∧2

V and so, θ being non-trivial, it is an

isomorphism of groups. We conclude by defining γ = δ ◦ (1⊗ θ), where δ is as in

Lemma 269.

Lemma 272. Let γ be as in Lemma 271 and use the additive notation for the

vector spaces V and L. Then the cubing map on F induces a map c : V → L such

that, for each x, y ∈ V , one has

c(x+ y) = c(x) + c(y) + γ((x− y)⊗ (x ∧ y)).

Proof. The subgroup [F, [F, F ]] is contained in L, which is central modulo E, so

F has class at most 3. Moreover, [F, F ]3 is contained in F 3
2 and so [F , F ] has

exponent at most 3. By Lemma 237, given any two elements x, y of F , one has

(xy)3 = x3y3[xy−1, [x, y]]. Since both F 3
2 and [F, [F, F2]] are contained in E,

cubing on F induces a map c : V → L. Using the additive notation for the vector

spaces V and L, it follows from the definition of γ that, for each x, y ∈ V , one has

c(x+ y) = c(x) + c(y) + γ((x− y)⊗ (x ∧ y)).

Lemma 273. Let 0 → A
ι
→ B

σ
→ C → 0 be a short exact sequence of abelian

groups. Let moreover s : C → B be a function such that σ ◦ s = idC . Write

R = {f ∈ Hom(B,A) : f ◦ ι = idA} and let H be the collection of maps g : C → A

such that, for all u, v ∈ C, one has

ι(g(u+ v)− g(u)− g(v)) = s(u+ v)− s(u)− s(v).

Then the function R → H that is defined by f 7→ f ◦ s is bijective.

Proof. Let ν : R → H be defined by f 7→ f ◦ s. We first prove that ν is well-

defined. To this end, let f ∈ R and let u, v ∈ C. Since σ ◦ s = idC , the element

s(u + v) − s(u) − s(v) belongs to kerσ = ι(A). Since f ◦ ι = idA, we get that

ι ◦ f|ι(A) = id|ι(A) and therefore

ι((f ◦ s)(u + v)− (f ◦ s)(u)− (f ◦ s)(v)) = ι(f(s(u + v)− s(u)− s(v))) =

s(u+ v)− s(u)− s(v).

We have proven that ν is well-defined. We now prove that ν is injective. Let

f, h ∈ R be such that ν(f) = ν(h). Since f ◦ ι = h ◦ ι = idA, the group ι(A) is

contained in ker(f − h) and thus f − h induces a homomorphism B/ι(A) → A.
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Now, B/ι(A) = {s(c) + ι(A) : c ∈ C} and, the maps f ◦s and h◦s being the same,

we get f − h = 0. The maps f and g are the same and ν is injective. To conclude,

we prove that ν is surjective. Let g ∈ H. Since each element x of B can be written

uniquely as x = ι(a) + s(u), with a ∈ A and u ∈ C, we define f : B → A by

x = ι(a) + s(u) 7→ f(x) = a+ g(u).

For each u ∈ C, we have then f ◦ s(u) = g(u). We prove now that f is a homo-

morphism. Let x, y ∈ B and let a, b ∈ A and u, v ∈ C be such that x = ι(a) + s(u)

and y = ι(b) + s(v). Keeping in mind that g belongs to H, we compute

f(x+ y)− f(x)− f(y) = f(ι(a) + s(u) + ι(b) + s(v))− f(ι(a) + s(u))+

− f(ι(b) + s(v))

= f(ι(a) + ι(b)− g(u+ v) + g(u) + g(v) + s(u+ v))+

− f(ι(a) + s(u))− f(ι(b) + s(v))

and, since g(C) is contained in A, we get

f(x+ y)− f(x)− f(y) = a+ b− g(u+ v) + g(u) + g(v) + g(u+ v)+

− f(a+ s(u))− f(b+ s(v))

= a+ b+ g(u) + g(v)− a− g(u)− b− g(v)

= 0.

We have proven that f is a homomorphism and so ν is surjective.

Proposition 274. Let c be as in Lemma 272 and let γ be as in Lemma 271.

Set P = {π ∈ Hom(L,F3) : π|F̄3
= idF̄3

, π ◦ c bijective} and let tV : P → KV be

defined by π 7→ γ−1 ◦ π ◦ c. Then tV is a bijection and P has cardinality 3.

Proof. Let c2 : V → L/F3 be the isomorphism from Lemma 267. Composing

the canonical projection L → L/F3 with c−1
2 , we get the short exact sequence of

abelian groups 0 → F3 → L → V → 0. With A = F3, B = L, C = V , and

s = c, Lemma 273 applies. Let thus R = {π ∈ Hom(L,F3) : π|F̄3
= idF̄3

} and

let H be the collection of maps g : V → F3 such that, for all x, y ∈ V , one has

g(x+ y)− g(x)− g(y) = c(x+ y)− c(x)− c(y). Then, thanks to Lemma 273, each

element of H is of the form π ◦ c, where π belongs to R. In particular, the subset

P of R is sent bijectively to the subset Hbij of bijective elements of H. Now, by

Lemma 272, given any two elements x, y ∈ V , we have c(x + y) − c(x) − c(y) =

γ((x − y) ⊗ (x ∧ y)) and therefore each element κ = γ−1 ◦ π ◦ c, with π ∈ P ,

belongs to KV . The map γ being an isomorphism, tV is injective. Moreover, since

γ is bijective, Lemma 272 yields a well-defined injection KV → Hbij, given by

κ 7→ γ ◦κ. It follows that |P| ≤ |KV | ≤ |Hbij| = |P| and therefore tV is a bijection.

Thanks to Proposition 251, the cardinality of P is 3.
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We remind the reader that N3 has been defined to be the collection of normal

subgroups N of F such that F/N is a κ-group of class 3.

Lemma 275. There exists M in N3 such that the quotient F/M is isomorphic to

MC(3) /MC(3)4. Moreover, the set N3 is non-empty.

Proof. The group MC(3) is a κ-group, by Lemma 249, and it has class 4, by

Lemma 247. It follows that there exists M in N3 such that F/M is isomorphic to

MC(3) /MC(3)4 and, in particular, N3 is non-empty.

Lemma 276. Let P be as in Proposition 274 and denote, for each π ∈ P, by Kπ

the unique normal subgroup of F containing E such that Kπ = kerπ. Then the

map r : P → N3 that is defined by π 7→ Kπ is a bijection. Moreover, for each

N ∈ N3, one has |L : N | = 9.

Proof. We first show that r is well-defined. To this end, let π be an element of

P and set G = F/Kπ. Since |F : F2| = 9, Lemma 36 yields that G2 is equal to

F2/Kπ. Moreover, it easily follows from the definition of P that L decomposes

as kerπ ⊕ F3 = Kπ ⊕ F3. In particular, L/Kπ and F3 are naturally isomorphic

and so, as a consequence of Lemma 269, the subgroup G3 coincides with L/Kπ.

The class of G is equal to 3, because L is central modulo E. Now, the map π ◦ c

being bijective, it follows that the cubing map induces a bijection F/F2 → F3 and

so, via the natural isomorphism F3 → L/Kπ, the cubing map induces a bijection

G/G2 → G3. As a result, we have that |L : Kπ| = |G3| = |G : G2| = |F : F2| = 9

and G is a κ-group. The choice of π being arbitrary, we have proven that r is

well-defined. It is now easy to show that r is bijective. From the surjectivity of r

one deduces that, for all N ∈ N3, the index |L : N | is equal to 9.

Proposition 277. The set N3 has cardinality 3 and the natural action of Aut(F )

on N3 is transitive.

Proof. Let IV be defined as in Section 9.3. Define moreover ψ : IV → N3 to be

ψ = r◦t−1
V ◦sV , where sV , tV , and r are as in Propositions 251 and 274 and Lemma

276. The combination of the just-mentioned results yields that ψ is a bijection

and, from its definition, it is easy to check that it respects the action of Aut(F ).

Now, by Lemma 255, the set IV has cardinality 3 and so N3 has cardinality 3.

Again by Lemma 255, the action of Aut(V ) on IV is transitive and thus the action

of Aut(F ) on IV is transitive. Since the map ψ is an isomorphism of Aut(F )-sets,

the action of Aut(F ) on N3 is transitive.

We are finally ready to give the proof of Proposition 266. Let G be a κ-group

of class 3. As a consequence of Proposition 275, there exist N and M normal

subgroups of F such that F/N and F/M are respectively isomorphic to G and

MC(3) /MC(3)4. Fix such M and N . Then, thanks to Lemma 277, there exists
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an automorphism of F mapping M to N , which thus induces an isomorphism

between G and MC(3) /MC(3)4. The choice of G being arbitrary, the proof of

Proposition 266 is complete.

We conclude the present section by giving the proof of Theorem 233. If G is

a κ-group of class 3, then, by Proposition 266, the group G is isomorphic to

MC(3) /MC(3)4. On the other hand, the group MC(3) has class 4, by Lemma

247, and it is a κ-group, by Lemma 249. It follows that MC(3) /MC(3)4 is a

κ-group of class 3. This proves Theorem 233.

9.5 Extensions of κ-groups

We recall here that a κ-group is a finite 3-group G such that |G : G2| = 9 and such

that cubing in G induces a bijection G/G2 → G3/G4. We remind the reader that

we investigate κ-groups because we aim at classifying 3-groups of class at least

4 and intensity greater than 1: those groups are all κ-groups, as a consequence

of Lemma 239. The main purpose of the present section is that of proving the

following proposition, which is the same as Theorem 234.

Proposition 278. Let G be a κ-group such that G4 has order 3. Then the subgroup

G2 is elementary abelian.

Until the end of Section 9.5, we will work under the assumptions of Proposition 278.

For each i ∈ Z≥1, we set wi = wtG(i). It follows from the assumptions, together

with Lemma 135(1), that (w1, w2, w3, w4) = (2, 1, 2, 1). Moreover, the group G/G4

being a κ-group of class 3, Proposition 266 yields that G/G4 is isomorphic to

MC(3) /MC(3)4. It follows from Lemma 248(2) that there exist generators a, b of

G satisfying a3 ≡ [b, [a, b]]−1 mod G4 and b3 ≡ [a, [a, b]] mod G4. Call c = [a, b],

d = [a, c], and e = [b, c]. Let moreover f = [a, d]. Then we have a3 ≡ e−1 mod G4

and b3 ≡ d mod G4.

Lemma 279. The elements d and e generate G3 modulo G4.

Proof. The index |G2 : G3| is equal to 3, so c generates G2 modulo G3. By Lemma

241, the commutator map induces an isomorphism G/G2⊗G2/G3 → G3/G4, and

so d and e span G3 modulo G4.

Lemma 280. One has G4 = 〈f〉 = 〈[b, e]〉.

Proof. By Lemma 244, the centre of G is equal to G4 and, by Lemma 190, the

commutator map G/G2 ×G3/G4 → G4 is non-degenerate. The elements d and e

generate G3 modulo G4, thanks to Lemma 279, and, by the choice of a and b, we

also have a3 ≡ e−1 mod G4 and b3 ≡ d mod G4. From the non-degeneracy of the
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commutator map, it follows that both f and [b, e] are non-trivial elements of G4,

which, being cyclic of order 3, then satisfies G4 = 〈f〉 = 〈[b, e]〉.

Lemma 281. There exists a pair (u, t) in {±1} × Z such that [b, e] = fu and

c3 = f t. Moreover, there exist r, s ∈ Z such that a3 = e−1f r and b3 = dfs.

Proof. By assumption, the order of G4 is 3 and, by Lemma 279, both elements f

and [b, e] generate G4. There exists thus u ∈ {±1} such that [b, e] = fu. Moreover,

by the choice of a and b, we know that a3 ≡ e−1 mod G4 and b3 ≡ d mod G4. There

exist hence integers r and s such that a3 = e−1f r and b3 = dfs. To conclude,

thanks to Lemma 141, the subgroup G3
2 is contained in G4 so there exists t ∈ Z

such that c3 = f t.

We are now ready to give the proof of Proposition 278. To this end, let u, t, r, s

be as in Lemma 281. By Lemma 240, the subgroup G2 is abelian and, by Lemma

246, the exponent of G3 is equal to 3. It follows that

ab3 = cbab2

= cbcbab

= cbcbcba

= cecbecb2a

= ec2fuebcb2a

= fue2c2ecb3a

= fue3c3b3a

= fuf tb3a

= fu+tb3a

from which we derive

fdafs = adfs = ab3 = fu+tb3a = fu+tdfsa.

The subgroup G4 is central, thanks to Lemma 244, and so one gets

fda = fu+tda.

Since the exponent of G3 is equal to 3, we have u+ t ≡ 1 mod 3 and so

(u, t) ≡ (1, 0) mod 3 or (u, t) ≡ (−1,−1) mod 3.

If (u, t) ≡ (1, 0) mod 3, then we are done. We assume by contradiction that
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(u, t) ≡ (−1,−1) mod 3. Then c3 = f−1 and we compute

a3b = a2cba

= adcaba

= fdac2ba2

= fd2cacba2

= fd2cdcaba2

= fd3c3ba3

= ba3.

We have shown that a3 centralizes b in G. Call C = 〈{b} ∪G2〉. Then a3 belongs

to Z(C), which then, thanks to Lemma 242, contains {a3, b3} ∪G4. The group G

being a κ-group, it follows that Z(C) contains G3, and so [b, e] = 1. Contradiction

to Lemma 280. The proof of Proposition 278, and thus that of Theorem 234, is

now complete.

Corollary 282. The subgroup MC(3)2 of MC(3) is elementary abelian.

Proof. The group MC(3) is a κ-group by Lemma 249 and, thanks to Lemma

248(1), the subgroup MC(3)4 has order 3. It follows from Proposition 278 that

MC(3)2 is elementary abelian.

Corollary 283. Let Q be a finite 3-group of class 4 and let (Qi)i≥1 denote the

lower central series of Q. If int(Q) > 1, then Q2 is elementary abelian.

Proof. By Lemma 239, the group Q is a κ-group. Moreover, thanks to Theorem

164, the subgroup Q4 has order 3. It follows from Proposition 278 that Q2 is

elementary abelian.

Corollary 284. Let Q be a finite 3-group with int(Q) > 1. Then Q has nilpotency

class at most 4.

Proof. Assume that Q has class at least 4. Thanks to Lemma 101, the intensity of

Q/Q5 is greater than 1, and so, as a consequence of Corollary 283, the subgroup

Q3
2 is contained in Q5. However, because of Proposition 211, each finite 3-group

H of class at least 5 with int(H) > 1 satisfies H3
2 = H4 and so it follows that Q

has class at most 4.

9.6 Constructing automorphisms

In this section we aim at understanding the structure of finite 3-groups of class 4

and intensity greater than 1. We recall that a κ-group is a finite 3-group G such
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that |G : G2| = 9 and the cubing map on G induces a bijection G/G2 → G3/G4

(see Section 9.1 for a closer look at κ-groups). The reason why κ-groups are so

special for us is Lemma 239, which asserts that any finite 3-group of class 4 and

intensity greater than 1 is a κ-group. Moreover, we know from Proposition 134,

that if we hope to construct a 3-group G of large class and intensity greater than

1, then we need as well to construct an automorphism of order 2 of G that induces

the inversion map on the abelianization of G. We will devote the present section

to the proof of the following result.

Proposition 285. Let G be a κ-group such that G4 has order 3. Assume that G

possesses an automorphism of order 2 that induces the inversion map on G/G2.

Then G is isomorphic to MC(3).

We will prove Proposition 285 at the end of the present section and so the following

assumptions will hold until the end of Section 9.6. Let G be a κ-group such that

G4 has order 3. Then the group G has class 4 and (wtG(i))4
i=1 = (2, 1, 2, 1). Let F

be the free group on the set S = {a, b} and let ι : S → G be such that G = 〈ι(S)〉.

By the universal property of free groups, there exists a unique homomorphism

φ : F → G such that φ(a) = ι(a) and φ(b) = ι(b). As a consequence of its

definition, the map φ is surjective. Let (Fi)i≥1 denote the lower 3-series of F ,

which is defined recursively as

F1 = F and Fi+1 = [F, Fi]F
3
i .

and, in addition, let

L = F 3F3 and E = [F,L]F 3
2 .

All Fi’s, L, and E are stabilized by any endomorphism of F . For a visualization

of such groups we refer to the end of Section 5.4 or to the diagram before Lemma

303. Let β be the endomorphism of F sending a to a−1 and b to b−1. Since

β2 = idF , the map β is an automorphism of F . We remind the reader that we

have already worked with such an automorphism β in Section 5.4 and we will

thus, in this section, often apply results achieved in Section 5.4. We conclude by

defining two specific sets, consisting of normal subgroups of F . Let N3 denote the

collection of normal subgroups N of F such that F/N is a κ-group of class 3, as

defined in Section 9.4. For each element N of N3, we set

DN = [F,N ]F 3
2 [F2, F2].

We define moreover N4 to be the collection of normal subgroups M of F such that

F/M is a κ-group of class 4 with wtF/M (4) = 1 and such that F/M possesses

an automorphism of order 2 that induces the inversion map on the abelianization

(F/M)/(F/M)2 of F/M . We will keep this notation until the end of Section 9.6.
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Lemma 286. Let N ∈ N3. Then DN is contained in E.

Proof. As a consequence of Lemma 157, the subgroup L contains N . Again by

Lemma 157, the index |F2 : L| is equal to 3 and so, thanks to Lemma 28, one has

[F2, F2] = [F2, L]. We get

[F,N ]F 3
2 [F2, F2] ⊆ [F,L]F 3

2 [F2, L] = [F,L]F 3
2 = E

and therefore DN is contained in E.

Lemma 287. For each k ∈ Z≥5, one has φ(Fk) = {1}.

Proof. Let k ∈ Z≥5 and recall that Fk = [F, Fk−1 ]F 3
k−1. By definition of E, one

has φ([F, Fk−1 ]) ⊆ φ([F, F4 ]) ⊆ φ([F,E]) = [φ(F ), φ(E)] and so, as a consequence

of Lemma 158, we get φ([F, Fk−1 ]) ⊆ [G,G4] = {1}. It follows from Lemma 36

that φ(Fk) = φ(F 3
k−1) ⊆ φ(F 3

2 ) ⊆ Φ(G)3 = G3
2 and so Proposition 278 yields

φ(Fk) = {1}.

Lemma 288. Let α be an automorphism of order 2 of G that induces the inversion

map on G/G2. Then there exist generators x and y of G such that α(x) = x−1

and α(y) = y−1.

Proof. Write G− = {g ∈ G : α(g) = g−1}. Since (wtG(i))4
i=1 = (2, 1, 2, 1), Lemma

85 yields that the map G− → G/G2, defined by g 7→ gG2, is surjective. Thanks

to Lemma 36, the subgroups G2 and Φ(G) coincide and therefore there exist two

elements x and y of G− that generate G.

Proposition 289. Let α be an automorphism of order 2 of G that induces the

inversion map on G/G2. Let moreover k ∈ Z≥5 and let φk : F/Fk → G be the map

induced by φ. Then there exists ǫ ∈ Aut(F/Fk) of order 2 such that αφk = φkǫ.

Proof. For each k ∈ Z≥5, the map φk : F/Fk → G is well-defined, thanks to

Lemma 287. Let now x and y be as in Lemma 288 and let c and d be elements

of F such that φ(c) = x and φ(d) = y, which exist because φ is surjective. As a

consequence of Lemma 155, the map φ induces an isomorphism F/F2 → G/G2 and

therefore c and d generate F modulo F2. Let now ψ : F → F be the endomorphism

of F sending a 7→ c and b 7→ d; such ψ exists thanks to the universal property

of free groups. Fix k ∈ Z≥5. The subgroup Fk being being stabilized by any

endomorphism of F , the map ψ induces an endomorphism ψ of the 3-group F =

F/Fk. However, since Φ(F ) = F2, the map ψ induces an automorphism of F/Φ(F )

and so ψ is in fact an automorphism of F . Let β be the automorphism of F that

is induced by β and define ǫ = ψβψ−1. By construction, the following diagram is

101



9. THE SPECIAL CASE OF 3-GROUPS

commutative.

F/Fk
φk ✲ G

F/Fk

ǫ

❄
φk ✲ G

α

❄

Moreover, ǫ has order 2, because it is conjugate in Aut(F ) to β.

Lemma 290. Let M be an element of N4. Then N = ME belongs to N3 and

DN is contained in M .

Proof. Let H = F/M and let π : F → H be the canonical projection. Then

π(N) = π(ME) = π(E) and so, as a consequence of Lemma 158, we get π(N) ⊆

H4. The order of H4 being 3, either π(N) = H4 or N ⊆ M . Assume first that

π(N) = H4. Then we have M ⊆ N ⊆ π−1(H4) and M 6= N . On the other hand,

we know |π−1(H4) : M | = |H4| = 3 and therefore N = π−1(H4). As a result, F/N

is isomorphic to H/H4 and so N belongs to N3. We prove that π(DN ) is trivial.

The image of F2 under π is equal to H2, thanks to Lemma 155. Moreover, the

subgroup H4 is central in H , because H has class 4, and the commutator subgroup

of H is elementary abelian, thanks to Proposition 278. We compute

π(DN ) = π([F,N ])π(F 3
2 )π([F2, F2]) = [H,H4]H3

2 [H2, H2] = {1},

and so DN is contained in M . We now prove that π(N) = H4. We work by

contradiction, assuming that N ⊆M . Since N = ME, we get that E is contained

in M . As a consequence, the group F/E has class at least 4. However, one has

[F, [F, [F, F ]]] ⊆ [F, [F, F2 ]] ⊆ [F, F3] ⊆ [F,L] ⊆ E

and therefore F/E has class at most 3. Contradiction.

Lemma 291. Let N ∈ N3. Denote moreover H = MC(3). Then there exists

a surjective homomorphism ϕ : F → G such that N = ϕ−1(G4). Moreover,

ϕ induces isomorphisms ϕ1 : F/F2 → H/H2 and ϕ3 : L/N → H3/H4 and a

surjective homomorphism ϕ4 : E/DN → H4.

Proof. Let ψ : F → H be a surjective homomorphism, which exists thanks to the

universal property of free groups. Set K = ψ−1(H4). Then K belongs to N3,

because H is a κ-group, and so, thanks to Lemma 277, there exists an automor-

phism r of F such that r(N) = K. Define ϕ = ψ ◦ r. Then ϕ is a surjective

homomorphism F → H such that ϕ−1(H4) = N . Moreover, ϕ induces isomor-

phisms ϕ1 : F/F2 → H/H2 and ϕ3 : L/N → H3/H4 as a consequence of Lemmas

155 and 157. We conclude by showing that ϕ induces a surjective homomorphism
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E/DN → H4. Thanks to Lemma 290, the subgroup DN is contained in the kernel

of ϕ. Moreover, since ϕ(F2) = H2 and ϕ(L) = H3, we get

ϕ(E) = ϕ([F,L]F 3
2 ) = [H,H3]H3

2 = H4H
3
2 .

Now, the group H is a κ-group and hence H3
2 ⊆ H4. It follows that ϕ(E) = H4

and therefore ϕ induces a surjective homomorphism E/DN → H4.

Lemma 292. Let N ∈ N3. Then the commutator map induces a non-degenerate

map F/F2 × L/N → E/DN whose image generates E/DN . In addition, one has

E 6= DN .

Proof. Write F = F/DN and use the bar notation for the subgroups of F . From

the definition of E, one sees that E = [F ,L]. Moreover, by Lemma 158, the

subgroup E is contained in N and so [F,E] ⊆ [F,N ] ⊆ DN . In particular, E is

central in F and so it follows from Lemma 22 that the commutator map F×L→ E

is bilinear. Since [F2, L] and [F,N ] are both contained in DN , the last map factors

as a bilinear map γ : F/F2 × L/N → E whose image generates E. Set now

H = MC(3). Then, as a consequence of Lemmas 249 and 244, the centre of H

is equal to H4 and thus Lemma 190 yields that the commutator map induces a

non-degenerate map ν : H/H2 ×H3/H4 → H4. With the notation from Lemma

291, the following diagram is commutative.

F/F2 × L/N
γ
✲ E/DN

H/H2 ×H3/H4

ϕ1

❄

ϕ3

❄
ν

✲ H4

ϕ4

❄

Since the map ν is non-degenerate and both ϕ1 and ϕ3 are isomorphisms, the map

γ is non-degenerate. It follows in particular that E 6= DN .

Lemma 293. Let V and W be 2-dimensional vector spaces over F3 and let η :

V →W be a bijective map with the property that, for each λ ∈ F3 and v ∈ V , one

has η(λv) = λη(v). Define K = 〈v ⊗ η(v) : v ∈ V 〉. Then the quotient (V ⊗W )/K

has dimension 1 as a vector space over F3.

Proof. Without loss of generality we assume that V = W . Assume first that η is an

automorphism of V and define the automorphism σ of V ⊗V by x⊗ y 7→ x⊗ η(y).

Then the subspace ∆ = 〈v ⊗ v : v ∈ V 〉 is mapped isomorphically to K via σ. It

follows that (V ⊗ V )/K has the same dimension as (V ⊗ V )/∆ =
∧2

V and so

(V ⊗ V )/K has dimension 1. Let now η be any map satisfying the hypotheses of

Lemma 293. Then η induces a bijective map η : PV → PV , where PV denotes
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the collection of 1-dimensional subspaces of V . As a consequence of Lemma 254,

there exists an automorphism τ of V such that τ = η and, for each v ∈ V , one has

F3τ(v) = F3η(v). As a consequence, we get K = 〈v ⊗ τ(v) : v ∈ V 〉 and therefore

(V ⊗ V )/K has dimension 1 over F3.

Lemma 294. Let N ∈ N3. Then |E : DN | = 3.

Proof. The quotient F/F2 is a 2-dimensional vector space over F3, by definition

of F2, while L/E is a 4-dimensional vector space over F3, thanks to Lemma 270.

Moreover, by Lemma 158, the subgroup N contains E and, as a consequence of

Lemma 276, the quotient L/N is a vector space of dimension 2 over F3. Let

γ : F/F2⊗L/N → E/DN be the surjective homomorphism induced from the non-

degenerate map of Lemma 292. Let moreover c : F/F2 → L/E be the map from

Lemma 272 and let π denote the canonical projection L/E → L/N . Denote cN =

π ◦ c and note that, as a consequence of Lemma 276, the map cN : F/F2 → L/N

is a bijection between vector spaces of dimension 2 over F3. From Lemma 272,

it is clear that c commutes with scalar multiplication by elements of F3. Define

K = 〈x ⊗ cN (x) : x ∈ F/F2〉. As a consequence of the definition of c, each element

x⊗ cN(x), with x ∈ F/F2, belongs to the kernel of γ, and therefore K is contained

in ker γ. It follows from Lemma 293 that (F/F2 ⊗ L/N)/K has dimension 1 and

therefore E/DN has dimension at most 1 as a vector space over F3. By Lemma

292, the quotient E/DN is non-trivial and so γ is not the trivial map. It follows

that ker γ has dimension 3 and thus E/DN has cardinality 3.

The following lemmas pave the way to proving Proposition 300.

Lemma 295. Let η be an automorphism of F/L of order 2 that induces the

inversion map on F/F2. Then there exists ϕL ∈ Inn(F/L) such that, for each

x ∈ F , one has β(x) ≡ (ϕLηϕ
−1
L )(x) mod L.

Proof. Write H = F/L. The group F being 2-generated, |F : F2| = 9 and

so, as a consequence of Lemma 157, the group H has order 27. Thanks to the

definitions of F2 and L, one easily sees that H is non-abelian of exponent 3 and

that H2 = F2/L. Lemma 29 yields that H2 is central in H . Applying Lemma

27, we get that H2 = Z(H) and therefore H is extraspecial. Let now βL be the

automorphism of H that is induced by β. Then η−1βL induces the identity on

H/H2 and so, thanks to Lemma 46, one gets η−1βL ∈ Inn(H). The group Inn(H)

being a normal 3-subgroup of Aut(H), the Schur-Zassenhaus theorem applies to

Inn(H) ⋊ 〈η〉 and ensures that there exists ϕL ∈ Inn(H) with the property that

βL = ϕLηϕ
−1
L .

Lemma 296. Let η be an automorphism of F/E of order 2 that induces the

inversion map on F/F2. Assume that β coincides with η modulo L. Then, for all

x ∈ F , one has β(x) ≡ η(x) mod E.
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Proof. Let ∆ denote the subgroup of Aut(F/E) consisting of all those automor-

phisms of F/E inducing the identity on both F/L and L/E. Let βE be the

automorphism that is induced on F/E by β. As a consequence of Lemma 162,

the element ψ = η−1βE belongs to ∆ and so, thanks to Lemma 45, there exists a

homomorphism h : F/L→ L/E such that, for all x ∈ F/E, one has ψ(x) = h(x)x.

The quotient L/E being elementary abelian, the groups Hom(F/L,L/E) and

Hom(F/F2, L/E) are naturally isomorphic and so h factors as a homomorphism

F/F2 → L/E. Now η coincides with β on F/F2 and so, thanks to Lemma 162, it

induces the inversion map on L/E. For each x ∈ F/F2, it follows that

(ηhη−1)(x) = η(h(x−1)) = (h(x−1))−1 = h(x).

However, the automorphisms η and βE having order 2, one also has

η2 = 1 = β2
E = ηψηψ

and therefore ηψη−1 = ψ−1. For all x ∈ F/E, we compute

ψ(x)x−1 = h(x) = (ηhη−1)(x)

= η(h(η−1(x)))

= η
(
ψ(η−1(x))(η−1(x))−1

)

= (ηψη−1)(x)x−1

= ψ−1(x)x−1

and therefore ψ(x)2 = 1. The group F/E being a 3-group, it follows that ψ

coincides with the trivial map and therefore η and βE are equal.

Lemma 297. Let N = φ−1(G4) and let ∆ denote the subgroup of Aut(F/DN )

consisting of all those maps inducing the identity on both F/E and E/DN . Then

∆ is contained in Inn(F/DN).

Proof. The group N belongs to N3, because G/G4 is a κ-group of class 3. As a

consequence of Lemma 292, the commutator map induces an injective homomor-

phism ϕ : L/N → Hom(F/F2, E/DN). Combining Lemmas 276 and 294, we get

that the orders of Hom(F/F2, E/DN ) and L/N are the same and therefore ϕ is

also surjective. It follows that, for each element f of Hom(F/F2, E/DN), there

exists l ∈ L such that f equals xF2 7→ [l, x]DN . Set F = F/DN and use the bar

notation for the subgroups of F . We now prove that ∆ is contained in Inn(F ).

Let δ ∈ ∆. Then, as a consequence of Lemma 45, there exists a homomorphism

f : F → E whose kernel contains E and such that, for each x ∈ F , one has

δ(x) = f(x)x. Fix such f . The group E being elementary abelian, the kernel

of f contains F2 and therefore f factors as a homomorphism F/F2 → E. As a

result, there exists l ∈ L such that, for each x ∈ F , one has f(x) = [l, x] and thus
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δ(x) = [l, x]x = lxl−1. In particular, δ is an inner automorphism of F and, the

choice of δ being arbitrary, ∆ is contained in Inn(F ).

Lemma 298. Let N be an element of N3. Then β(DN ) = DN .

Proof. As a consequence of Lemma 162, the group N is 〈β〉-stable and therefore

so is DN .

Lemma 299. Let N = φ−1(G4). Let η ∈ Aut(F/DN ) be of order 2 and assume

that η induces the inversion map on F/F2. Assume moreover that β and η induce

the same automorphism of F/E. Then there exists ψN ∈ Inn(F/DN ) such that,

for all x ∈ F , one has β(x) ≡ (ψNηψ
−1
N )(x) mod DN .

Proof. Set F = F/DN and use the bar notation for the subgroups of F . Thanks

to Lemma 298, the map β induces an automorphism of F , which we denote by β.

Let ∆ denote the subgroup of Aut(F ) consisting of all those elements δ such that δ

induces the identity on both E and F/E. Then, as a consequence of Lemmas 292

and 61, the automorphism η−1β belongs to ∆ and thus, thanks to Lemma 297,

we have η−1β ∈ Inn(F ). Applying the Schur-Zassenhaus theorem to Inn(F )⋊ 〈η〉,

we get that there exists ψ ∈ Inn(F ) such that β = ψηψ
−1

. This concludes the

proof.

Proposition 300. Let α be an automorphism of order 2 of G that induces the

inversion map on G/G2. Then there exists γ ∈ Inn(F ) such that αφ = φ(γβγ−1).

Proof. Thanks to proposition 289, there exists an automorphism ǫ of F/F5 of order

2 such that αφ5 = φ5ǫ. As a consequence, the map ǫ induces the inversion map on

F/F2. Let now M = kerφ and let N = ME. Thanks to Lemma 290, the group

N belongs to N3 and DN ⊆ M . One easily shows that F5 is contained in DN .

It follows that ǫ induces an automorphism η of order 2 of F/DN . Let ηL be the

automorphism that η induces on F/L. Then, via the choice of a representative,

Lemma 295 ensures that there exists an inner automorphism ϕN of F/DN such

that β and ϕNηϕ
−1
N induce the same automorphism of F/L. Fix such ϕN and

define η1 = ϕNηϕ
−1
N . Since η has order 2, the order of η1 is equal to 2. Lemma

296 yields that in fact η1 and β are the same modulo E. At last, let ψN be as

in Lemma 299 and define η2 = ψNη1ψ
−1
N . As a consequence of Lemma 299, the

maps η2 and β induce the same map on F/DN . Via the choice of a representative,

the inner automorphism ψNϕN of F/DN lifts to an inner automorphism γ of F

with the property that η and γβγ−1 induce the same automorphism on F/DN .

To conclude, let φN : F/DN → G be the map induced by φ. Since αφ5 = φ5ǫ, one

gets αφN = φNη and therefore αφ = φ(γβγ−1).

Lemma 301. There exists M ∈ N4 such that F/M is isomorphic to MC(3).

Moreover, N4 is non-empty.
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Proof. The group MC(3) is a κ-group, by Lemma 249, and MC(3)4 has cardinality

3, thanks to Lemma 248(1). By Lemma 247, the class of MC(3) is 4 and moreover,

thanks to Lemma 250, the group MC(3) possesses an automorphism that induces

the inversion map on the quotient MC(3) /MC(3)2. By the universal property

of free groups, there exists M ∈ N4 such that F/M is isomorphic to MC(3). In

particular, N4 is non-empty.

Lemma 302. For each M ∈ N4, one has β(M) = M .

Proof. Let M ∈ N4. Without loss of generality G = F/M and so M = kerφ. Let

moreover α be an automorphism of G of order 2 that induces the inversion map

on G/G2. Then, thanks to Proposition 300, there exists γ ∈ Inn(F ) such that

αφ = φ(γβγ−1). It follows that

{1} = α(φ(M)) = φ(γβγ−1)(M) = φβ(M)

and therefore β(M) is contained in kerφ = M . Since β induces an automorphism

of each quotient F/Fk and since, for large enough k one has Fk ⊆ M , we have in

fact that β(M) = M .

F ✲ G

F2

−

✲ G2

−

L

+

✲ G3

+

F3

−

N ✲

−

G4

−

E

−−

M ✲

+

1

+

DN

−+
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Lemma 303. Let N be an element of N3 and write F = F/DN . Set moreover

N = N/DN and E = E/DN . Define β to be the map that is induced by β on F

and set

N
+

= {x ∈ N : β(x) = x} and N
−

= {x ∈ N : β(x) = x−1}.

Then N
+

= E and N
−

is the unique 〈β〉-stable complement of E in N .

Proof. As a consequence of Lemma 162, the group N is 〈β〉-stable and, being

central in F , it is also abelian. Write now B = 〈β〉 and let σ : B → {±1} be

the isomorphism mapping β to −1. By Lemma 159, the group B acts on F/F2

through σ and, by Lemma 162, the induced action of B on L/E is through σ. As

a consequence, the induced action of B on both L/N and N/E is through σ. It

follows from Lemmas 292 and 61 that β induces the identity map on E and so,

thanks to Theorem 68, the subgroup E has a unique 〈β〉-stable complement in N ,

which coincides with N
−

.

Lemma 304. The map N4 → N3 that is defined by M 7→ ME is an injection

respecting the natural actions of Aut(F ).

Proof. The map N4 → N3 is well-defined, thanks to Lemma 290, and it is clear

that it respects the action of Aut(F ). We prove injectivity. To this end, let M1

and M2 be elements of N4 such that M1E = M2E and set N = M1E = M2E.

Since M1 and M2 belong to N4, Lemma 302 yields β(M1) = M1 and β(M2) = M2.

It follows then from Lemma 303 that both M1 and M2 are the unique 〈β〉-stable

complement of E and so M1 = M2.

Lemma 305. The map N4 → N3 that is defined by M 7→ ME is a bijection

respecting the natural actions of Aut(F ).

Proof. The map N4 → N3 is well-defined, injective, and respects the action of

Aut(F ) thanks to Lemma 304. We prove surjectivity. To this end, let N be an

element of N3. Write F = F/DN and use the bar notation for the subgroups of F .

Let moreover N
−

be as in Lemma 303. As a consequence of the definition of DN ,

the subgroup N is central in F and so N
−

is normal in F . Let M be the unique

normal subgroup of F containing DN such that M = N
−

. Then, as a consequence

of Lemma 303, one has N = ME. Write H = F/M and denote by π the canonical

projection F → H . We will prove that M ∈ N4. Thanks to the isomorphism

theorems, the groups π(N) and E are naturally isomorphic and, by Lemma 294,

the group E has order 3. It follows that |N : M | = 3. Moreover, the group N

being an element of N3, the quotient F/N has class 3 and so M ⊆ π−1(H4) ⊆ N .

Only two cases can occur: either N = π−1(H4) or M = π−1(H4). Assume by

contradiction that M = π−1(H4) and so that H has class 3. Since H/π(N) is
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isomorphic to F/N , Lemma 157 yields that π(L) = H3π(N) and, since N is

central modulo DN , the subgroup π(N) is central in H . It follows that

π([F,L]) = [π(F ), π(L)] = [H,H3π(N)] = [H,H3] = H4 = {1}

and therefore [F,L] is contained in M . We get then

E = [F,L]F 3
2 ⊆ [F,L]F 3

2 [F2, F2] ⊆ [F,L]DN ⊆M,

and thus N = ME = M , which is a contradiction. We have proven that N =

π−1(H4), from which it follows in particular that |H4| = |N : M | = 3 and so H has

class 4. Moreover, H is a κ-group, because F/N is. To prove that M belongs to

N4, we are left with proving that H has an automorphism of order 2 that induces

the inversion map on H/H2 and in fact such an automorphism can be gotten, for

example, by inducing β to H . We have proven that M ∈ N4 and so, the choice of

N being arbitrary, the map N3 → N4 is surjective.

Corollary 306. The set N4 has 3 elements and the action of Aut(F ) on N4 is

transitive.

Proof. Combine Proposition 277 and Lemma 305.

We are now ready to prove Proposition 285. By Lemma 301, there exists an

element M of N4 with the property that F/M is isomorphic to MC(3). As a

consequence of Corollary 306, the natural action of Aut(F ) on N4 is transitive and

therefore G and MC(3) are isomorphic. The proof of Proposition 285 is complete.

9.7 Intensity

In Section 9.5 we have proven Corollary 284, which asserts that finite 3-groups of

intensity larger than 1 have class at most 4. We will prove in this section that

the bound is best possible by showing that the group MC(3), introduced at the

beginning of this chapter and whose structure we investigated in Section 9.2, has

intensity 2. Thanks to results coming from the previous sections, we will, at the

end of the current section, finally be able to give the proof of Theorem 231.

Proposition 307. The group MC(3) has intensity 2.

We will devote a big part of the present section to the proof of Proposition 307.

To this end, let the following assumptions hold until the end of Section 9.7. Set

G = MC(3) and denote by (Gi)i≥1 its lower central series. For all i ∈ Z≥1,

write wtG(i) = wi. By Lemma 247, the group G has class 4 and order 729.

Moreover, thanks to Lemmas 248(1) and 249, the group G is a κ-group satisfying
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(w1, w2, w3, w4) = (2, 1, 2, 1). Let α be as in Lemma 250 and set A = 〈α〉. In con-

cordance with the notation from Section 2.2, we define G+ = {x ∈ G : α(x) = x}

and G− = {x ∈ G : α(x) = x−1}. Moreover, for each subgroupH of G, we denote

H+ = H ∩G+ and H− = H ∩G−.

Lemma 308. Let H be a subgroup of G2 and let g be an element of G. Then the

following hold.

1. The group G2 normalizes H.

2. If both H and gHg−1 are A-stable, then gHg−1 = H.

Proof. The group G2 is abelian, by Corollary 282, and in particular it normalizes

each of its subgroups. As a consequence of Lemma 85(1), the subgroup G+ is

contained in G2 and we conclude combining (1) with Lemma 81.

Lemma 309. Let H be a subgroup of G that contains G4. Then there exists g ∈ G

such that gHg−1 is A-stable.

Proof. We denote by α4 the automorphism of G/G4 that is induced by α. By

Proposition 142, the automorphism α4 is intense so, by Lemma 93, there exists

g ∈ G such that gHg−1/G4 is 〈α4〉-stable. It follows from the definition of α4 that

gHg−1 is A-stable.

We recall that a positive integer j is a jump of a subgroup H of G if and only if

H ∩Gj 6= H ∩Gj+1. For the theory of jumps we refer to Section 2.3.

Lemma 310. Let H be a subgroup of G such that H∩G4 = {1}. Assume moreover

that H is not contained in G2. Then there exists x ∈ G \G2 such that H = 〈x〉.

Proof. The subgroup H is different from G, since H∩G4 = {1}, and it is therefore

contained in a maximal subgroup C of G. Moreover, H not being contained in

G2, we have wtGH(1) = 1. We first show that H is abelian. The subgroup [H,H ] is

contained in [C,C] and [C,C] = [C,G2], as a consequence of Lemma 28. Thanks

to Lemma 20, the subgroup [H,H ] is contained in G3. By Lemma 244, the centre

of G is equal to G4 and so, by Lemma 190, the map γ : G/G2 × G3/G4 → G4

that is induced from the commutator map is non-degenerate. Since C = HG2, we

get [C, [H,H ]] = [H, [H,H ]] ⊆ H ∩G4 and so, since H ∩G4 = {1}, the subgroup

[H,H ] is contained in Z(C). It follows that [H,H ] is contained in Z(C)∩[C,C]∩H

and so, thanks to Corollary 282 and Lemma 245, the commutator subgroup of H is

trivial. The group H being abelian, it follows, from the non-degeneracy of γ, that

wtGH(3) ≤ 1 and, from Lemma 241, that wtGH(2) = 0. Let now x be an element of

H \G2. Then 1 is a jump of 〈x〉 in G and, the group G being a κ-group, it follows

that x3 ∈ G3 \G4. As a consequence of Lemma 84, we get

|〈x〉| ≥ 3wtG
〈x〉(1)3wtG

〈x〉(3) ≥ 9 ≥ 3wtG
H(1)3wtG

H(3) =

4∏

i=1

3wtG
H (i) = |H |
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and therefore H is cyclic generated by x.

Lemma 311. Let H be a subgroup of G such that H ∩G4 = {1}. Assume that H

is not contained in G2. Then H and α(H) are conjugate in G.

Proof. By Lemma 310, the groupH is cyclic. We define T = H⊕G4 so, by Lemma

309, there exists g ∈ G such that gTg−1 is A-stable. We fix such g and denote

T ′ = gTg−1 and H ′ = gHg−1. The subgroup G4 being characteristic, it follows

that H ′ ⊕G4 = T ′ = α(H ′)⊕G4. Let C denote the collection of complements of

G4 in T ′. By Lemma 114, the elements of C are in bijection with the elements of

Hom(H ′, G4), which is naturally isomorphic to Hom(H ′/Φ(H ′), G4), because G4

has order 3. The group H ′ is cyclic, so Φ(H ′) = (H ′)3 and, the group G being a κ-

group, one gets Φ(H ′) = H ′∩G2. By Lemma 36, the quotient G/G2 is elementary

abelian and the restriction map Hom(G/G2, G4) → Hom(H ′G2/G2, G4) is thus

surjective. Moreover, by Lemma 244, the subgroup G4 coincides with Z(G) so,

as a consequence of Lemma 190, the map G3/G4 → Hom(G/G2, G4), defined by

xG4 7→ (tG2 7→ [x, t]), is an isomorphism. It follows from Lemma 114 that, for

each K ∈ C, there exists x ∈ G such that K = {[x, t]t = xtx−1 | t ∈ H ′}. As a

consequence, there is x ∈ G such that α(H ′) = xH ′x−1 and so, since H ′ = gHg−1,

also α(H) and H are conjugate in G.

Lemma 312. Let H be a subgroup of G3 such that H ∩ G4 = {1}. Then H and

α(H) are conjugate in G.

Proof. Let T = HG4. The group G3 is elementary abelian, as a consequence of

Corollary 282, and therefore so is T = H ⊕G4. Let g ∈ G be such that gTg−1 is

A-stable, as in Lemma 309, and set T ′ = gTg−1 and H ′ = gHg−1. Let moreover

C be the set of complements of G4 in T ′ and note that, G4 being characteris-

tic, both H ′ and α(H ′) belong to C. Thanks to Lemma 114, the elements of C

are in bijection with the elements of Hom(H ′, G4). By the isomorphism theo-

rems, H ′ is isomorphic to (H ′G4)/G4 and the restriction map induces a surjection

Hom(G3/G4, G4) → Hom(H ′, G4). By Lemma 244, the subgroup G4 coincides

with Z(G) so, as a consequence of Lemma 190, the mapG/G2 → Hom(G3/G4, G4),

defined by xG4 7→ (tG2 7→ [x, t]) is an isomorphism. It follows from Lemma 114

that each element of C is of the form {[x, t]t = xtx−1 | t ∈ H ′} = xH ′x−1, for some

x ∈ G. In particular, α(H ′) and H ′ are conjugate in G. The groups H ′ and H

being conjugate in G, it follows that H and α(H) are conjugate, too.

Lemma 313. Let H be a subgroup of G such that H ⊕G4 = G2. Then H has an

A-stable conjugate in G.

Proof. We define X to be the collection of all subgroups K of G for which G2 =

K ⊕ G4. The group G2 is elementary abelian, by Corollary 282, so the set X
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is non-empty. Moreover, as a consequence of Lemma 114, the cardinality of

X is equal to the cardinality of Hom(H,G4), which is 27. We define X+ =

{K ∈ X : α(K) = K} and we will show, with a counting argument, that H is

conjugate to an element of X+. Let K ∈ X+. Thanks to Corollary 76, we can

write K = K+ ⊕ K− and, as a consequence of Lemma 85, the subgroup K− is

equal to G−
2 . Again by Lemma 85, the subgroup G+

2 has order 9 and it contains

G4. It follows that |X+| is equal to the number of 1-dimensional subspaces of

G+
2 that are different from G4, i.e. |X+| = 3. By Lemma 308(1), the group G2

normalizes K, but in fact G2 = NG(K), as a consequence of Lemma 190. It fol-

lows that the orbit of K in X has size |G : G2| = 9 so, thanks to Lemma 308(2),

the element K is the only element of X+ belonging to its orbit under G/G2. The

number |X |/|X+| being equal to 9, it follows that each orbit of the action of G/G2

on X has a representative in X+. The same holds for the orbit of H .

Lemma 314. Let H be a subgroup of G such that H ⊕G3 = G2. Then H has an

A-stable conjugate in G.

Proof. Let X be the collection of all complements of G3 in G2. The group G2

is elementary abelian, by Corollary 282, and so, from Lemma 114 it follows

that the cardinality of X is equal to |Hom(H,G3)| = 27. We define X+ =

{K ∈ X : α(K) = K}. As a consequence of Lemma 85, if K is an element of

X+, then K = K+. The elements of X+ are thus exactly the one-dimensional

subspaces of G+
2 that are different from G4 and so we have that |X+| = 3. Fix

K ∈ X+. Then, as a consequence of Lemma 241, the commutator map induces

an isomorphism G/G2 ⊗K → G3/G4. It follows that NG(K) is contained in G2

so, thanks to Lemma 308(1), one has NG(K) = G2. Lemma 308(2) yields that K

is the only element of X+ belonging to its orbit under the action of G/G2 on X .

The number |X |/|X+| being equal to 9, it follows that each orbit of the action

of G/G2 on X has a representative in X+ so, in particular, H has an A-stable

conjugate in G.

Lemma 315. Let x ∈ G \G2 and let a ∈ G+
2 \G3. Then [x, a] does not belong to

G−.

Proof. Let C = CG([x, a]) and D = 〈x,G2〉. By Lemma 241, the element [x, a]

belongs to G3 \G4 so, as a consequence of Lemmas 244 and 190, the index of C

in G is equal to 3. In particular, both C and D are maximal subgroups of G.

Assume now by contradiction that [x, a] ∈ G−. Since x belongs to G \G2, there

exists γ ∈ G2 such that α(x) = x−1γ and so we have

[x, a]−1 = α([x, a]) = [x−1γ, a].
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The group G2 is elementary abelian, by Corollary 282, and therefore, applying

Lemma 18(2), one gets

[x, a]−1 = [x−1γ, a]

= x−1[γ, a]x[x−1, a]

= [x−1, a]

= x−1axa−1

= x−1[a, x]x

= [x−1, [a, x]][a, x]

= [x−1, [x, a]−1][x, a]−1.

As a result, the element [x−1, [x, a]−1] is trivial, and so x ∈ C. It follows that

C = D, and thus [x, a] belongs to [C,C] ∩ Z(C). Lemma 245 yields [x, a] ∈ G4.

Contradiction.

Lemma 316. Let x ∈ G2 \G3 and y ∈ G3 \G4. Define H = 〈x, y〉. Then H has

an A-stable conjugate.

Proof. The group G2 is elementary abelian, by Corollary 282, and therefore H =

〈x〉⊕ 〈y〉. Let X be the set consisting of all subgroups of G2 of the form 〈u〉⊕ 〈v〉,

where u ∈ G2 \ G3 and v ∈ G3 \ G4. The cardinality of X is then equal to 108.

We define X+ = {K ∈ X : α(K) = K} and we fix K ∈ X+. By Corollary 76,

the subgroup K decomposes as K = K+ ⊕K− and, as a consequence of Lemma

85, there exists a ∈ G+
2 such that K = 〈a〉 ⊕ K−. Fix such a. Again thanks

to Lemma 85, we get that |X+| = 12. We want to count the conjugates of K.

By Lemma 308(1), the subgroup G2 is contained in NG(K) and, if x ∈ NG(K),

then [x, a] ∈ K ∩G3. The intersection K ∩G3 being equal to K−, it follows from

Lemma 315 that NG(K) = G2. As a consequence of Lemma 308(2), the element K

is the only element of X+ belonging to its orbit under G/G2 so, from the equality

|X |/|X+| = 9, we can deduce that each orbit of the action of G/G2 on X has a

representative in X+. The same holds for the orbit of H .

Lemma 317. The automorphism α is intense. Moreover, the intensity of G is

equal to 2.

Proof. Let H be a subgroup of G. If H contains G4, then, by Lemma 309, there

exists a conjugate of H that is A-stable. Assume that H ∩G4 = {1}. If H is not

contained in G2, then H is conjugate to α(H), thanks to Lemma 311. Assume

that H is contained in G2. If 2 is not a jump of H in G, then, by Lemma 312, the

subgroups H and α(H) are conjugate in G. We suppose that 2 is a jump of H in

G. By Corollary 282, the group G2 is elementary abelian and so H is a subspace of

G2, not contained in G3, that trivially intersects G4. The combination of Lemmas
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313, 314, and 316 guarantees that H has an A-stable conjugate in G. The choice

of H being arbitrary, it follows from Lemma 93 that α is intense. The intensity of

G is at least 2, because α has order 2, but in fact int(G) = 2, as a consequence of

Theorem 125(1).

We remark that, thanks to Lemma 317, the proof of Proposition 307 is complete.

Moreover, we are now also able to prove Theorem 231. The implication (2)⇒ (1)

is clear and the implication (3) ⇒ (2) is given by the combination of Proposition

307 and Lemma 247. We now prove (1) ⇒ (2). To this end, let Q be a finite

3-group of class at least 4 with int(Q) > 1. Because of Corollary 284, the class

of Q is equal to 4 so, as a consequence of Theorem 164, the order of Q is equal

to 729. The intensity of Q is equal to 2, thanks to Theorem 125(1). We have

concluded the proof of (1)⇒ (2) and, to finish the proof of Theorem 231, we will

next prove (2) ⇒ (3). Let Q be a finite 3-group of class 4 and intensity 2. Then,

by Lemma 239, the group Q is a κ-group and, as a consequence of Proposition

134, it possesses an automorphism of order 2 that induces the inversion map on

Q/Q2. By Theorem 164, the order of Q4 is 3. Proposition 285 yields that Q is

isomorphic to MC(3). The proof of Theorem 231 is now complete.
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Chapter 10

Obelisks

Let p > 3 be a prime number. A p-obelisk is a finite p-group G for which the

following hold.

1. The group G is not abelian.

2. One has |G : G3| = p3 and G3 = Gp.

The following proposition will immediately clarify our interest in p-obelisks.

Proposition 318. Let p > 3 be a prime number and let G be a finite p-group of

class at least 4. If int(G) > 1, then G is a p-obelisk.

Proof. Combine Theorems 164 and 189.

Chapter 10 will be entirely devoted to understanding the structure of p-obelisks

and that of their subgroups. Some of the results, especially coming from Section

10.4, are rather technical and their relevance will become evident in Chapter 11.

10.1 Some properties

We remind the reader that, if p is a prime number and G is a finite p-group, then

wtG(i) = logp |Gi : Gi+1| where (Gi)i≥1 denotes the lower central series of G.

Lemma 319. Let p > 3 be a prime number and let G be a p-obelisk. Let (Gi)i≥1

denote the lower central series of G. Then the following hold.

1. The class of G is at least 2.

2. One has wtG(1) = 2 and wtG(2) = 1.

3. The group G/G3 is extraspecial of exponent p.
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Proof. The group G is non-abelian and thus G2 6= G3. The index |G : G3| being

equal to p3, it follows from Lemma 31 that wtG(1) = 2 and wtG(2) = 1. We

denote now G = G/G3 and use the bar notation for the subgroups of G. Then

G2 is contained in Z(G) and G2 = Z(G), as a consequence of Lemma 27. The

exponent of G is p, because Gp is contained in G3.

Lemma 320. Let p > 3 and let G be a p-obelisk. Then G is regular.

Proof. This follows directly from Lemma 53.

Proposition 321. Let p > 3 be a prime number and let G be a p-obelisk. Let

(Gi)i≥1 be the lower central series of G and let c denote the class of G. Then the

following hold.

1. For all i ∈ Z≥1, one has wtG(i) wtG(i + 1) ≤ 2.

2. If wtG(i) wtG(i + 1) = 1, then i = c− 1.

3. For all positive integers k and l, not both even, one has [Gk, Gl] = Gk+l.

Proof. Proposition 321 is a simplified version of Theorem 4.3 from [Bla61], which

can also be found in Chapter 3 of [Hup67] as Satz 17.9.

We remark that the term p-obelisk does not appear in [Bla61] or [Hup67] and is of

our own invention. Moreover, originally Proposition 321(1-2) was phrased in the

following way: if G is a p-obelisk, then

(wtG(i))i≥1 = (2, 1, 2, 1, . . . , 2, 1, f, 0, 0, . . .) where f ∈ {0, 1, 2}.

Lemma 322. Let p > 3 be a prime number and let G be a p-obelisk. Let c denote

the class of G and let i ∈ {1, . . . , c− 1}. Then the following hold.

1. The index i is odd if and only if wtG(i) = 2.

2. The index i is even if and only if wtG(i) = 1.

3. If wtG(c) = 2, then c is odd.

4. If c is even, then wtG(c) = 1.

Proof. For all j ∈ {1, . . . , c− 1}, denote wj = wtG(j). Thanks to Lemma 319, we

have w1 = 2 and w2 = 1. As a consequence of Proposition 321, whenever i < c−1,

the product wiwi+1 is equal to 2 and, for all indices i, j ∈ {1, . . . , c− 1}, one has

wi = wj if and only if i and j have the same parity. It follows from Proposition

321(1) that wtG(c) can be 2 only if c is odd.

We recall that, if G is a p-group, then ρ denotes the map x 7→ xp on G.
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Lemma 323. Let p > 3 be a prime number and let G be a p-obelisk. Then, for

all i, k ∈ Z>0, one has ρk(Gi) = G2k+i.

In his original proof of Proposition 321, Blackburn also proves Lemma 323. Black-

burn’s proof strongly relies on the fact that p-obelisks are regular and it makes

use of some technical lemmas that can be found in [Hup67, Ch. III].

Proposition 324. Let p > 3 be a prime number and let G be a p-obelisk. Let

(Gi)i≥1 be the lower central series of G and let c denote its nilpotency class. Then

Z(G) = Gc.

Proof. We work by induction on c. If c = 2, then, by Lemma 319(3), the group G

is extraspecial so G2 = Z(G). Assume now that c > 2. The subgroup Gc is central,

because G has class c, and, by the induction hypothesis, Z(G/Gc) = Gc−1/Gc. It

follows that Gc ⊆ Z(G) ⊆ Gc−1 and Z(G) 6= Gc−1. Moreover, by Proposition

321(1), the width wtG(c− 1) is either 1 or 2. If wtG(c− 1) = 1, then Z(G) = Gc;

we assume thus that wtG(c − 1) = 2. By Lemma 322(1), there exists a positive

integer k such that c − 1 = 2k + 1 so, from Lemma 323, we get Gc−1 = ρk(G)

and Gc = ρk(G2). As a consequence of Proposition 321(1), the subgroup Gc
has order p. Let us assume by contradiction that Z(G) 6= Gc, in other words

|Gc−1 : Z(G)| = |Z(G) : Gc| = p. Let N = CG(Gc−1). The commutator map

G/G2 × Gc−1/Gc → Gc is bilinear by Lemma 24 and it factors as a surjective

non-degenerate map G/N × Gc−1/Z(G) → Gc. It follows from Lemma 2 that

G/N is cyclic of order p so, by Lemma 28, one has G2 = [N,G]. Lemma 54 yields

ρk([N,G]) = [N, ρk(G)] = [N,Gc−1] = {1}

and so Gc = ρk(G2) = {1}. Contradiction.

Lemma 325. Let G be a group and let N be a normal subgroup of G. Let moreover

H and K be subgroups of G such that K ⊆ H. Then one has (H ∩ N)K =

(KN) ∩H.

Proof. Easy exercise.

Lemma 326. Let p > 3 be a prime number and let G be a p-obelisk. Then each

non-abelian quotient of G is a p-obelisk.

Proof. Let N be a normal subgroup of G such that G/N is not abelian. We claim

that N is contained in G3. Denote first H = G/N . Then we have |H : H2| ≤

|G : G2|. Moreover, H being non-abelian, Lemma 31 yields |H : H2| ≥ p2, and

therefore, from Lemma 319(2), it follows that N ⊆ G2. If N ∩G3 = N , then N is

contained in G3 and we are done. Assume by contradiction that N ∩G3 6= N . As

a consequence of Lemma 319(2), the subgroup N does not contain G3. Let now
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M be a normal subgroup of G such that N ∩ G3 ⊆ M ⊆ G3 and |G3 : M | = p,

as given by Lemma 35. Then G = G/M has class 3 and N 6= {1}. But, by

Lemma 140, the centre of G is equal to G3 so, G3 having order p, Lemma 29

yields G3 ⊆ N . In particular, G3 is contained in MN . Thanks to Lemma 325,

we get that G3 = (G3 ∩ N)M = M , which gives a contradiction. It follows that

N ⊆ G3, as claimed, and thus we have |H : H3| = |G : G3|. It is moreover clear

that Hp = H3, and so we have proven that H is a p-obelisk.

Lemma 327. Let p > 3 be a prime number and let G be a p-obelisk. Then the

following hold.

1. If H is a quotient of G of class i, then Z(H) = Hi.

2. Let N be a subgroup of G. Then N is normal in G if and only if there exists

i ∈ Z>0 such that Gi+1 ⊆ N ⊆ Gi.

Proof. (1) Let H be a quotient of G and let i denote the class of H . Let moreover c

denote the class of G and note that i ≤ c. If i = 0 or i = 1, the group H is abelian

and Z(H) = H . Assume now that i > 1. Then H is a non-abelian quotient of a

p-obelisk so, by Lemma 326, it is a p-obelisk itself. To conclude, apply Proposition

324. For the proof of (2), we combine (1) with Lemma 30.

10.2 Power maps and commutators

Throughout Section 10.2 we will faithfully follow the notation from the List of

Symbols. In particular, if p is a prime number and G is a finite p-group, then ρ

denotes the map G→ G that is defined by x 7→ xp. We remind the reader that ρ

is in general not a homomorphism.

Lemma 328. Let p > 3 be a prime number and let G be a p-obelisk. Then the

following hold.

1. For all i, k ∈ Z>0 the map ρk : Gi → Gi induces a surjective homomorphism

ρki : Gi/Gi+1 → G2k+i/G2k+i+1.

2. For all h, k ∈ Z>0 not both even, the commutator map induces a bilinear

map γh,k : Gh/Gh+1 × Gk/Gk+1 → Gh+k/Gh+k+1 whose image generates

Gh+k/Gh+k+1.

Proof. (1) Let i and k be positive integers and, without loss of generality, assume

that G2k+i+1 = {1}. We work by induction on k and we start by taking k = 1. As

a consequence of Lemma 20, the group [Gi, Gi] is contained in G2i so, from Lemma

323, it follows that [Gi, Gi]
p is contained in G2i+2. The index i being positive,

G2i+2 is contained in Gi+3 = {1}. Now, the prime p is larger than 3 so Gip is also
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contained in Gi+3 = {1}. It follows from Lemma 20, that (Gi)p is contained in

Gip, and so, thanks to Corollary 48, the map ρ : Gi → Gi is a homomorphism. The

function ρ factors as a surjective homomorphism ρ1
i : Gi/Gi+1 → Gi+2, thanks to

Lemma 323. This finishes the proof for k = 1. Assume now that k > 1 and define

ρki = ρ1
2k+i−1 ◦ ρ

1
2k+i−3 ◦ . . . ◦ ρ

1
i+2 ◦ ρ

1
i .

As a consequence of the base case, the map ρki is a surjective homomorphism

ρki : Gi/Gi+1 → G2k+i/G2k+i+1 and, by its definition, it is induced by ρk. This

proves (1). To prove (2) combine Proposition 321(3) with Lemma 23.

Corollary 329. Let p > 3 be a prime number and let G be a p-obelisk. Let c

be the class of G. Let moreover i and j be integers of the same parity such that

1 ≤ i ≤ j ≤ c and one of the following holds.

1. The number j is even.

2. One has wtG(j) = 2.

Define m = j−i
2 . Then the map ρm : Gi → Gi induces an isomorphism of groups

ρmi : Gi/Gi+1 → Gj/Gj+1.

Proof. By Lemma 328(1), the map ρm : Gi → Gi induces a surjective homomor-

phism ρmi : Gi/Gi+1 → Gj/Gj+1. Now, i and j having the same parity, it follows

from Lemma 322 that wtG(i) = wtG(j) and ρmi is a bijection.

Lemma 330. Let p > 3 be a prime number and let G be a p-obelisk. Denote by c

the class of G. Let moreover h and k be positive integers, not both even, such that

h+ k ≤ c. Assume additionally that, if h+ k is odd, then wtG(h+ k) = 2. Then

the map γh,k from Lemma 328 is non-degenerate.

Proof. Without loss of generality, assume that c = h + k and so Gh+k+1 = {1}.

We prove non-degeneracy of γh,k by looking at the parity of h + k. Assume first

that h + k is odd and, without loss of generality, h is odd and k is even. From

Lemma 322, it follows that wtG(h) = 2 and wtG(k) = 1. Moreover, by assumption,

wtG(h + k) = 2. Since the image of γh,k generates Gh+k, the map γh,k is non-

degenerate. Let now h + k be even. The numbers h and k are both odd so

wtG(h) = wtG(k) = 2, by Lemma 322(2). Assume without loss of generality that

h ≤ k. Then, by Lemma 323, the set ρ
k−h

2 (Gh) coincides with the subgroup Gk.

Let now C = CGh
(Gk) and D = CGk

(Gh). Since γh,k 6= 1, Lemma 20 yields that

Gh+1 ⊆ C ( Gh and Gk+1 ⊆ D ( Gk. The commutator map induces a non-

degenerate map Gh/C×Gk/D → Gh+k so, wtG(h+k) being equal to 1, Lemma 2

yields that |Gh : C| = |Gk : D|. Now, by Lemma 320, the group G is regular, and

therefore so is C. Thanks to Lemma 52(1), the set ρ
k−h

2 (C) is a subgroup of C and
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so, thanks to Lemma 54, one has [ρ
k−h

2 (C), Gh] = [C, ρ
k−h

2 (Gh)] = [C,Gk] = {1}.

In particular, ρ
k−h

2 (C) ⊆ D. Since |Gh : C| = |Gk : D| and wtG(h) = wtG(k) = 2,

we derive from Corollary 329 that ρ
k−h

2 (C) = D. Assume now by contradiction

that there exists x ∈ Gh such that Gh = 〈x,C〉. Then Gk = 〈ρ
k−h

2 (x), D〉 and

therefore, the commutator map being alternating, one has Gh+k = [Gk, Gh] =

〈[x, ρ
k−h

2 (x)]〉 = {1}. Contradiction to the class of G being h+ k. It follows that

the quotient Gh/C is not cyclic and so C = Gh+1 and D = Gk+1. In particular,

γh,k is non-degenerate.

Corollary 331. Let p > 3 be a prime number and let G be a p-obelisk. Denote by

c the class of G. Let moreover l ∈ {1, . . . , c− 1} be such that c − l is odd. Then

the map Gc−l/Gc−l+1 → Hom(Gl/Gl+1, Gc) that is defined by

tGc−l+1 7→ (xGl+1 7→ [t, x])

is a surjective homomorphism of groups.

Proof. As a consequence of Lemma 323, the groups Gl/Gl+1, Gc−l/Gc−l+1, and

Gc are elementary abelian and the map γc−l,l from Lemma 328 is thus a bilinear

map of Fp-vector spaces. Respecting the notation from Section 1.1, we define

δ : Gc−l/Gc−l+1 → Hom(Gl/Gl+1, Gc)

to be the map sending each element v ∈ Gc−l/Gc−l+1 to v(γc−l,l). In other words,

if v = tGc−l+1, then δ(v) : Gl/Gl+1 → Gc is defined by xGl+1 7→ [t, x]. As a

consequence of Lemma 328(2), the function δ is a homomorphism of groups and δ

differs from the zero map. Let us now, for all i ∈ {1, . . . , c}, denote wi = wtG(i). It

follows that the dimension of Hom(Gl/Gl+1, Gc) is equal to wlwc and, if wlwc = 1,

then δ is surjective. We assume that wlwc 6= 1. The index c−l being odd, it follows

that either l or c is even. Proposition 321 yields wc−l = wlwc and, if l is even,

then wc = 2. As a consequence of Lemma 330, the map δ is injective and so δ is

also surjective.

10.3 Framed obelisks

Let p > 3 be a prime number and let G be a p-obelisk. Then G is framed if, for

each maximal subgroup M of G, one has Φ(M) = G3.

Lemma 332. Let p > 3 be a prime number and let G be a p-obelisk. Let moreover

h, k ∈ Z>0, with h odd and k even, and n ∈ Z≥0. Then the following diagram is

commutative.
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Gh/Gh+1 ×Gk/Gk+1
γh,k ✲ Gh+k/Gh+k+1

Gh/Gh+1 ×Gk+2n/Gk+2n+1

(idGh/Gh+1
, ρn

k )

❄
γh,k+2n✲ Gh+k+2n/Gh+k+2n+1

ρn
h+k

❄

Proof. The maps from the above diagram are defined in Lemma 328. Assume

without loss of generality that Gh+k+2n+1 = {1} so that Gh+k+2n is central. The

diagram is clearly commutative for n = 0. We will prove the most delicate case,

i.e. when n = 1, and leave the general case to the reader. Set n = 1. Let

(x, y) ∈ Gh × Gk. We will show, and that suffices, that [x, yp] = [x, y]p. Thanks

to Lemma 18(4), one gets

[x, y]−p[x, yp] =

p−1∏

r=1

[[yr , x], y].

Applying Lemma 20 twice, one gets that, for each index r, the element [[yr, x], y]

belongs to Gh+2k, which is itself contained in the central subgroup Gh+k+2. More-

over, the group Gh+k being central modulo Gh+k+1, Lemma 22 yields [yr, x] ≡

[y, x]r mod Gh+k+1. Thanks to Lemma 23, the commutator map on G induces a

bilinear map Gh+k/Gh+k+1×Gk/Gk+1 → Gh+2k and therefore we get [[yr , x], y] =

[[y, x]r, y] = [[y, x], y]r. It follows that

[x, y]−p[x, yp] =

p−1∏

r=1

[[yr, x], y] =

p−1∏

r=1

[[y, x], y]r = [[y, x], y](
p
2)

and, the prime p being larger than 2, the number
(
p
2

)
is a multiple of p. Since

[[y, x], y] belongs to Gh+k+2, it follows from Lemma 323 that [x, yp] = [x, y]p. This

concludes the case n = 1.

Lemma 333. Let p > 3 be a prime number and let G be a p-obelisk. Let moreover

h, k ∈ Z>0, with h odd and k even, and m ∈ Z≥0. Then the following diagram is

commutative.

Gh/Gh+1 ×Gk/Gk+1
γh,k ✲ Gh+k/Gh+k+1

Gh+2m/Gh+2m+1 ×Gk/Gk+1

(ρm
h , idGk/Gk+1

)

❄
γh+2m,k✲ Gh+k+2m/Gh+k+2m+1

ρm
h+k

❄
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Proof. The maps in the diagram are as in Lemma 328 and they are well-defined.

Assume without loss of generality that Gh+k+2m+1 = {1} and so Gh+k+2m is

central. Let (x, y) ∈ Gh ×Gk. The diagram is clearly commutative if m = 0; we

will prove commutativity when m = 1, the most difficult case, and we will leave

the general case to the reader. Set m = 1. We will prove, and that suffices, that

[xp, y] = [x, y]p. Applying Lemma 18(3) twice, we get

[xp, y][x, y]−p =

p−1∏

s=1

[x, [xp−s, y]]

p−1∏

s=1

[
x ,

( p−s−1∏

j=1

[x , [xp−s−j , y]]
)

[x, y]p−s
]
.

Thanks to Lemma 20, each element [x, [xp−s−j , y]] belongs to Gk+2h and, the

group Gh+k+3 being trivial, Gk+2h centralizes Gh+k. Again by Lemma 20, for

each index s, the element [x, y]p−s belongs to Gh+k and applying Lemma 18(1)

twice yields

[xp, y][x, y]−p =

p−1∏

s=1

[
x ,

p−s−1∏

j=1

[x, [xp−s−j , y]]
] p−1∏

s=1

[x, [x, y]p−s]

=

p−1∏

s=1

[
x ,

p−s−1∏

j=1

[x, [xp−s−j , y]]
] p−1∏

s=1

[x, [x, y]]p−s.

Thanks to Lemma 23, given any two positive integers i and j, the commuta-

tor map induces a bilinear map Gi/Gi+1 × Gj/Gj+1 → Gi+j/Gi+j+1. By tak-

ing consecutively (i, j) = (h, k) and (i, j) = (h, h + k), we get respectively that

[xp−s−j , y] ≡ [x, y]p−s−j mod Gh+k+1 and so

[x, [xp−s−j , y]] ≡ [x, [x, y]p−s−j ] ≡ [x, [x, y]]p−s−j mod G2h+k+1.

By taking (i, j) = (h, 2h+ k), we derive that

[xp, y][x, y]−p =

p−1∏

s=1

[
x ,

p−s−1∏

j=1

[x, [x, y]]p−s−j
] p−1∏

s=1

[x, [x, y]]p−s

=

p−1∏

s=1

[
x, [x, [x, y]](

p−s
2 )

] p−1∏

s=1

[x, [x, y]]p−s

=

p−1∏

s=1

[x, [x, [x, y]]](
p−s

2 )
p−1∏

s=1

[x, [x, y]]p−s = [x, [x, [x, y]]](
p
3)[x, [x, y]](

p
2).

The prime p being larger than 3, both
(
p
2

)
and

(
p
3

)
are multiples of p. As both

[x, [x, y]] and [x, [x, [x, y]]] belong to Gh+k+1, it follows from Lemma 323 that

[xp, y] = [x, y]p. This concludes the proof for m = 1.
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Proposition 334. Let p > 3 be a prime number and let G be a p-obelisk. Let

moreover h, k ∈ Z>0, with h odd and k even, and let m,n ∈ Z≥0. Then the

following diagram is commutative.

Gh/Gh+1 ×Gk/Gk+1
γh,k ✲ Gh+k/Gh+k+1

Gh+2m/Gh+2m+1 ×Gk+2n/Gk+2n+1

(ρm
h , ρn

k )

❄
γh+2m,k+2n✲ Gh+k+2(m+n)/Gh+k+2(m+n)+1

ρm+n
h+k

❄

Proof. Combine Lemmas 332 and Lemma 333.

Lemma 335. Let p > 3 be a prime number and let G be a p-obelisk of class at

least 3. Let moreover M be a maximal subgroup of G. Then [M,M ] = [M,G2]

and, whenever wtG(3) = 2, the following are equivalent.

1. One has Φ(M) 6= G3.

2. One has [M,M ] = Mp = Φ(M).

Proof. The subgroups Mp and [M,M ] are both characteristic in the normal sub-

group M ; thus both Mp and [M,M ] are normal in G. By Lemma 319(2), the

quotient G/G2 has order p2 and so |G : M | = |M : G2| = p. It follows from

Lemma 28 that [M,M ] = [M,G2] and so, as a consequence of Corollary 329 and

Lemma 330, the least jumps of [M,M ] and Mp in G are both equal to 3 and

of width 1. In particular, Φ(M) is contained in G3 and Lemma 327(2) yields

G4 ⊆ Mp ∩ [M,M ]. If the third width of G is equal to 2, then it follows that

Φ(M) 6= G3 if and only if [M,M ] = Φ(M) = Mp.

We remark that, as a consequence of Lemma 323, quotients of consecutive elements

of the lower central series of a p-obelisk are vector spaces over Fp and therefore,

in (2) and (3) from Proposition 336, it makes sense, for each positive integer i, to

talk about subspaces of Gi/Gi+1.

Proposition 336. Let p > 3 be a prime number and let G be a p-obelisk. Then

the following conditions are equivalent.

1. The p-obelisk G is framed.

2. For each 1-dimensional subspace ℓ of G/G2, the quotient G3/G4 is generated

by ρ1
1(ℓ) and γ1,2({ℓ} ×G2/G3).

3. For each h, k ∈ Z>0, with h odd and k even, and for each 1-dimensional

subspace ℓ in Gh/Gh+1, the spaces ρ
k/2
h (ℓ) and γh,k({ℓ}×Gk/Gk+1) generate

Gh+k/Gh+k+1.
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Proof. (1)⇔ (2) Let π : G→ G/G2 denote the natural projection. Then, through

π, there is a bijection between the maximal subgroups of G and the 1-dimensional

subspaces of G/G2. For any maximal subgroup M of G, we know from Lemma 335

that [M,G2] = [M,M ] and therefore (2) holds if and only if, given any maximal

subgroup M of G, one has Φ(M)G4 = G3. Lemma 327(2) yields that (2) is

satisfied if and only if, for any maximal subgroup M of G, one has Φ(M) = G3.

We now deal with (2) ⇔ (3). The implication ⇐ is proven by taking h = 1 and

k = 2, so we will prove that (2) implies (3). Let ℓ be a 1-dimensional subspace

of Gh/Gh+1. Define moreover m = h−1
2 , n = k−2

2 , and S = m + n = h+k−3
2 .

Thanks to Lemma 328(1), there exists a 1-dimensional subspace ℓ′ of G/G2 such

that ρm1 (ℓ′) = ℓ and, moreover, ρn2 (G2/G3) = Gk/Gk+1. By assumption G3/G4 is

generated by ρ1
1(ℓ′) and γ1,2({ℓ′}×G2/G3), so it follows from Lemma 328(1) that

ρS3 (ρ1
1(ℓ′)) and ρS3 (γ1,2({ℓ′}×G2/G3)) together span Gh+k/Gh+k+1. We now have

ρS3 (ρ1
1(ℓ′)) = ρS+1

1 (ℓ′) = ρ
k/2
h (ℓ)

and, thanks to Proposition 334, we also have

ρS3 (γ1,2({ℓ′} ×G2/G3)) = γh,k(ρm1 (ℓ′)× ρn2 (G2/G3)) = γh,k({ℓ} ×Gk/Gk+1).

This completes the proof.

10.4 Subgroups of obelisks

The major goal of this section is to link structural properties of subgroups of a

p-obelisk to the parities and widths of their jumps. The importance of Section

10.4 will become clear in Chapter 13.

Proposition 337. Let p > 3 be a prime number and let G be a p-obelisk. Let H

be a subgroup of G that is itself a p-obelisk. Then H = G.

Proof. The subgroup H is non-abelian, by definition of a p-obelisk, and it is in par-

ticular non-trivial. Let l denote the least jump of H in G. Then, as a consequence

of Lemma 20, the subgroup H2 = [H,H ] is contained in G2l. Moreover, since Hp

is equal to H3, the subgroup Hp is contained in H2. It follows from Corollary 329

that the minimum jump of H2 is at most l+2: we get that 2l ≤ l+2 and therefore

l ≤ 2. We will show that HG2 = G. Assume by contradiction that G 6= HG2.

Then, as a consequence of Lemma 319(2), the width wtGH(l) is equal to 1 and so

Lemma 28 yields that H2 = [H,H ∩ Gl+1]. Thanks to Lemma 20, the subgroup

H2 is contained in G2l+1 and therefore 2l + 1 ≤ l + 2. It follows that l = 1 and

that H2 is contained in G3. Define now G = G/G4 and use the bar notation for

the subgroups of G. By the isomorphism theorems, the groups H and H/(H ∩G4)

are isomorphic and so, as a consequence of Lemma 326, the group H is abelian or

124



10. OBELISKS

a p-obelisk. The minimum jump of Hp in G being equal to 3, we have that 3 is a

jump of H2 in G and so H is a p-obelisk. Now, the group G3 is central in G and so,

the group H2 being non-trivial, the quotient H/(H ∩G3) is not cyclic. It follows

that 2 is a jump of H in G and, from the combination of Lemmas 322 and 328(2),

that H2 has order p. Since H2 contains H
p
, we get H2 = H

p
= H3. Contradiction

to H being non-abelian. We have proven that G = HG2, from which we derive

G = HΦ(G). Lemma 33 yields H = G.

Lemma 338. Let p > 3 be a prime number and let G be a p-obelisk. Let H be a

cyclic subgroup of G. Then all jumps of H in G have the same parity and width

1.

Proof. Let H be a cyclic subgroup of G. Then, for all i ∈ Z>0, there exists k ∈ Z≥0

such that H∩Gi = Hpk

. Moreover, i ∈ Z>0 is a jump of H in G if and only if there

exists k ∈ {0, 1, . . . , logp |H | − 1} such that H ∩Gi = Hpk

and H ∩Gi+1 = Hpk+1

.

We conclude thanks to Lemma 328(1).

Lemma 339. Let p > 3 be a prime number and let G be a p-obelisk. Let c denote

the nilpotency class of G and assume that one of the following holds.

1. The number c is even.

2. One has wtG(c) = 2.

If H is a subgroup such that all of its jumps in G have the same parity and width

1, then H is cyclic.

Proof. Without loss of generality we assume that H is non-trivial and we take l to

be the least jump of H in G. Let moreover J (H) denote the collection of jumps

of H in G and define J = {l+ 2k : k ∈ Z≥0, k ≤ (c− l)/2}. Let x be an element

of H such that dptG(x) = l; the existence of x is guaranteed by Lemma 82. Write

K = 〈x〉 and let J (K) be the collection of jumps of K in G. By assumption J

contains J (H) and, as a consequence of Corollary 329, the set J is contained in

J (K). Keeping in mind that each jump of H in G has width 1, one derives

|K| =
∏

j∈J (K)

pwtG
K (j) ≥

∏

j∈J

pwtG
K(j) ≥

∏

j∈J

pwtG
H (j) ≥

∏

j∈J (H)

pwtG
H(j) = |H |.

It follows that K = H and H is cyclic.

Lemma 340. Let p > 3 be a prime number and let G be a p-obelisk. Let c denote

the nilpotency class of G and let H be a subgroup of G such that H ∩ Gc = {1}.

If all jumps of H in G have the same parity and width 1, then H is cyclic.
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Proof. We denote G = G/Gc and we will use the bar notation for the subgroups of

G. As a consequence of Lemma 428, the group G is abelian or it is a p-obelisk. If

G is abelian, then c = 2 and so, by Lemma 339, the subgroup H is cyclic. Assume

now that G is non-abelian and thus a p-obelisk. The group G has class c− 1 and,

as a consequence of Corollary 322, either c−1 is even or wtG(c−1) = 2. It follows

from Lemma 339 that H is cyclic and, the intersection H ∩Gc being trivial, so is

H .

Lemma 341. Let p > 3 be a prime number and let G be a p-obelisk. Let c

denote the nilpotency class of G and let H be a non-trivial subgroup of G such that

H ∩Gc = {1}. Let l be the least jump of H in G and assume that all jumps of H

in G have the same parity and the same width. Then the following hold.

1. The group H is abelian.

2. One has Φ(H) = H ∩Gl+1.

Proof. Let J (H) denote the collection of jumps of H in G. We first assume

wtGH(l) = 1. By Lemma 340, the subgroup H is cyclic and Φ(H) has index p in

H . It follows that Φ(H) = H ∩Gl+1. Assume now that wtGH(l) = 2. Then, thanks

to Lemma 322(3), the jump l is odd. The subgroup [H,H ] is contained in G2l,

thanks to Lemma 20, and therefore, 2l being even, Lemma 328(2) yields 2l > c.

In particular, one has [H,H ] = {1} so Φ(H) = Hp. Moreover, as a consequence

of Lemma 328(1), the set of jumps of Hp in G is equal to J (H) \ {l} and each

jump of Hp has width 2. It follows that Hp = H ∩ Gl+1. Thanks to Proposition

321 the width wtGH(l) is either 1 or 2 and the proof is thus complete.

Lemma 342. Let p > 3 be a prime number and let G be a p-obelisk. Let c be

the class of G and let H be a non-trivial subgroup of G such that H ∩ Gc = {1}.

Denote by l the least jump of H and assume that H ∩ Gl+1 = Φ(H). Finally,

assume that c− l is odd. Then, for each complement K of Gc in HGc, there exists

t ∈ Gc−l such that K = tHt−1.

Proof. The subgroup Gc is central in G, because G has class c, and so, by Lemma

114, all complements of Gc in T = HGc are of the form {f(h)h : h ∈ H} as

f varies in Hom(H,Gc). The subgroup Gc is elementary abelian, as a con-

sequence of Lemma 323, and therefore Hom(H,Gc) is naturally isomorphic to

Hom(H/Φ(H), Gc) = Hom(H/(H ∩ Gl+1), Gc). By assumption, c − l is odd so,

thanks to Corollary 331, the homomorphism Gc−l/Gc−l+1 → Hom(Gl/Gl+1, Gc),

defined by tGc−l 7→ (xGl+1 7→ [t, x]), is surjective. By Lemma 323, the quotient

Gl/Gl+1 is elementary abelian and therefore the restriction map

Hom(Gl/Gl+1, Gc)→ Hom(HGl+1/Gl+1, Gc)
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is surjective. By the isomorphism theorems, HGl+1/Gl+1 and H/(H ∩ Gl+1) are

isomorphic and so every homomorphism H → Gc is of the form x 7→ [t, x], for

some t ∈ Gc−l. For each complement K of Gc in T there exists thus t ∈ Gc−l such

that K = {[t, x]x : x ∈ H} = {txt−1 : x ∈ H} = tHt−1.
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Chapter 11

The most intense chapter

Let p > 3 be a prime number. We recall that a p-obelisk is a finite p-group G of

class at least 2 that satisfies G3 = Gp and |G : G3| = p3. A p-obelisk G is framed

if, for each maximal subgroup M of G, one has Φ(M) = G3. Some theory about

p-obelisks is developed in Chapter 10.

The main results of this chapter are summarized in Theorems 343 and 344, which

are proven in Section 11.4.

Theorem 343. Let p > 3 be a prime number and let G be a finite p-group of class

4. Let α be an automorphism of order 2 of G. Then the following conditions are

equivalent.

1. The group G is a p-obelisk and the automorphism G/G2 → G/G2 that is

induced by α is equal to the inversion map x 7→ x−1.

2. The automorphism α is intense.

An analogue of Theorem 343 for higher nilpotency classes is proven in Chapter

12: the next theorem gives an essential contribution to its proof.

Theorem 344. Let p > 3 be a prime number and let G be a framed p-obelisk.

Let α be an automorphism of order 2 of G and assume that the automorphism

G/G2 → G/G2 that is induced by α is equal to the inversion map x 7→ x−1. Then

α is intense.

We remark that the structure of Chapter 11 is quite rigid and is meant to ease the

understanding of the strategy behind the proof of Theorem 344. We will prove

Theorem 344 by induction on the nilpotency class c of the group G and we will

separate the cases according to the parity of c. Propositions 345, 358, and 369

will be the building blocks of the whole theory and will be verified respectively

129



11. THE MOST INTENSE CHAPTER

in Sections 11.1, 11.2, and 11.3. We will use several results from Section 10.4

to understand the structure of the subgroups of G, according to the size of their

intersection with Gc. Moreover, the arguments that we will apply will heavily

depend from the knowledge of the jumps of each subgroup in G. For more detailed

information about jumps, we refer to Section 2.3.

11.1 The even case

The next proposition is proven for any p-obelisk, where p is a prime number greater

than 3. We want to stress that, on the contrary, in Propositions 358 and 369 we

ask for the p-obelisk to be framed.

Proposition 345. Let p > 3 be a prime number and let G be a p-obelisk of class

c. Assume that c is even. Let moreover α be an automorphism of G of order 2 and

assume that the map αc : G/Gc → G/Gc that is induced by α is intense. Then α

is intense.

We give the proof of Proposition 345 in Section 11.1.2, after some preparation.

11.1.1 Some lemmas

We will work under the hypotheses of Proposition 345 until the end of Section

11.1.1. The class c of G being even, Lemma 322(4) yields that Gc has order p.

We denote moreover A = 〈α〉 and we recall that a subgroup H of G is said to be

A-stable if the action of A on G induces an action of A on H .

Lemma 346. Let H be a subgroup of G containing Gc. Then there exists g ∈ G

such that gHg−1 is A-stable.

Proof. The automorphism αc is intense so, by Lemma 93, there exists g ∈ G such

that (gHg−1)/Gc is 〈αc〉-stable. It follows from the definition of αc that gHg−1

is A-stable.

Lemma 347. Let H be a subgroup of G such that H ∩Gc = {1}. Then all jumps

of H in G are odd.

Proof. The subgroup H has trivial intersection with Gc and c is even. It follows

from Corollary 329 that H cannot have even jumps in G.

Lemma 348. Let H be a subgroup of G such that H∩Gc = {1}. Define T = HGc
and assume that α(T ) = T . Then, for each subgroup K of T , one has α(KGc) =

KGc. Moreover, for each x ∈ H, there exists γ ∈ Gc such that α(x) = x−1γ and

α(γ) = γ.
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Proof. We denote G = G/Gc and we use the bar notation for its subgroups. By

Lemma 347, all jumps of H in G are odd and so all jumps of T in G are odd.

The subgroup T is 〈αc〉-stable so, as a consequence of Lemma 85, each element

of T is sent to its inverse by αc. Every subgroup of T is thus 〈αc〉-stable and,

in particular, so is K. It follows from the definition of αc that KGc is A-stable.

Moreover, every element of H is inverted, modulo Gc, by α and the restriction of

α to Gc is the identity map, thanks to Lemma 62.

Lemma 349. Let H be a non-trivial subgroup of G such that H ∩Gc = {1}. Let

l denote the least jump of H and assume that all jumps of H in G have the same

width. Assume moreover that α(HGc) = HGc. Then there exists g ∈ Gc−l such

that gHg−1 is A-stable.

Proof. Define T = HGc. All jumps of H in G are odd, by Lemma 347, and H is

abelian, by Lemma 341(1). The subgroup Gc being central, the group T is in fact

equal to H ⊕ Gc. Moreover, the subgroup Gc being characteristic, T = α(T ) =

α(H)⊕Gc and α(H) is a complement of Gc in T . By Lemma 341(2), the Frattini

subgroup of H is equal to H ∩Gl+1 so it follows from Lemma 342 that there exists

t ∈ Gc−l such that α(H) = tHt−1. Thanks to Lemma 92, there exists g ∈ Gc−l
such that gHg−1 is A-stable.

Lemma 350. Let H be a subgroup of G such that H ∩Gc = {1}. Assume that all

jumps of H in G have the same width. Then there exists g ∈ G such that gHg−1

is A-stable.

Proof. Denote T = HGc. Thanks to Lemma 346, there exists a ∈ G such that

aTa−1 is A-stable. Write T ′ = aTa−1 and H ′ = aHa−1. Then T ′ = H ′Gc
and, thanks to Lemma 349, there exists b ∈ G such that bH ′b−1 is A-stable. To

conclude, define g = ba.

Lemma 351. Let H be a subgroup of G such that H ∩ Gc = {1}. Then there

exists g ∈ G such that gHg−1 is A-stable.

We devote the remaining part of this section to the proof of Lemma 351. We warn

the reader that the following assumptions will be valid until the end of Section

11.1.1.

Let H be a subgroup of G such that H ∩Gc = {1}. Without loss of generality we

assume that H is non-trivial and, in view of Lemma 350, that the jumps of H in

G do not all have the same width. As a consequence of Proposition 321(1), each

jump of H in G will have width 1 or 2. Let l and j denote respectively the least

jump of width 1 and the least jump of width 2 of H in G. Write T = HGc.

Lemma 352. Let i and h be jumps of H. Assume that wtGH(i) = 1 and that

wtGH(h) = 2. Then i < h.
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Proof. By Lemma 347, both i and h are odd so, the class c being even, Corollary

329 yields i < h.

Lemma 353. The following hold.

1. One has l < j.

2. One has j + l > c.

3. The subgroup H is abelian.

Proof. Part (1) follows directly from Lemma 352. We prove (2) and (3) together.

As a consequence of Lemma 339, the group H/(H ∩ Gj) is cyclic and, thanks to

Lemma 28, one gets [H,H ] = [H,H ∩Gj ]. The number l+ j being even, it follows

from Lemma 347 that l + j is not a jump of H in G. Lemma 330 yields l + j > c

and, as a result, [H,H ] ⊆ Gc+1 = {1} so H is abelian.

Lemma 354. There exist cyclic subgroups J and L of H such that H = J ⊕ L

and j and l are respectively the least jump of J and the least jump of L in G.

Proof. The subgroup H is abelian by Lemma 353(3) and, as a consequence of

Lemma 352, the subgroup H ∩Gj has only jumps of width 2. The smallest jump

of H in G is l so, thanks to Lemma 82, there is an element z in H with dptG(z) = l.

Define L = 〈z〉. Then L is a subgroup of H and l is the least jump of L in G.

Moreover, thanks to Lemma 338, all jumps of L are odd and of width 1 in G. Now,

l is smaller than j, by Lemma 353(1), and j is a jump of L in G as a consequence

of Corollary 329. However, j is a jump of width 2 of H , and thus there exists an

element x in H \ L such that dptG(x) = j. Define J = 〈x〉. The group H being

abelian, Corollary 329 yields L ∩ J = {1}. Now, every jump l ≤ i < j of L in G

is also a jump of H and it has width 1 by definition of j. Moreover, each jump

j ≤ i < c of J ⊕ L is a jump of width 2 of H . Corollary 329 ensures that all odd

integers l ≤ i < c are jumps of H in G, so Lemma 84 yields

|J ⊕ L| =
c−1∏

i=l

pdimG
J⊕L(i) =

c−1∏

i=l

pdimG
H(i) = |H |.

It follows that H and J ⊕ L coincide.

Lemma 355. Let J and L be as in Lemma 354. Assume that α(T ) = T . Then

there exists g ∈ Gc−l such that the following hold.

1. The group gLg−1 is A-stable.

2. One has gTg−1 = T and gJg−1 = J .
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Proof. We define R = LGc. By Lemma 348, the group R is A-stable. The sub-

group L is cyclic so, by Lemma 338, all its jumps in G are odd and of width 1.

With L in the role of H , it follows from Lemma 349 that there exists g ∈ Gc−l
such that gLg−1 is A-stable. We fix such an element g and prove that g normalizes

both J and T . The least jump of J is j and therefore [g, J ] = {[g, x] : x ∈ J} is

contained in [Gc−l, Gj ]. As a consequence of Lemma 20, the set [g, L] is contained

in Gc−l+j , which is itself contained in Gc+1 thanks to Lemma 353(1). It follows

that g centralizes J and gJg−1 = J . To conclude, we show that gTg−1 = T . The

subgroup T is contained in Gl, so [g, T ] is contained in [Gc−l, Gl]. Again applying

Lemma 20, we get that [g, T ] is contained in Gc. The subgroup Gc being contained

in T , we are done by Lemma 13.

Lemma 356. Let J and L be as in Lemma 354. Assume that α(T ) = T and

α(L) = L. Then there exists g ∈ Gc−j such that gHg−1 is A-stable.

Proof. We will construct g. Let x, z ∈ H be such that J = 〈x〉 and L = 〈z〉. As a

consequence of Lemma 354, one has dptG(x) = j and dptG(z) = l. Let moreover

γ ∈ Gc be such that α(x) = x−1γ and α(γ) = γ; the existence of γ is confirmed by

Lemma 348. Define m = (j+ l−c)/2, which is a positive integer thanks to Lemma

353(2). By Lemma 323, there exists a of depth c − j in G such that ρm(a) = z.

We fix a and remark that a belongs to CG(L), because [a, z] = [a, ρm(a)] = 1 and

z generates L. Now, x does not belong to L, but, as a consequence of Corollary

329, the jump j of J is also a jump of L in G. Since wtG(j) = 2, it follows from

Lemma 330 that there exists s ∈ Z such that [as, x] = γ
p−1

2 . We define g = as and

claim that gHg−1 is A-stable. We recall that γ belongs to the central subgroup

Gc and that, because of Lemma 323, the exponent of Gc is p. We compute

α(gxg−1) = α([g, x]x) = α(γ
p−1

2 x) = α(γ
p−1

2 )α(x) = γ
p−1

2 x−1γ =

γ
p+1

2 x−1 = (γ
p−1

2 x)−1 = ([g, x]x)−1 = (gxg−1)−1

and so gJg−1 is A-stable. Moreover, g centralizes L and therefore gHg−1 =

gJg−1 ⊕ L. As a consequence, gHg−1 is itself A-stable.

Lemma 357. Let J and L be as in Lemma 354. Assume that α(T ) = T . Then

there exists g ∈ Gc−j such that gHg−1 is A-stable.

Proof. As a consequence of Lemma 355, there exists a ∈ Gc−l such that aLa−1

is A-stable, aTa−1 = T , and aHa−1 = J ⊕ aLa−1. We fix such a and we take

h ∈ Gc−j making h(aHa−1)h−1 stable under the action of A. With H replaced

by aHa−1, Lemma 356 guarantees the existence of h. We define g = ha and we

claim that g ∈ Gc−j. The jump j is larger than the jump l, by Lemma 353(1),

and therefore Gc−l ⊆ Gc−j . It follows that the product ah belongs to Gc−l.
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To conclude the proof of Lemma 351, we construct g ∈ G such that gHg−1 is

A-stable. Let b ∈ G be such that bT b−1 is A-stable and observe that such element

b exists by Lemma 346. Lemma 357, with H replaced by bHb−1, provides an

element a ∈ G such that a(bHb−1)a−1 is A-stable. We define g = ab and the proof

of Lemma 351 is complete.

11.1.2 The induction step

Under the hypotheses of Proposition 345, we want to show that α is an intense

automorphism of G. In view of this, let H be a subgroup of G. If H contains

Gc, then H has an A-stable conjugate in G by Lemma 346. We assume that

H ∩Gc 6= Gc. The class c being even, it follows from Lemma 322(4) that |Gc| = p

and so H intersects Gc trivially. By Lemma 351, there exists an element g ∈ G

such that gHg−1 is A-stable. The automorphism α is intense as a consequence of

Lemma 93 and the fact that H was chosen arbitrarily. Proposition 345 is proven.

11.2 The odd case, part I

In Proposition 358 an additional assumption compared to Proposition 345 is made:

that G be a framed p-obelisk. We recall that, if p is a prime number, then a p-

obelisk G is framed if, for each maximal subgroup M of G, one has Φ(M) = G3.

We refer to Section 10.3 for useful facts related to framed p-obelisks.

Proposition 358. Let p > 3 be a prime number and let G be a framed p-obelisk of

class c. Assume that c is odd and that Gc has order p. Let α be an automorphism

of G of order 2 and assume that the map αc : G/Gc → G/Gc that is induced by α

is intense. Then α is intense.

The proof of Proposition 358 is given in Section 11.2.2.

11.2.1 Some lemmas

The goal of this section is to give all ingredients for the proof of Proposition 358 so

we will keep the following assumptions until the end of Section 11.2.1. Let p > 3

be a prime number and let G be a p-obelisk of class c. Assume that c is odd and

that Gc has order p. Let moreover α be an automorphism of G of order 2 and

assume that the map αc : G/Gc → G/Gc that is induced by α is intense. Set A =

〈α〉 and, in concordance with Section 2.2, write G+ = {x ∈ G : α(x) = x} and

G− = {x ∈ G : α(x) = x−1}. For a subgroup H of G, we denote H+ = H ∩ G+

and H− = H ∩G− and we use the same “plus-minus" notation for any subgroup

of G/Gc with respect to αc.
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We have intentionally not yet asked for G to be framed: we will make such as-

sumption right after stating Lemma 363.

Lemma 359. Let H be a subgroup of G containing Gc. Then there exists g ∈ G

such that gHg−1 is A-stable.

Proof. By assumption, the automorphism αc is intense and, by Lemma 93, there

exists g ∈ G such that (gHg−1)/Gc is 〈αc〉-stable. It follows from the definition

of αc that gHg−1 is A-stable.

Lemma 360. Let H be a subgroup of G such that H ∩Gc = {1}. Then all jumps

of H in G have width 1.

Proof. As a consequence of Proposition 321(1), every jump of H in G has width at

most 2. Assume by contradiction that l is a jump of H in G of width 2. The jump

l is odd, thanks to Lemma 322(1), and Gl/Gl+1 = (H ∩ Gl)Gl+1/Gl+1. Looking

at ρ
(c−l)/2
l : Gl/Gl+1 → Gc, it follows from Lemma 328(1) that H ∩ Gc 6= {1}.

Contradiction.

Lemma 361. Let H be a subgroup of G such that H ∩Gc = {1}. Assume that all

jumps of H in G are even. Then there exists g ∈ G such that gHg−1 is A-stable.

Proof. All jumps of H in G are even so, by Lemma 360, they also all have width

1. Let now l be the least jump of H in G. Then, by Lemma 340, the subgroup

H is cyclic and, by Lemma 341, the subgroups Φ(H) and H ∩Gl+1 are the same.

Let T = H ⊕ Gc. Assume first that α(T ) = T . Then T = α(H) ⊕ Gc and, by

Lemma 342, there exists t ∈ G such that α(H) = tHt−1. Thanks to Lemma 92,

there exists thus t ∈ G such that tHt−1 is A-stable. In general, by Lemma 359,

there exists a ∈ G such that aTa−1 is A-stable. There now exists t ∈ G such that

t(aHa−1)t−1 is A-stable, so we conclude by defining g = ta.

Lemma 362. Let H be a subgroup of G such that H ∩Gc = {1}. Assume that all

jumps of H in G are odd. Then there exists g ∈ G such that gHg−1 is A-stable.

Proof. Let T = HGc. The class of G being odd, it follows from the assumptions

that all jumps of T in G are odd. By Lemma 359, there exists g ∈ G such that

gTg−1 is A-stable. By Lemma 83, the subgroups gTg−1 and T have the same

jumps in G so, as a consequence of Lemma 85, we get that gTg−1 = (gTg−1)−.

In particular, gHg−1 = (gHg−1)− and gHg−1 is A-stable.

Lemma 363. Let H be a subgroup of G such that H∩Gc = {1}. Assume moreover

that G is framed. Then there exists g ∈ G such that gHg−1 is A-stable.

135



11. THE MOST INTENSE CHAPTER

The remaining part of Section 11.2.1 will be entirely dedicated to the proof of

Lemma 363. For this purpose, all assumptions that we now make will hold until

the end of the very same section.

Assume that G is a framed p-obelisk. Let moreover H be a subgroup of G that

trivially intersects Gc. If all jumps of H in G have the same parity, then we are

done by Lemmas 361 and 362. We assume that H has jumps of each parity and

we define i and j respectively to be the least odd jump and the least even jump

of H in G. Write T = HGc. We recall that, the class of G being c, the subgroup

Gc is central in G.

Lemma 364. The following hold.

1. One has i+ j > c.

2. The subgroups H and T are abelian.

Proof. The numbers i and j having different parities, their sum m = i+ j is odd.

Let k = max{i, j}. Then, as a consequence of Lemma 360, all jumps of H in G that

are smaller than k have width 1 and so, by Lemma 339, the group H/(H ∩ Gk)

is cyclic. From Lemma 28, we get [H,H ] = [H,H ∩ Gk]. By Lemma 20, the

subgroup [H,H ] is contained in Gm. If m > c, then Gm ⊆ Gc+1 = {1}, and thus

(1) and (2) are proven. Assume by contradiction that m ≤ c. Let y and x be

elements of H respectively of depth i and j in G. Then the image of 〈y〉 under the

natural projection G→ G/Gi+1 is a 1-dimensional subspace of Gi/Gi+1. Thanks

to Proposition 336(3), with h = i and k = j, the elements yp
j/2

and [y, x] of H

span Gm/Gm+1. It follows from Lemma 360 that m is a jump of H of width

1 in G so, from Lemma 322(1), we derive m = c. Contradiction to H trivially

intersecting Gc.

Lemma 365. Let π : G → G/Gc denote the natural projection. Assume that

α(T ) = T . Then π(H) is 〈αc〉-stable and π(H) = π(H)+ ⊕ π(H)−. Moreover,

both π(H)+ and π(H)− are cyclic.

Proof. To lighten the notation, we will denote G = π(G) and we will use the bar

notation for the subgroups of G. By assumption, α(T ) = T and thus αc(T ) =

T . Moreover, H is equal to T , so H is itself 〈αc〉-stable. As a consequence of

Lemma 364(2), the group H is abelian so, by Corollary 76, it decomposes as

H = H
+
⊕H

−
. It follows from Lemma 85 that H

+
and H

−
have respectively

only even jumps and only odd jumps in G. Moreover, thanks to Lemma 360, all

jumps of H , and thus of its subgroups, in G have width 1. Lemma 339 yields that

both H
+

and H
−

are cyclic.
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Lemma 366. Assume that α(T ) = T . Then there exist cyclic subgroups I and J

of H, with least jumps in G respectively equal to i and j, such that the following

hold.

1. One has H = I ⊕ J .

2. The group I is A-stable and I = I−.

3. The group S = J ⊕Gc is A-stable and S = S+ ⊕Gc.

Proof. We denote G = G/Gc and we will use the bar notation for the subgroups

of G. By Lemma 365, the subgroup H is 〈αc〉-stable and it decomposes as H =

H
+
⊕H

−
, where both H

+
and H

−
are cyclic. Let R and S be subgroups of G,

containing Gc, such that S = H
+

and R = H
−

. Because of their definitions, both

R and S are A-stable. The subgroup Gc is contained in G− as a consequence of

Lemma 62, so it follows from Lemma 77 that R = R−. Moreover, by Corollary

76, one has S = S+ ⊕ S−. However, as S = S
+

, the subgroups S− and Gc
are equal, and hence S = S+ ⊕ Gc. We define I = H ∩ R and J = H ∩ S.

The subgroup I, being contained in R = R−, is itself A-stable and I = I−.

Moreover, with G and N respectively replaced by T and H , Lemma 325 yields

JGc = (H ∩ S)Gc = S ∩ (HGc) = S. Since H ∩ Gc = {1}, we get S = J ⊕ Gc.

In the same way, we have R = I ⊕ Gc. It follows that J and I are respectively

isomorphic to H
+

and H
−

, and therefore they are cyclic. What is left to show

is that indeed H = I ⊕ J . The subgroup H is abelian by Lemma 364(2) and

I ∩ J = {1}, since R ∩ S = Gc. The subgroup I ⊕ J is contained in H and

I ⊕ J = I ⊕ J = R⊕ S = H
+
⊕H

−
= H,

so we derive H = I ⊕ J .

Lemma 367. Let γ ∈ Gc and let x, y be elements of G be such that dptG(x) = j

and dptG(y) = i. Then there exist n ∈ Z and d ∈ CG(y) ∩ Gc−j such that

γ = yn[d, x].

Proof. By Lemma 364 the sum i+ j is larger than c and so i > c− j. Define

r =
i− (c− j)

2
and s =

j

2
− r.

Let now a ∈ Gc−j \Gc−j+1 be such that ρr(a) = y; the existence of a is granted by

Lemma 323. As a consequence of Proposition 336, the subgroup Gc is generated

by ρ
j
2 (a) and [a, x]. There exist thus A,B ∈ Z such that

γ = ρ
j
2 (a)A[a, x]B .
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We recall that, for any k ∈ Z≥0, the map ρk is given by z 7→ zp
k

, hence

ρ
j
2 (a) = ρs+r(a) = ρs(ρr(a)) = ρs(y) = yp

s

.

Now, the group Gc being central, Lemma 22 implies that the commutator map

Gc−j ×Gj → Gc is bilinear so [a, x]B = [aB, x]. We define

n = Aps and d = aB

and get γ = yn[d, x]. To conclude, the element d belongs to CG(y), because d and

y belong to 〈a〉.

Lemma 368. Assume that α(T ) = T . Let I and J be as in Lemma 366. Then

there exists g ∈ CG(I) such that α(gJg−1) ⊆ gHg−1.

Proof. Let y be a generator of I and let x be a generator of J . Then one has

dptG(y) = i and dptG(x) = j. As a consequence of Lemma 366(3), there exists

γ ∈ Gc such that α(x) = xγ. We fix γ and we want to construct g. Let n ∈ Z and

d ∈ CG(y) ∩ Gc−j be such that γ = yn[d, x]; the existence of n and d is given by

Lemma 367. We define g = d
p+1

2 and we claim that α(gxg−1) belongs to gHg−1.

We will use some properties of Gc that we list here. The group Gc is central

and annihilated by p, by hypothesis. Moreover, as a consequence of Lemma 62,

the restriction of α to Gc coincides with the map z 7→ z−1. To conclude, the

commutator map Gc−j ×Gj → Gc is bilinear by Lemma 22. We compute

α(gxg−1) = α([g, x]x) = α([g, x])α(x) = [g, x]−1xγ = [g−1, x]xγ =

[g−1, x]xyn[d, x] = [g−1, x][d, x]xyn = [g−1d, x]xyn = [d
p−1

2 d, x]xyn =

[d
p+1

2 , x]xyn = [g, x]xyn = (gxg−1)yn.

The element g centralizes y, because d does, so α(gxg−1) = g(xyn)g−1 belongs to

gHg−1. In particular, α(gJg−1) ⊆ gHg−1.

We conclude the proof of Lemma 363. By Lemma 359 there exists a ∈ G such

that aTa−1 is A-stable. We fix a and write aHa−1 = I ⊕ J , with I and J as in

Lemma 366 and H replaced by aHa−1. By Lemma 368, there exists an element

b ∈ G such that bIb−1 = I and α(bJb−1) is contained in baHa−1b−1. We select

such an element b and define g = ba. Then I is contained in gHg−1 and

α(gHg−1) = α(baHa−1b−1) = α(bIb−1 ⊕ bJb−1) = α(I ⊕ bJb−1) =

α(I)⊕ α(bJb−1) = I ⊕ α(bJb−1) ⊆ gHg−1.

It follows that α(gHg−1) = gHg−1 and gHg−1 is itself A-stable. The proof of

Lemma 363 is now complete.

138



11. THE MOST INTENSE CHAPTER

11.2.2 The induction step

In this paragraph we give the proof of Proposition 358 and we work thus under

the assumptions of the very same proposition. Let H be a subgroup of G; we

will show that H has an A-stable conjugate. If H contains Gc, then, by Lemma

359, there exists g ∈ G such that gHg−1 is A-stable. Assume now that Gc is not

contained in H , i.e. H ∩ Gc = {1}. Thanks to Lemma 363, the subgroup H has

an A-stable conjugate. In other words, by Lemma 93, the subgroups H and α(H)

are conjugate in G. As the choice of H was arbitrary, α is intense and the proof

of Proposition 358 is complete.

11.3 The odd case, part II

Proposition 369. Let p > 3 be a prime number and let G be a framed p-obelisk of

class c. Assume that c is odd and that Gc has order p2. Let α be an automorphism

of G of order 2 and assume that the map αc : G/Gc → G/Gc that is induced by α

is intense. Then α is intense.

The proof of Proposition 369 is given in Section 11.3.2.

11.3.1 Some lemmas

The purpose of this section is laying the ground for the proof of Proposition 369.

We will therefore, until the end of Section 11.3.1, work under the assumptions of

Proposition 369. Denote A = 〈α〉.

Lemma 370. Let H be a subgroup of G containing Gc. Then there exists g ∈ G

such that gHg−1 is A-stable.

Proof. We write G = G/Gc and we use the bar notation for the subgroups of

G. By hypothesis, the automorphism αc is intense so, by Lemma 93, there exists

g ∈ G such that αc(gHg−1) = gHg−1. The map αc being induced from α, it

follows that α(gHg−1) = gHg−1 and gHg−1 is A-stable.

Lemma 371. Let H be a subgroup of G such that H ∩ Gc 6= {1}. Then there

exists g ∈ G such that gHg−1 is A-stable.

Proof. Let N = H ∩Gc. If N = Gc, then, by Lemma 370, there exists g ∈ G such

that gHg−1 is A-stable. We assume that N 6= Gc. The group N being non-trivial,

it follows from Proposition 321(1) that Gc and N have orders respectively p2 and

p. Moreover, the group Gc being central, N is normal in G. It follows from Lemma

88(2) that the action of A on G induces an action of A on G = G/N . Moreover, G

has class c and the subgroup H = H/N has trivial intersection with Gc = Gc/N .
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By Lemma 363, there exists ḡ ∈ G such that ḡHḡ−1 is A-stable, and so there

exists g ∈ G such that gHg−1 is A-stable.

Lemma 372. Let H be a subgroup of G such that H ∩ Gc = {1}. Then H has

only even jumps.

Proof. The index c is odd and H ∩ Gc = {1}. It follows from Corollary 329 that

H cannot have odd jumps.

Lemma 373. Let H be a subgroup of G such that H ∩ Gc = {1}. Let T = HGc
and assume that α(T ) = T . Then there exists g ∈ G such that gHg−1 is A-stable.

Proof. Let l denote the least jump of H in G. By Lemma 372, all jumps of H

in G are even so, as a consequence of Lemma 322(2), all jumps of H have width

1. It follows from Lemma 341 that H is abelian and Φ(H) = H ∩ Gl+1. The

subgroup Gc being central, we get T = H⊕Gc. Now, by Lemma 85, the subgroup

T+ = {t ∈ T : α(t) = t} has the same jumps as H , and it is therefore a complement

of Gc in T . Thanks to Lemma 342, the subgroups H and T+ are conjugate in G.

In particular, H has an A-stable conjugate.

Lemma 374. Let H be a subgroup of G such that H ∩ Gc = {1}. Then there

exists g ∈ G such that gHg−1 is A-stable.

Proof. Define S = HGc. By Lemma 370, there exists a ∈ G such that aSa−1 is

A-stable. Let now T = aSa−1. Then α(T ) = T and T = a(HGc)a
−1 = aHa−1Gc.

Moreover, the intersection aHa−1 ∩ Gc is trivial. Thanks to Lemma 373 (with

aHa−1 in the place of H), there exists b ∈ G such that b(aHa−1)b−1 is A-stable.

To conclude, we define g = ba.

11.3.2 The last step

We give here the proof of Proposition 369 and we make thus all assumptions from

Proposition 369 hold, until the end of Section 11.3.2. To show that α is intense,

we will show that each subgroup of G has an A-stable conjugate. Let H be a

subgroup of G. If H trivially intersects Gc, then, by Lemma 374, there exists

g ∈ G such that gHg−1 is A-stable. If, on the contrary, H ∩ Gc 6= {1}, then,

by Lemma 371, there exists a conjugate of H in G that is A-stable. We have

proven that, in any case, H has an A-stable conjugate and, by Lemma 92, the

subgroups H and α(H) are conjugate in G. The choice of H being arbitrary, the

automorphism α is intense and we have proven Proposition 369.
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11.4 Proving the main theorems

In Sections 11.4.1 and 11.4.2 we finally prove the two main results of this Chapter,

which were stated at the beginning of it.

11.4.1 The proof of Theorem 343

We work under the assumptions of Theorem 343. The implication (2)⇒ (1) follows

from the combination of Propositions 318 and 134. We now prove (1) ⇒ (2). To

this end, denote by G the quotient G/G4 and by α4 the automorphism of G that

is induced by α. The map α induces the inversion map on G/G2 and thus so does

α4 on G/G2. It follows from Proposition 142 that α4 is intense and consequently,

from Proposition 345, that α is intense too. The proof of Theorem 343 is complete.

11.4.2 The proof of Theorem 344

Under the hypotheses of Theorem 344, we will work by induction on the class c

of G. As a consequence of Lemma 319(1-3), the group G has class at least 2 and

G/G3 is extraspecial of exponent p. If c = 2, then Lemma 121 yields that α is

intense. We assume that c > 2 and denote by G the quotient G/Gc. We denote

moreover by αc the automorphism of G that is induced by α and assume that αc
is intense. The group G is a framed obelisk, because c > 2, and αc induces the

inversion map on G/G2, because α does. If c is even, then, by Proposition 345,

the map α is intense. Suppose that c is odd. From Proposition 321(1) it follows

that the cardinality of Gc is p or p2. In the first case we apply Proposition 358, in

the second Proposition 369. Theorem 344 is now proven.

141



11. THE MOST INTENSE CHAPTER

142



Chapter 12

A characterization for high classes

Let p > 3 be a prime number and let G be a finite p-group. We recall that, for

each positive integer i, the i-th width of G is wtG(i) = logp |Gi : Gi+1|. The group

G is a p-obelisk if it is non-abelian, satisfying G3 = Gp and |G : G3| = p3. A

p-obelisk G is framed if, for each maximal subgroup M of G, one has Φ(M) = G3.

For more information about p-obelisks, we refer to Chapter 10.

In this chapter we prove the following result.

Theorem 375. Let p be a prime number and let G be a finite p-group with

wtG(5) = 2. Then the following are equivalent.

1. One has int(G) > 1.

2. One has p > 3, the group G is a framed p-obelisk, and there exists an auto-

morphism α of G of order 2 that induces the inversion map on G/G2.

We would like to stress that, from the combination of Lemma 322 with Theorem

375, it follows that each finite p-group G of class at least 6 with int(G) > 1 is a

framed p-obelisk.

12.1 A special case

The main result of this section is the following.

Proposition 376. Let p > 3 be a prime number and let G be a p-obelisk. Write

C = CG(G4). Assume that wtG(5) = 1 and int(G) > 1. Then one has Φ(C) = G3.

The goal of Section 12.1 is proving Proposition 376, so all assumption that we will

make throughout the text (right now and right after Lemma 380) will hold until

the end of Section 12.1.
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Let p > 3 be a prime number and let G be a p-obelisk. Let (Gi)i≥1 denote the

lower central series of G. Assume that wtG(5) = 1 so, thanks to Proposition

321(2), the class of G is equal to 5. Write C = CG(G4).

Lemma 377. The subgroup C is maximal in G.

Proof. The commutator map induces a bilinear map G/G2 ×G4/G5 → G5 whose

image generates G5, thanks to Lemma 24, and whose left kernel is C/G2. As a

consequence of Lemma 323, all quotients Gi/Gi+1 are Fp-vector spaces and, by

assumption, wtG(5) = 1. By Lemma 322(2), the dimension of G4/G5 is equal to

1 and so Lemma 2 yields |G : C| = p. In other words, C is a maximal subgroup of

G.

Lemma 378. One has G4 ⊆ Cp ⊆ G3 and |G3 : Cp| = |Cp : G4| = p.

Proof. The subgroup C is maximal, by Lemma 377, and it is thus normal of index p

in G. It follows that Cp is normal in G and, as a consequence of Corollary 329, the

number 3 is a 1-dimensional jump of Cp in G. Lemma 327(2) yields G4 ⊆ Cp ⊆ G3

and thus, thanks to Lemma 322(2), we get |G3 : Cp| = |Cp : G4| = p.

Lemma 379. The subgroup Cp centralizes G2.

Proof. Each p-obelisk is regular, by Lemma 320, so, as a consequence of Lemma

54, the subgroups [C,Gp2] and [Cp, G2] are the same. Now, Gp2 is equal to G4, by

Lemma 323, and [C,G4] = {1}, by definition of C. It follows that Cp centralizes

G2.

Lemma 380. The group Cp is contained in Z(C).

Proof. The subgroup Cp is contained in G3, by Lemma 378, and the commutator

map C × Cp → G4 is bilinear by Lemma 22. Such commutator map factors as

γ : C/G2×Cp/G4 → G4, as a consequence of Lemma 379 and of the definition of C.

Moreover, thanks to Corollary 329, if C = 〈{x} ∪G2〉 then Cp = 〈{xp} ∪G4〉. The

map γ being alternating, it follows that γ is the trivial map and so Cp centralizes

C.

Let now α be an intense automorphism of G of order 2 and write A = 〈α〉.

Set G+ = {x ∈ G : α(x) = x} and G− = {x ∈ G : α(x) = x−1} and, for each

subgroup H of G, denote H+ = H ∩ G+ and H− = H ∩ G−. We will prove

Proposition 376 by contradiction and, to this end, we assume that Φ(C) 6= G3.

Let X be the collection of subgroups H of C of the form H = 〈x, y〉, where

x ∈ C \G2 and y ∈ G4 \G5. Then A acts on X in a natural way. Let X+ be the

collection of fixed points of X under A.

Lemma 381. The exponent of C divides p2.
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Proof. By definition, the subgroup Cp
2

is contained in (Cp)p. By Lemma 335, we

have [C,C] = Cp so it follows from Lemma 54 that (Cp)p = [C,C]p = [C,Cp]. As a

consequence of Lemma 380, the subgroup [C,Cp] is trivial, and thus (Cp)p = {1}.

In particular, the exponent of C divides p2.

Lemma 382. Let x be an element of C \G2. Then x has order p2.

Proof. As a consequence of Corollary 329, the element xp is non-trivial so the

order of x is divisible by p2. We conclude by Lemma 381.

Lemma 383. Let H ∈ X. Then H is abelian and H ∩ G5 = {1}. Moreover, if

x, y ∈ H satisfy dptG(x) = 1 and dptG(y) = 4, then H = 〈x〉 ⊕ 〈y〉.

Proof. Let (x, y) ∈ (C \G2)× (G4 \G5) be such that H = 〈x, y〉. Then y ∈ Z(C)

and the group H is commutative. Moreover, as a consequence of Lemma 169,

the subgroups 〈x〉 and 〈y〉 have respectively only odd and only even jumps. In

particular, 〈x〉 ∩ 〈y〉 = {1} and H = 〈x〉 ⊕ 〈y〉. In addition, it follows from Lemma

328(1) that 5 is a jump of H in G if and only if xp
2

6= 1. Lemma 382 yields

H ∩G5 = {1}.

Lemma 384. Let H ∈ X and, for each i ∈ Z≥1, denote ui = wtGH(i). Then

(u1, u2, u3, u4, u5) = (1, 0, 1, 1, 0) and H has order p3.

Proof. For each i ∈ Z≥1, write wi = wtG(i). Thanks to Lemma 322, we have

(w1, w2, w3, w4, w5) = (2, 1, 2, 1, 1). Let x, y be as in Lemma 383: then u1, u4 ≥ 1

and u5 = 0. Since, for each i ≥ 1, one has ui ≤ wi, we get u4 = 1. Moreover,

Lemma 328(1) ensures that u3 ≥ 1. Let now N = 〈y〉G5, which is a normal

subgroup of G thanks to Lemma 327. Then N ∩H = 〈y〉 and, the quotient H/〈y〉

being cyclic, so is HN/N . Thanks to Lemma 338, all jumps of HN/N have the

same dimension and width 1 in G/N . As a result, 2 is not a jump of HN/N in

G/N and, since 〈y〉 is contained in G4, we have u2 = 0 and u1 = u3 = 1. The

group H has order p3, by Lemma 84.

Lemma 385. The cardinality of X is p4.

Proof. Thanks to Lemma 383, the set X consists of subgroups of the form 〈x〉⊕〈y〉,

with x ∈ C \G2 and y ∈ G4 \G5. The cardinality of X will be thus equal to the

quotient n
m , where n is the cardinality of (C \G2)× (G4 \G5) and m denotes the

number of elements of (C \G2)× (G4 \G5) that generate the same subgroup. Let

H be in X and let x and y be generators of H , as described before. Then, as a

consequence of Lemma 384, the orders of x and y are respectively p2 and p. It

follows that m = (p3 − p2)(p− 1) so, in view of Lemmas 384 and 319, we get

|X | =
n

m
=

(p6 − p5)(p2 − p)

(p3 − p2)(p− 1)
= p4.
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Lemma 386. Let H ∈ X. Then the following are equivalent.

1. The subgroup H is A-stable.

2. There exists x ∈ C− \G2 such that H = 〈x〉 ⊕G+
4 .

Proof. To prove that (2) implies (1) is an easy exercise; we prove the other impli-

cation. Assume (1). The group H is abelian, by Lemma 383, and it is A-stable.

By Corollary 76, it decomposes as H = H+ ⊕ H−. In view of Lemmas 384 and

85(1), we have that H+ = G+
4 and that H ∩G4 = G+

4 . It follows from Lemma 383

that there exists a cyclic subgroup Q of H such that H = Q(H ∩ G4), and thus

H− is cyclic. The proof is now complete.

Lemma 387. The cardinality of X+ is p2.

Proof. Let C denote the collection of subgroups 〈x〉 of C, where x is an element of

C−\G2. Thanks to Lemma 386, one can define the map C → X+, by Q 7→ Q⊕G+
4 ,

which is easily shown to be a bijection. In particular, the cardinality of X+ is equal

to that of C. Now, the group C is normal in G, as a consequence of Lemma 377,

and therefore it is A-stable. By Lemma 382, each element of C− \ G2 has order

p2 and, as a consequence of Proposition 134, the set C− \G2 is equal to C− \G−
3 .

It follows from Lemma 85 that

|X+| =
|C−| − |G−

3 |

p2 − p
=
p4 − p3

p2 − p
= p2.

Lemma 388. For each subgroup L of C−, the commutator map induces a bilinear

map L×G3 → G+
4 .

Proof. The subgroup G4 is central in C so, by Lemma 22, the commutator map

L × G3 → G4 is bilinear. Since L is contained in C = CG(G4), the commutator

map induces a bilinear map L × G3/G4 → G4. Now, thanks to Proposition 134,

the map α induces the inversion map on G3/G4 and so, thanks to Lemma 61, we

get [L,G3] = [L,G3]+. In particular, [L,G3] is contained in G+
4 and the proof is

complete.

Lemma 389. Let H ∈ X+. Then G3 ⊆ NG(H).

Proof. By Lemma 386, the subgroup H is of the form 〈x〉 ⊕G+
4 , for some element

x ∈ C− \ G2. As a consequence of Lemma 20, the subgroup [G3, G
+
4 ] is trivial

so, from Lemma 18(1), it follows that [G3, H ] = [G3, 〈x〉]. Lemma 388 yields that

[G3, 〈x〉] is contained in G+
4 , a subgroup of H , and so, by Lemma 13, one has

G3 ⊆ NG(H).
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We will now prove Proposition 376 by building a contradiction. We remind the

reader that we have assumed that Φ(C) 6= G3.

Let H be an element of X+ with the property that |G : NG(H)| is maximal.

Let moreover J denote the collection of jumps of NG(H) in G. As a conse-

quence of Lemma 389, the normalizer of H contains HG3. It follows from Lemma

384 that {1, 3, 4, 5} is contained in J and, thanks also to Lemma 319(2), that

|G : NG(H)| ≤ |G : HG3| = p2. Now, by Lemmas 385 and 387, the cardinalities of

X and X+ are respectively p4 and p2. It follows from Lemma 94 that

p4 = |X | ≤
∑

K∈X+

|G : NG(K)| ≤ |X+||G : NG(H)| ≤ p2p2 = p4,

and therefore |G : NG(H)| = p2. In particular, we get NG(H) = HG3 and J =

{1, 3, 4, 5}. Moreover, again by Lemma 94, no two elements of X+ are conjugate

in G. As a consequence of Lemma 81, the subgroup G+ is contained in NG(H) =

HG3 and so, thanks to Lemma 85(1), the number 2 is a jump of NG(H) in G.

Contradiction.

12.2 The last exotic case

The aim of Section 12.2 is that of exploring the last exotic case for what concerns

the structure of finite p-groups of intensity greater than 1. As a consequence of

Theorem 375, the finite p-groups of “high class” and intensity greater than 1 all

need to be framed obelisks. Theorem 390 is the last result we present that still

allows some “structural freedom” to p-obelisks.

Theorem 390. Let p be a prime number and let G be a finite p-group with

wtG(5) = 1. Write C = CG(G4). Then the following are equivalent.

1. One has int(G) > 1.

2. One has p > 3, the group G is a p-obelisk, and Φ(C) = G3. Moreover, there

exists an automorphism α of G of order 2 that induces the inversion map on

G/G2.

The remaining part of Section 12.2 will be devoted to the proof of Theorem 390

and we will thus work under the hypotheses of such theorem.

Assume first (1). As a consequence of Proposition 95 and Corollary 284, the prime

p is larger than 3 and so, thanks to Proposition 318, the group G is a p-obelisk.

Thanks to Theorem 125(1), there exists an intense automorphism α of order 2 of

G, which induces the inversion map on G/G2 by Proposition 134. Proposition 376

yields Φ(C) = G3.
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Assume now that p > 3, that G is a p-obelisk, and that Φ(C) = G3. Let moreover

α be an automorphism of order 2 of G that induces the inversion map on G/G2.

We will prove (1). Set A = 〈α〉 and, for each i ∈ Z≥1, denote wi = wtG(i).

Thanks to Lemma 322, we have (w1, w2, w3, w4, w5) = (2, 1, 2, 1, 1) and so, thanks

to Proposition 321(2), the class of G is equal to 5. We remind the reader that, for

each k ∈ Z≥0, the map G → G sending x to xp
k

is denoted by ρk. Furthermore,

by Lemma 320, the group G is regular and so, given any subgroup K of G, Lemma

52 yields that ρk(K) = Kpk

.

Lemma 391. One has ρ2(C) = G5.

Proof. The group Φ(C) is equal to Cp[C,C] and Φ(C) = G3, by assumption. It

follows from Lemma 328(1) that Φ(C)p = G5. Now, the group C is maximal

in G, by Lemma 377, and so, as a consequence of Lemma 319(2), the quotient

C/G2 is cyclic. Lemma 28 yields [C,C] = [C,G2]. Now, by Lemma 54, one has

[C,G2]p = [C,Gp2 ] and so, thanks to Lemma 323, one gets [C,G2]p = [C,G4] = {1}.

It follows that Φ(C)p is equal to Cp
2

and therefore ρ2(C) = G5.

Lemma 392. Let α5 : G/G5 → G/G5 denote the automorphism that is induced

by α. Then α5 is intense.

Proof. Let G denote G/G5 and use the bar notation for the subgroups of G. The

automorphism α5 induces the inversion map on G/G2, because α does so on G/G2.

Moreover, thanks to Lemma 326, the groupG is a p-obelisk of class 4. We conclude

by applying Theorem 343.

Let H be a subgroup of G and, for each i ∈ Z≥1, write ui = wtGH(i). We will show

that H has an A-stable conjugate in G. We assume, without loss of generality,

that H is non-trivial. As a consequence of Lemma 392, the automorphism that α

induces on G/G5 is intense. If G5 is contained in H , then, thanks to Lemma 359,

there exists g ∈ G such that gHg−1 is A-stable. Since G5 has order p, we now

assume that H ∩G5 = {1}. By Lemma 360, all jumps of H in G have dimension

1 and, if they all have the same parity, Lemmas 361 and 362 yield that H has an

A-stable conjugate. We assume now that H has jumps of both parities and we

denote by i and j respectively the least odd and the least even jump of H in G.

Lemma 393. One has u4 = 1.

Proof. The group G having class 5, we have j ∈ {2, 4}. It follows from Corollary

329 that 0 6= u4 ≤ w4 and therefore u4 = 1.

Lemma 394. One has i = 3.
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Proof. Since u5 = 0, the index i is different from 5 and so i ∈ {1, 3}. Assume by

contradiction that i = 1. As a consequence of Lemma 393, the subgroups G4 and

(H ∩G4)G5 are equal. The group G5 being central, it follows from Lemma 18(1)

that

G5 = [G,G4] = [G, (H ∩G4)G5] = [G,H ∩G4].

Thanks to Lemma 20, the group [G2, G4] is trivial ans so Lemma 18(2) yields

[HG2, G4] = [H,G4] = [H,H ∩G4] ⊆ H ∩G5 = {1}.

In particular, H is contained in C and so, as a consequence of Lemma 328(1), we

get ρ2(H) = ρ2(C). It follows from Lemma 391 that H contains G5. Contradiction

to H ∩G5 = {1}.

Let D be a maximal subgroup of G with the property that (H ∩ G3)G4 = DpG4

and note that, thanks to Corollary 329, the subgroup D is uniquely determined

by H . Since Dp is characteristic in the normal subgroup D, Lemma 327 yields

Dp = DpG4 and therefore, from Corollary 329, one gets |Dp : G4| = p.

Lemma 395. One has ρ2(D) = {1}.

Proof. From the definition of D together with Lemma 328(1), it follows that

ρ2(D) = ρ(Dp) = ρ(H ∩ G3). As a consequence of Lemma 323, the subgroup

ρ(H ∩G3) is contained in H ∩G5 = {1} and thus ρ2(D) = {1}.

Lemma 396. One has D 6= C and [D,G4] = G5.

Proof. The subgroups D and C are both maximal in G and so, as a consequence

of Lemmas 391 and 395, they are distinct. Moreover, the class of G being 5, the

subgroup [D,G4] is non-trivial. Lemma 20 gives that [D,G4] is contained in G5

and, since w5 = 1, we get [D,G4] = G5.

Lemma 397. One has [G2, D
p] = G5.

Proof. The group G is regular, by Lemma 320, and therefore, by Lemma 54, the

subgroups [G2, D
p] and [Gp2, D] are equal. By Lemma 323, we have Gp2 = G4 and

so, from Lemma 396, we derive [G2, D
p] = G5.

Lemma 398. The subgroup H is abelian.

Proof. As a consequence of Lemma 394, the subgroup H is contained in G2 and,

since w2 = 1, the quotient H/(H ∩ G3) is cyclic. It follows from Lemma 28 that

[H,H ] = [H,H∩G3] and so, thanks to Lemma 20, one gets [H,H ] ⊆ H∩G5 = {1}.

In particular, H is abelian.

Lemma 399. One has (i, j) = (3, 4).
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Proof. By Lemma 394, the jump i is equal to 3 and, by definition of D, we have

Dp = (H ∩ G3)G4. Moreover, since G has class 5, the jump j belongs to {2, 4}.

Assume by contradiction that j = 2. Then one has u2 = w2 = 1 and so G2 = HG3.

By Lemma 397, the subgroups [G2, D
p] andG5 coincide and so, the groupG5 being

central, Lemma 22 ensures that the commutator map G2 ×Dp → G5 is bilinear

and differs from the trivial map. Now, the induced map G2/G3 ×D
p/G4 → G5,

derived from Lemma 20, is non-trivial and so [H,H ∩ G3] 6= 1. Contradiction to

Lemma 398.

Lemma 400. Let x and y be elements of H, respectively belonging to Dp \G4

and G4 \G5. Then H = 〈x〉 ⊕ 〈y〉 and (u1, u2, u3, u4, u5) = (0, 0, 1, 1, 0).

Proof. Thanks to Lemma 399, we have (u1, u2, u3, u4, u5) = (0, 0, 1, 1, 0). The

subgroupH is thus contained in G3 and so, by Lemma 323, one hasHp ⊆ G5∩H =

{1}. It follows from Lemma 398 that H is elementary abelian. Given any two

elements x and y of H , satisfying x ∈ Dp \ G4 and y ∈ G4 \G5, Lemma 82 now

yields H = 〈x〉 ⊕ 〈y〉.

We define X to be the collection of all subgroups of G of the form 〈x〉⊕ 〈y〉, where

(x, y) belongs to (Dp \ G4) × (G4 \ G5). Thanks to Lemmas 395 and 398, each

such subgroup is elementary abelian and thus X is well defined. We remark that,

the group Dp being normal in G, the group G acts naturally on X by conjugation.

Write X+ = {K ∈ X : α(K) = K}.

Lemma 401. The cardinality of X is p2.

Proof. Let K be an element of X . Then there exist elements x and y of order p,

respectively of depth 3 and 4 in G, such that x ∈ Dp and K = 〈x〉 ⊕ 〈y〉. Since

|Dp : G4| = p and (w4, w5) = (1, 1), we get

|X | =
(p3 − p2)(p2 − p)

(p− 1)p(p− 1)
= p2.

Lemma 402. One has NG(H) ∩D = NG(H) ∩G2.

Proof. Assume by contradiction that NG(H)∩D 6= NG(H)∩G2. As a consequence

of Lemma 393, we have that (H ∩G4)G5 = G4 and, the group G5 being central, it

follows from Lemma 18(1) that [D,G4] = [D,H ∩G4]. Lemma 13 yields [D,G4] ⊆

H and thus, by Lemma 396, the subgroup G5 is contained in H . Contradiction.

Lemma 403. One has NG(H) ∩G2 = G3.
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Proof. As a consequence of Lemma 399, the subgroup H is contained in G3 and,

thanks to Lemma 20, one has [G3, G3] ⊆ G6 = {1}. In particular, G3 normalizes

H . Assume by contradiction that 2 is a jump of NG(H) inG. Thanks to Lemma 20,

the group G2 centralizes G4 and, by definition of D, we have (H ∩ G3)G4 = Dp.

It follows from Lemma 18(1) that [G2, D
p] = [G2, H ∩ G3] and so, thanks to

Lemma 13, the subgroup [G2, D
p] is contained in H . Lemma 397 yields G5 ⊆ H .

Contradiction.

We claim that the action of G on X is transitive. As a consequence of Lemma

401, we have that p2 = |X | ≥ |G : NG(H)| and therefore, applying Lemmas 402

and 403, we get

p2 ≥ |G : NG(H)| ≥ |D : G2||G2 : G3| = |D : G3|.

As a consequence of Lemma 319(2), the index |D : G3| is equal to p2 and therefore

the number of conjugates of H in G is equal to p2. This proves the claim. To

conclude, we remark that α(H) is an element of X and therefore α(H) and H are

conjugate. The choice of H being arbitrary, Lemma 93 yields that α is intense

and so int(G) > 1. The proof of Theorem 390 is now complete.

12.3 Proving the main theorem

In this section we prove Proposition 404 and Theorem 375. We remind the reader

that a p-obelisk G is framed if, for each maximal subgroup M of G, one has

Φ(M) = G3.

Proposition 404. Let p > 3 be a prime number and let G be a finite p-group of

class at least 5. Assume that int(G) > 1. Then G is a p-obelisk and one of the

following holds.

1. One has wtG(5) = 1 and G has class 5.

2. One has wtG(5) = 2 and G is framed.

Proof. By Proposition 318, the group G is a p-obelisk so, thanks to Proposition

321(1), the width wtG(5) is either 1 or 2. The 4-th width of G is 1, thanks to

Lemma 322(2), so, if wtG(5) = 1, then Proposition 321(2) yields that G has class

5. Assume now that wtG(5) = 2. We will show that, for each maximal subgroup

M of G, one has Φ(M) = G3. To this end, let M be a maximal subgroup of G.

By Lemma 322, the widths wtG(1) and wtG(4) are respectively 2 and 1 so, the

index |G : M | being p, it follows from Lemma 330, that 5 is a jump of [M,G4] of

width 1 in G. Moreover, 5 is the smallest jump of [M,G4] in G, and so Lemma

327 yields G6 ⊆ [M,G4]. We denote G = G/[M,G4] and use the bar notation for
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the subgroups and the elements of G. We remark that, by construction, we have

M ⊆ CG(G4) and wtG(5) = 1. The class of G being 5, we have in fact that M =

CG(G4) and so Proposition 376 yields Φ(M) = G3. The subgroup Φ(M) being

normal in G, it follows from Lemma 327 that Φ(M) = {x ∈ G : x ∈ Φ(M)} and

therefore Φ(M) = G3. The choice of M being arbitrary, the proof is complete.

We are finally ready to prove Theorem 375. Let p be a prime number and let

G be a finite p-group with wtG(5) = 2. The implication (2) ⇒ (1) is given by

Theorem 344. Assume now (1). Since wtG(5) 6= 1, the class of G is at least 5.

Moreover, thanks to Proposition 95 and Corollary 284, the prime p is larger than 3.

Proposition 404 yields that G is a framed p-obelisk. As a consequence of Theorem

125, the intensity of G is equal to 2 and so, thanks to the Schur-Zassenhaus

theorem, G has an intense automorphism of order 2 that, by Proposition 134,

induces the inversion map on G/G2. The proof of Theorem 375 is complete.
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Chapter 13

A generalization to profinite groups

Let G be a profinite group and let α be an automorphism of G. Then α is topo-

logically intense if, for every closed subgroup H of G, there exists x ∈ G such that

α(H) = xHx−1. Topologically intense automorphisms are automatically contin-

uous, because they stabilize each open normal subgroup of the group on which

they are defined. We denote by Intc(G) the group of topologically intense auto-

morphisms of a profinite group G.

Topologically intense automorphisms are a generalization of intense automor-

phisms to profinite groups. In Section 13.2, we will show that, the group of

topologically intense automorphisms of a profinite group is itself profinite and

moreover, if p is a prime number and G is a pro-p-group, then Intc(G) is isomor-

phic to S ⋊C, where S is a pro-p-subgroup of Intc(G) and C is a subgroup of F∗
p.

The intensity of a pro-p-group G is then defined to be the cardinality of C and it

is denoted by int(G). The question we ask is: What are the infinite pro-p-groups

that have intensity greater than 1? We answer this question with Theorem 405,

which we state after fixing some notation. Let p be an odd prime number and take

t ∈ Zp to be a quadratic non-residue modulo p. We define ∆p to be the quaternion

algebra Zp⊕Zpi⊕Zpj⊕Zpk with defining relations i2 = t, j2 = p, and k = ij = −ji.

We denote by S(∆p) the pro-p-subgroup of the multiplicative group (1+j∆p) that

consists of all elements x = a+ bi + cj + dk satisfying a2 − tb2 − pc2 + tpd2 = 1.

Theorem 405. Let p be a prime number and let G be an infinite pro-p-group.

Then int(G) > 1 if and only if exactly one of the following holds.

1. One has p > 2 and G is abelian.

2. One has p > 3 and G is topologically isomorphic to S(∆p).

Moreover, one has int(S(∆p)) = 2 and, if G is abelian, then int(G) = p− 1.
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Let p be a prime number and let G be a pro-p-group. We will show, in Section

13.2, that int(G) = gcd{int(G/N) : N normal open in G, N 6= G} and, thanks to

this last characterization, we will derive the following theorem as a corollary of

Theorem 405.

Theorem 406. Let p > 3 be a prime number. Then, for any positive integer c,

there exists a finite p-group G of class c and intensity greater than 1.

The pace of Chapter 13 will be slightly faster, compared to the previous ones,

in the sense that we will assume the reader is familiar with some basic facts

about profinite groups (which can however all be found in Chapters 0 and 1 from

[DdSMS91]). We will give some extra background in Section 13.1. In Section 13.2,

we will prove several properties of topologically intense automorphisms and give an

analogue of Theorem 86 for pro-p-groups. In the subsequent sections we will pave

the way to proving Theorem 405. In Section 13.3, we will give some limitations,

for p > 3, to the structure of infinite non-abelian pro-p-groups of intensity greater

than 1. In Section 13.5, we will discover that, if such groups exist, they can be

continuously embedded in one of two infinite pro-p-groups (one of them being

S(∆p)). We will study the structure of those two groups in Section 13.4 and, in

Section 13.5, we will prove that, if p > 3 is a prime number and G is an infinite

non-abelian pro-p-group with int(G) > 1, then G is topologically isomorphic to

S(∆p). The results from Section 13.4.2 will ensure that int(S(∆p)) > 1. We will

conclude the proof of Theorem 405 in Section 13.6.1 and give that of Theorem

406 in Section 13.6.2. We will close Chapter 13 with Section 13.6.3, where we will

draw a bridge between Theorem 405 and Theorem 406.

13.1 Some background

This section is a collection of definitions and results from [DdSMS91]. If G is a

profinite group and S is a subset of it, we denote by cl(S) the closure of S in G.

A full list of the symbols we use can be found at the beginning of this thesis (see

List of Symbols).

Definition 407. Let G be a profinite group. A discrete quotient of G is a quotient

of G by an open normal subgroup. A proper quotient of G is a quotient of G by a

closed normal subgroup that is different from {1}.

Definition 408. Let G be a profinite group. Then a set X is a set of topological

generators of G if G = cl(〈X〉). The group G is topologically finitely generated if

it admits a finite set of topological generators.

Definition 409. Let G be a profinite group. The lower central series (Gi)i≥1 of

G is defined by

G1 = G and Gi+1 = cl([G,Gi]).
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In Section 1.2, we have defined the lower central series for any abstract group,

which should not be confused with that of a profinite group. In the case of finite

groups, they however coincide. We recall that, as defined in Section 8.2, the rank

of a finite group H is the smallest integer r such that every subgroup of H can be

generated by r elements.

Definition 410. Let G be a profinite group. The rank of G is

rk(G) = sup{rk(G/N) : N is normal open in G}.

Let G be a profinite group. It follows from the definition that rk(G) belongs to

Z ∪ {∞} and, if G has finite rank, that G is also finitely generated. Moreover,

when G is finite, the definition of rank given in Section 8.2 is equivalent to the

one from Definition 410. In [DdSMS91, Proposition 3.11], a series of equivalent

definitions of rank is given.

Definition 411. A p-adic analytic group is a profinite group that contains an

open pro-p-subgroup of finite rank.

Our definition of a p-adic analytic group is not among the standard ones, but

it serves our purposes the best. In general, p-adic analytic groups are defined

to be topological groups that present the structure of a p-adic manifold. The

equivalence of the two definitions, for profinite groups, is given by Corollary 9.35

from [DdSMS91]. For more information about the topic, see [DdSMS91, Ch. 9].

Definition 412. A profinite group is just-infinite if it is infinite and each of its

proper quotients is finite.

Definition 413. Let p be a prime number and let G be a pro-p-group. The Frattini

subgroup of G is Φ(G) = cl(Gp[G,G]).

As for the case of finite p-groups, the Frattini subgroup Φ(G) of a pro-p-group G is

the unique closed normal subgroup of G minimal with the property that G/Φ(G)

is a vector space over Fp.

Lemma 414. Let p be a prime number and let G be a pro-p-group. Then G is

topologically finitely generated if and only if Φ(G) is open in G.

Proof. This is Proposition 1.14 from [DdSMS91].

In Chapter 3 of [DdSMS91] it is proven that, if G is a finitely generated group,

then the cardinality of a minimal set of topological generators of G is equal to

dimFp(G/Φ(G)).

Definition 415. Let p be an odd prime number and let U be a pro-p-group. Then

U is uniform if the following hold.
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1. The group U is topologically finitely generated.

2. The quotient U/ cl(Up) is abelian.

3. The group U is torsion-free.

The definition of uniform group we give is slightly different from the one that is

given in [DdSMS91]. However, the equivalence of the two is proven in [DdSMS91,

Theorem 4.8].

Definition 416. Let p be an odd prime number and let U be a uniform pro-

p-group. The dimension of U is the cardinality of a minimal set of topological

generators of U . The dimension of U is denoted dim(U).

Lemma 417. Let p be an odd prime number and let G be a pro-p-group of finite

rank. Then G has a characteristic open uniform subgroup.

Proof. See Corollary 4.3 from [DdSMS91].

Lemma 418. Let p be an odd prime number and let G be a pro-p-group. Then

all open uniform subgroups of G have the same dimension.

Proof. See [DdSMS91, Corollary 4.6].

Definition 419. Let p be an odd prime number and let G be a pro-p-group of finite

rank. The dimension of G is the dimension of any of its open uniform subgroups.

Lemmas 417 and 418 guarantee the consistency of Definition 419.

13.2 Properties and intensity

In Section 13.2 we give several properties of topologically intense automorphisms

and, for a given prime number p, we define the intensity of a pro-p-group.

Lemma 420. Let G be a profinite group and let α be a topologically intense

automorphism of G. Then α induces an intense automorphism on each discrete

quotient of G.

Proof. Let N be an open normal subgroup of G. Then α(N) = N and α induces

an automorphism α of G/N . Now each subgroup H of G/N corresponds to an

open subgroup H of G, which is sent to a conjugate by α. As a consequence, also

α(H) and H are conjugate in G/N and, the choice of H being arbitrary, it follows

that α is intense.
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If G is a profinite group and Υ denotes the set of open normal subgroups of G,

then Aut(G) has a natural topology, the “congruence topology”, for which a basis

of open neighbourhoods of the identity is given by

{Γ(N) = {α ∈ Aut(G) : α ≡ id modN}}N∈Υ.

For more information on the subject see for example [DdSMS91, Ch. 5.2].

Lemma 421. Let G be a profinite group and let Υ denote the collection of open

normal subgroups of G. Then one has

Intc(G) = lim
←−
N∈Υ

Int(G/N).

Proof. Let Υ denote the collection of open normal subgroups of G. Then, thanks

to Lemma 420, we have a natural homomorphism

π : Intc(G)→
∏

N∈Υ

Int(G/N).

The map π is injective, because kerπ is contained in ∩N∈ΥΓ(N) = {1}, and the

image of π is equal to lim
←−
N∈Υ

Int(G/N), thanks to Lemma 88(2).

Lemma 422. Let {Xλ}λ∈Λ be an inverse system of finite non-empty sets over a

directed set Λ. Then lim
←−

Xλ is non-empty.

Proof. This is Proposition 1.4 from [DdSMS91].

Proposition 423. Let G be a profinite group and let α be an automorphism of

G. Then the following are equivalent.

1. The automorphism α is topologically intense.

2. For every open subgroup H of G, there exists an element x ∈ G such that

α(H) = xHx−1.

Proof. As every open subgroup is also closed, (1) clearly implies (2). Assume now

(2) and let H be a closed subgroup of G. We will construct x ∈ G such that

α(H) = xHx−1. Let Λ denote the collection of all discrete quotients of G and let

moreover Υ be the collection of all open normal subgroups of G. Then there is a

natural bijection Υ → Λ, given by N 7→ G/N . Now, thanks to Lemma 420, the

automorphism α induces an intense automorphism on each element of Λ. Hence, if

G is an element of Λ and H denotes the image of H in G, then there exists x ∈ G

such that α(H) = xHx−1. For each G ∈ Λ define XG = {x ∈ G : α(H) = xHx−1}

and observe that XG is finite and non-empty. Let now G and G ′ be elements

of Λ such that G ′ is a quotient of G. Then the natural projection G → G ′
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induces a well-defined map XG → XG ′ . It follows that {XG}G∈Λ is an inverse

system of finite non-empty sets so, by Lemma 422, the set X = lim
←−

XG is non-

empty. Let x ∈ X . As a consequence of the definition of X , for each element

N of Υ, the element xN belongs to XG/N and thus, for each N ∈ Υ, we have

α(HN) = xHx−1N . The map α is continuous, because it stabilizes each open

normal subgroup, and so it follows that

α(H) = cl(α(H)) =
⋂

N∈Υ

α(H)N =
⋂

N∈Υ

α(HN) =

=
⋂

N∈Υ

xHx−1N = cl(xHx−1) = xHx−1.

This proves (1), and therefore the proof is complete.

In the proof of the following result we will use the generalization to profinite groups

of Schur-Zassenhaus’s theorem (see for example Theorem 2.3.15 from [RZ10]).

Proposition 424. Let p be a prime number and let G be a pro-p-group. Then

Intc(G) = S ⋊ C,

where S is a Sylow pro-p-subgroup of Intc(G) and C is isomorphic to a subgroup

of F∗
p. Moreover, one has

|C| = gcd{int(G/N) : N normal open in G, N 6= G}.

Proof. Let Υ denote the collection of open normal subgroups of G. For each

N ∈ Υ, denote by πN : Int(G/N) → Int((G/N)/Φ(G/N)) the map from Lemma

88(2) and set KN = kerπN and IN = πN (Int(G/N)). For each N ∈ Υ, we then

get a short exact sequence

1→ KN → Int(G/N)→ IN → 1

which induces, thanks to Lemma 421 and the exactness of lim
←−

, the short exact

sequence

1→ lim
←−
N∈Υ

KN → Intc(G)→ lim
←−
N∈Υ

IN → 1.

Define S = lim←−
N∈Υ

KN and C = lim←−
N∈Υ

IN . As a consequence of Lemma 101, whenever

M,N ∈ Υ\{G} and N ⊆M , the natural map IN → IM is injective and therefore,

lim
←−
N∈Υ

Int((G/N)/Φ(G/N)) being equal to Int(G/Φ(G)), Lemma 89 yields that C

is isomorphic to a subgroup of F∗
p. Moreover, thanks to Lemma 97, the group

S is a pro-p-subgroup of Intc(G). The order of C being coprime to p, it follows

that in fact S is a Sylow pro-p-subgroup of Intc(G) and, from the generalization of
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Schur-Zassenhaus’s theorem to profinite groups, that Intc(G) = S⋊C. Moreover,

the fact that |C| is equal to the greatest common divisor of the int(G/N), as N

varies in Υ \ {G}, is a direct consequence of Lemma 101.

Let p be a prime number and let G be a pro-p-group. Let moreover C be as in

Proposition 424. The intensity int(G) of G is defined to be the cardinality of C.

Thanks to Proposition 424, the intensity of G is also equal to the greatest common

divisor of the set {int(G/N) : N normal open in G, N 6= G}.

Corollary 425. Let p be a prime number and let G be an abelian pro-p-group. If

G is non-trivial, then int(G) = p− 1.

Proof. If G is non-trivial, then Theorem 86 yields int(G) = p− 1.

13.3 Non-abelian groups, part I

The main purpose of Section 13.3 is to give a proof of Proposition 426. We refer

to Section 13.1 for the definitions of just-infinite profinite groups and of p-adic

analytic groups and their dimensions.

Proposition 426. Let p > 3 be a prime number and let G be a non-abelian infinite

pro-p-group. Assume that int(G) > 1. Then G is a just-infinite p-adic analytic

group of dimension 3.

The following assumptions will be valid until the end of Section 13.3. Let p be an

odd prime number and let G be an infinite non-abelian pro-p-group of intensity

greater than 1. Let (Gi)i≥1 denote the lower central series of G, as defined in

Section 13.1, and let α be a topologically intense automorphism of G of order 2.

The existence of α is guaranteed by the combination of Propositions 424 and 133.

Lemma 427. The automorphism α induces an intense automorphism of order 2

on each non-trivial discrete quotient of G.

Proof. Let C be as in proposition 424 and, without loss of generality, assume that

α ∈ C. Then, as a consequence of Lemma 420, given any open normal subgroups

N and M of G such that N ⊆M 6= G, we get a commutative diagram

C ✲ Int(G/M)

Int(G/N)
❄

✲

.
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Moreover, the map α being non-trivial, there exists a discrete quotient of G on

which α induces an automorphism of order 2. The choice of M and N being

arbitrary, it follows that α induces an intense automorphism of order 2 on each

non-trivial discrete quotient of G.

Lemma 428. Assume that p > 3. Then each discrete quotient of G of class at

least 4 is a p-obelisk.

Proof. Let G be a discrete quotient of class at least 4 of G. By Lemma 427,

the map α induces an intense automorphism of order 2 of G. It follows from

Proposition 318 that G is a p-obelisk.

Lemma 429. Let c be a non-negative integer. Then G has a discrete quotient of

class c.

Proof. Assume by contradiction that there exists an upper bound on the class of

the discrete quotients of G and let C ∈ Z≥0 be minimal with this property. Since

G is non-abelian, one has C ≥ 2. Let us now denote by Υ the collection of open

normal subgroups of G. Then G = lim
←−
N∈Υ

G/N and so G has class C. The group

G being infinite, it follows from Theorem 165 that C < 3 and so C = 2. Let

now M,N ∈ Υ be such that G/N has class 2 and M ( N . Let K = G/M and

let π : G → K denote the canonical projection. Then K has class 2 and, as a

consequence of Lemma 427, the intensity of K is greater than 1. By Theorem

105, the group K is extraspecial and, π(N) being non-trivial and normal in K, it

follows from Lemma 29 that π(N) contains Z(K) = [K,K]. In particular, K/π(N)

is abelian and therefore so is G/N . Contradiction.

Lemma 430. The set {Gi}i≥1 is a base of open neighbourhoods of 1 in G.

Proof. Let moreover Υ denote the collection of all open normal subgroups N of P

with the property that G/N has class at least 3. As a consequence of Lemma 429,

the group G is equal to lim
←−
N∈Υ

G/N . Moreover, each subgroup Gi being closed, we

also haveGi = lim
←−
N∈Υ

(G/N)i. Thanks to Lemma 427, whenever N ∈ Υ, the quotient

G/N has intensity greater than 1 and so Theorem 218 yields that {Gi}i≥1 is a

base of open neighbourhoods of 1 in G.

Lemma 431. Assume that p > 3. Then rk(G) = 3 and G is p-adic analytic.

Proof. By Lemma 427, the automorphism α induces an intense automorphism

of order 2 on each non-trivial discrete quotient of G and, as a consequence of

Lemma 429, the group G has finite quotients of any possible class. It follows

that rk(G) = sup{rk(G/N) : G/N has class at least 4} and hence Proposition 222
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yields rk(G) = 3. The group G being a pro-p-group of finite rank, it is p-adic

analytic.

Lemma 432. Assume that p > 3. Let N be a non-trivial closed subgroup of G.

Then the following are equivalent.

1. The subgroup N is normal.

2. There exists l ∈ Z≥1 such that Gl+1 ⊆ N ⊆ Gl.

Moreover, P is just-infinite.

Proof. The implication (2)⇒ (1) is clear; we prove (1)⇒ (2). Thanks to Lemma

430, every element of the lower central series of G is open and {Gi}i≥1 is a base

of open neighbourhoods of 1. For all k ∈ Z≥1, denote by πk : G → G/Gk the

canonical projection and set l = max{k : πk(N) = 1}. The index l is well-defined,

because N 6= 1, and N is contained in Gl, but not in Gl+1, by the maximality of

l. In particular, for each k > l, the minimum jump of πk(N) in G/Gk is l. Now,

by Lemma 428, whenever k ≥ 5, the quotient G/Gk is a p-obelisk. It follows from

Lemma 327(2) that, whenever k > max{l, 5}, the subgroup Gl+1 is contained in

NGk, and therefore

Gl+1 ⊆
⋂

k>max{l,5}

NGk =
⋂

k≥1

NGk = cl(N) = N.

We have proven that Gl+1 ⊆ N ⊆ Gl and thus also that (1) implies (2). To

conclude, since each Gk is open in G, the subgroup N is open and the quotient

G/N is finite. Because of the arbitrary choice of N , the group G is just-infinite.

Lemma 433. Assume that p > 3. Then G is torsion-free.

Proof. By Lemma 428, whenever k is at least 5, the quotient G/Gk is a p-obelisk.

It follows from Corollary 329 that, for each non-negative integer i, raising to the

power p induces a well-defined isomorphism Gi/Gi+1 → Gi+2/Gi+3. By Lemma

429, there is no bound on the class of the finite quotients of G, and therefore G is

torsion-free.

Lemma 434. Assume that p > 3. Then G2 is open, uniform, and has dimension

3.

Proof. Let G be a discrete quotient of class at least 5 of G, which exists by Lemma

429. As a consequence of Lemma 428, the group G is a p-obelisk and so Lemma

322 yields |G2 : G4| = p3. The subgroup G
p

2 is equal to G4, thanks to Lemma 323,

and so, as a consequence of Lemma 20, the quotient G2/G
p

2 = G2/G4 is elementary

abelian. It follows that each generating set of G2 has at least 3 elements. However,
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the rank of G is equal to 3, thanks to Lemma 431, and therefore G2 is generated

by exactly 3 elements. Since G was chosen arbitrarily, the quotient G2/ cl(Gp2)

is abelian and any minimal set of topological generators of G2 has 3 elements.

Now, as a consequence of Lemma 433, the torsion of G2 is trivial and hence G2

is uniform of dimension 3. Moreover, the subgroup G2 is open thanks to Lemma

430.

We conclude Section 13.3 by giving the proof of Proposition 426. Assume that

p > 3. Then G is p-adic analytic, by Lemma 431, and it has dimension 3 thanks to

Lemma 434. Moreover, G is just-infinite by Lemma 432. The proof of Proposition

426 is now complete.

13.4 Two infinite groups

In Section 13.4 we present two infinite pro-p-groups, which are p-adic analytic. We

will see, in Section 13.5, the role they play in the proof of Theorem 405.

13.4.1 The first group

Let p > 3 be a prime number and let π : SL2(Zp)→ SL2(Fp) be the canonical pro-

jection. Let SL△
2 (Fp) denote the subgroup of SL2(Fp) consisting of those elements

of the form (
1 x

0 1

)
where x ∈ Fp.

We define SL△
2 (Zp) = π−1(SL△

2 (Fp)) and remark that SL△
2 (Zp) is a pro-p-group.

Our notation is consistent with that of [GSK09]; however, we will make use of

several facts coming from [Hup67, Ch. III.17], where the group SL△
2 (Zp) is denoted

by M0,1,1.

Lemma 435. Let p > 3 be a prime number and let G = SL△
2 (Zp). Denote by

(Gi)i≥1 the lower central series of G. Then, for each k ∈ Z≥3, the quotient G/Gk
is a p-obelisk.

Proof. This is a reformulation of Satz 17.8 from [Hup67, Ch. III].

Lemma 436. Let p > 3 be a prime number and let G = SL△
2 (Zp). Denote by

(Gi)i≥1 the lower central series of G. Then there exist x ∈ G\G2 and a ∈ G2 \G3

such that [x, a] ∈ cl(〈x〉).

Proof. This proof relies on several lemmas from [Hup67, Ch. III.17]; we will respect

Huppert’s notation. Let

x = B(1) =

(
1 1

0 1

)
and a = D(1 + p) =

(
(1 + p)−1 0

0 (1 + p)

)
.
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Satz 17.4 from [Hup67, Ch. III.17] gives a concrete characterization of the lower

central series of G, from which it directly follows that x ∈ G\G2 and a ∈ G2 \G3.

As a consequence of Hilfssatz 17.2(a), the element x generates topologically the

subgroup B0 consisting of all matrices of the form

(
1 x

0 1

)
where x ∈ Zp.

To conclude, Hilfssatz 17.3 guarantees that there exists an element b ∈ Zp such

that

[x, a] =

(
1 pb

0 1

)

so, in particular, [x, a] belongs to the subgroup B0 = cl(〈x〉).

We recall that a p-obelisk is a non-abelian finite p-group G satisfying G3 = Gp

and |G : G3| = p3. A p-obelisk G is framed if, given any maximal subgroup M

of G, one has Φ(M) = G3. For more information about p-obelisks, we refer to

Chapter 10.

Lemma 437. The group SL△
2 (Zp) has a discrete quotient of class 6 that is not a

framed p-obelisk.

Proof. Let G = SL△
2 (Zp) and denote by (Gi)i≥1 the lower central series of G, as

defined in Section 13.1. We define G = G/G7 and we use the bar notation for

subgroups and elements of G. The group G has class 6 and it is a p-obelisk, by

Lemma 435. Let now x ∈ G be as in Lemma 436 and set ℓ = 〈xG2〉, which is a

1-dimensional subspace of G/G2. Let moreover

ρ1
1 : G/G2 → G3/G4

and

γ1,2 : G/G2 ×G2/G3 → G3/G4

denote the maps from Lemma 328. As a consequence of Lemma 436, the elments

ρ1
1(ℓ) and γ1,2({ℓ} × G2/G3) generate a 1-dimensional subspace ℓ′ of G3/G4. By

Lemma 322(1), the width wtG(3) is equal to 2 so ℓ′ is different from G3/G4.

Proposition 336 yields that G is not framed.

13.4.2 The second group

Let p > 3 be a prime number and let t ∈ Zp be a quadratic non-residue modulo p.

Define ∆p to be
(
t , p
Zp

)
, i.e., the quaternion algebra

∆p = Zp ⊕ Zpi⊕ Zpj⊕ Zpk

163



13. A GENERALIZATION TO PROFINITE GROUPS

with defining relations

i2 = t, j2 = p, and k = ij = −ji.

The quaternion algebra ∆p is equipped with a bar map, defined by

x = a+ bi + cj + dk 7→ x = a− bi− cj− dk,

which is an anti-homomorphism of order 2. The algebra ∆p has, in addition, a

unique maximal (left/right/two-sided) ideal m, which is principal generated by j,

i.e. m = ∆p j. It follows that an element x = a+ bi + cj + dk belongs to m if and

only if both a and b belong to pZp. Moreover, for each k ∈ Z≥1, the ideal mk is

principal generated by jk and therefore, for each s ∈ Z≥0, one has

m
2s = ps∆p and m

2s+1 = psm.

As a result, for each k ∈ Z≥1, the quotient m
k/mk+1 is a vector space over Fp of

dimension 2. Now, for each k ∈ Z≥1, the set 1+m
k is easily seen to be a subgroup

of ∆∗
p and the natural map (1 + m

k)/(1 + m
k+1) → m

k/mk+1 is an isomorphism

of groups. It follows that 1 + m is a pro-p-subgroup of ∆∗
p. Define

S(∆p) = (1 + m) ∩ {x ∈ ∆p : x = x−1}.

Then S(∆p) is a closed subgroup of 1 + m and thus a pro-p-group itself. We have

here lightened the notation from [GSK09], where the group S(∆p) is denoted by

SL1
1(∆p).

Lemma 438. Let p > 3 be a prime number and let G = S(∆p). Denote by (Gi)i≥1

the lower central series of G. Then, for each k ∈ Z≥1, one has Gk = (1+m
k)∩G.

Proof. We sketch here the proof, but leave out the computations. For all i ∈ Z≥1,

denote Mi = (1 +m
i)∩G. We remark that all Mi are normal in G and they form

a base of open neighbourhoods of 1 in G. It is easy to check that (Mi)i≥1 is a

central series, in other words for all i ∈ Z≥1 the subgroup [M1,Mi] is contained

in Mi+1. As a consequence of Lemma 22, for each index i, the commutator map

induces a bilinear map γi : M1/M2 ×Mi/Mi+1 → Mi+1/Mi+2. Next, by direct

computation, one gets that, for every i ∈ Z≥1, the image of γi generates Mi/Mi+1,

and therefore Mi+1 = [M1,Mi]Mi+2. Fix i. By induction one shows that, for each

positive integer n, one has Mi+1 = [M1,Mi]Mi+n, and hence

Mi+1 =
⋂

n≥1

[M1,Mi]Mi+n = cl([M1,Mi]).

Since M1 = G, we get that Mi+1 = cl([G,Gi]) = Gi+1. The choice of i being

arbitrary, the proof is complete.
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Lemma 439. Let p > 3 be a prime number and let G = S(∆p). Denote by

(Gi)i≥1 the lower central series of G. Then, for each i ∈ Z≥1, the map x 7→ xp on

G induces an isomorphism ρi : Gi/Gi+1 → Gi+2/Gi+3.

Proof. By Lemma 438, given any positive integer i, one has Gi = (1 + m
i) ∩ G.

Fix i ∈ Z≥1 and let 1 + x be an element of Gi. One shows that (1 + x)p ≡

1 + px mod Gi+3. It is now easy to conclude.

Lemma 440. Let p > 3 be a prime number and let G = S(∆p). Denote by (Gi)i≥1

the lower central series of G. Let x ∈ G \ G2 and let y ∈ G2 \ G3. Then G3 is

generated by xp and [x, y] modulo G4.

Proof. Straightforward computation.

We remind the reader that, as defined in Chapter 10, a p-obelisk is a finite non-

abelian p-group G such that |G : G3| = p3 and Gp = G3. A p-obelisk is said to be

framed if, for each maximal subgroup M of G, one has Φ(M) = G3.

Lemma 441. Let p > 3 be a prime number and let G = S(∆p). Denote by (Gi)i≥1

the lower central series of G. Then, for each k ∈ Z≥3, the quotient G/Gk is a

framed p-obelisk.

Proof. Let k ∈ Z≥3 and denote G = G/Gk. The group G is non-abelian and

it is finite. Moreover, as a consequence of Lemma 438, one can easily compute

that |G : G3| = |G : G3| = p3 and, thanks to Lemma 439, one has G
p

= G3. It

follows that G is a p-obelisk. To show that G is framed, combine Lemma 440 and

Proposition 336.

Lemma 442. Let p > 3 be a prime number and let G = S(∆p). Let moreover

α : G→ G be defined by

a+ bi + cj + dk 7→ a+ bi− cj− dk.

Then α is a continuous automorphism of G and the map G/G2 → G/G2 that is

induced by α is equal to the inversion map a 7→ a−1.

Proof. The map α coincides with conjugation by i and it is therefore a continuous

automorphism. Moreover, thanks to Lemma 438, the subgroup G2 coincides with

(1+m
2)∩G. Since each element x ofG can be written in the form x = 1+cj+dk+m,

with c, d ∈ Zp and m ∈ m
2, we get that α(x) ≡ x mod G2. The elements x and

x−1 being equal, it follows that α(x) ≡ x−1 mod G2.

Lemma 443. Let p > 3 be a prime number and let G = S(∆p). Define moreover

α : G→ G by

a+ bi + cj + dk 7→ a+ bi− cj− dk.

Then α is a topologically intense automorphism of G of order 2 and int(G) = 2.
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Proof. By Lemma 442, the map α is a continuous automorphism of G and, by its

definition, it clearly has order 2. We prove that α is topologically intense. To this

end, let H be an open subgroup of G. As a consequence of Lemma 430, there

exists a positive integer k such that Gk is contained in H . Fix such integer k

and define K = max{k, 4}. Denote G = G/GK and use the bar notation for the

subgroups of G. Denote moreover by αK the automorphism that is induced on G

by α. Then αK induces the inversion map on G/G2, as a consequence of Lemma

442 and the definition of αK . Moreover, the class of G is at least 3 so, thanks to

Lemma 441, the group G is a framed obelisk. It follows from Theorem 344 that

αK is intense, so there exists g ∈ G such that αK(H) = gHg−1. Furthermore,

we have that α(H) = gHg−1 and, the choice of H being arbitrary, it follows from

Proposition 423 that α is topologically intense. In particular, int(G) is even. The

intensity of G is equal to 2, as a consequence of Proposition 424 and Theorem

125.

13.5 Non-abelian groups, part II

The aim of this section is to give a proof of the following proposition.

Proposition 444. Let p > 3 be a prime number and let P be a non-abelian

infinite pro-p-group. Assume that int(P ) > 1. Then P is topologically isomorphic

to S(∆p).

Until the end of Section 13.5, let the following assumptions be valid. Let p > 3

be a prime number and let P be an infinite non-abelian pro-p-group of intensity

greater than 1. Let (Pi)i≥1 denote the lower central series of P , as defined in

Section 13.1, and let α be a topologically intense automorphism of P of order 2,

which exists thanks to Proposition 424. In the proof of Proposition 444, we will

make heavy use of results coming from Chapters 10 and 11.

Definition 445. Let G be a group. The derived series (G(i))i≥0 of G is defined

recursively by

G(0) = G and G(i+1) = [G(i), G(i)].

The group G is solvable if there exists k ∈ Z≥0 such that G(k) = {1}.

Lemma 446. Every solvable just-infinite pro-p-group other than Zp has torsion.

Proof. This is Proposition 6.1 in [GSK09].

We remind the reader that, for each prime number p > 3, the groups SL△
2 (Zp)

and S(∆p) have been defined in Section 13.4.
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Lemma 447. Let p > 3 be a prime number and let G be a p-adic analytic group.

Assume that dim(G) = 3 and that G is both torsion-free and non-solvable. Then

G is topologically isomorphic to an open subgroup of S(∆p) or SL△
2 (Zp).

Proof. See [GSK09, Section 7.3].

Lemma 448. The group P is topologically isomorphic to an open subgroup of

S(∆p) or SL△
2 (Zp).

Proof. The group P is a just-infinite p-adic analytic group of dimension 3, by

Proposition 426. By Lemma 433, the torsion of P is trivial and so, by Lemma

446, the group P is not solvable. It follows from Lemma 447 that P is isomorphic

to an open subgroup of S(∆p) or SL△
2 (Zp).

Lemma 449. The group P is topologically isomorphic to S(∆p) or SL△
2 (Zp).

Proof. Let G ∈ {S(∆p), SL△
2 (Zp)} and let (Gi)i≥1 denote the lower central series

of G. From the combination of Lemmas 435 and 441, we know that, for each k ≥ 3,

the quotient G/Gk is a p-obelisk. Let now H be an open subgroup of G, such that

P is topologically isomorphic to H . The existence of H is ensured by Lemma 448.

By Lemma 429, the group H has discrete quotients of any class and, thanks to

Lemma 428, each such quotient, of class at least 4, is a p-obelisk. The subgroup

H being open, it follows from Lemma 430 that there exists k ∈ Z>4 such that Gk
is contained in H so H/Gk is a p-obelisk. Proposition 337 yields G = H .

Lemma 450. Each discrete quotient of P of class at least 6 is a framed p-obelisk.

Proof. Let G be a discrete quotient of P of class at least 6. By Lemma 427, the

map α induces an intense automorphism of order 2 on G and, by Lemma 428, the

group G is a p-obelisk. By Lemma 322(1), the number wtG(5) is equal to 2 so, by

Theorem 375, the p-obelisk G is framed.

We are finally ready to give the proof of Proposition 444. Thanks to Lemma 449,

there are only two possibilities for the isomorphism type of P : that of S(∆p) or

that of SL△
2 (Zp). By Lemma 450, every discrete quotient of P of class 6 is a

framed p-obelisk so, in view of Lemma 437, the group SL△
2 (Zp) is not isomorphic

to P . It follows that P is topologically isomorphic to S(∆p) and so the proof of

Proposition 444 is complete.

13.6 Proving the main theorems and more

In Sections 13.6.1 and 13.6.2 we prove respectively Theorem 405 and Theorem

406. The last two theorems are the most important results of Chapter 13: we are

able to draw a bridge between the two thanks to Proposition 451, which is proven

in Section 13.6.3.
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13.6.1 The proof of Theorem 405

Let p be a prime number. As a consequence of Proposition 424, the intensity of

a pro-p-group divides p − 1 and so there are no pro-2-groups of intensity greater

than 1. Assume now that p is odd. Then, thanks to Corollary 425, each infinite

abelian pro-p-group has intensity p − 1, which, p being odd, is greater than 1.

Let now G be a non-abelian infinite pro-p-group with int(G) > 1. Then G has a

discrete quotient of any class, thanks to Lemma 429, so Theorem 231 yields that

p is larger than 3. By Proposition 444, the group G is topologically isomorphic to

S(∆p), which, by Lemma 443, has indeed intensity 2. The proof of Theorem 405

is now complete.

13.6.2 The proof of Theorem 406

Let p > 3 be a prime number and let c be a positive integer. Write P = S(∆p)

and let (Pi)i≥1 denote the lower central series of P , as defined in Section 13.1.

Then the group P/Pc+1 has class c and it is finite, as a consequence of Lemma

430. The group P being a pro-p-group, P/Pc+1 is a finite p-group. Moreover, by

Theorem 405, the intensity of P is greater than 1 and so, thanks to Proposition

424, we get int(P/Pc+1) > 1. The number c was chosen arbitrarily and therefore

Theorem 406 is proven.

13.6.3 A bridge between finite and infinite

The purpose of Section 13.6.3 is to compare, for a fixed prime p > 3, the finite

p-groups of intensity greater than 1 with the discrete quotients of S(∆p).

Proposition 451. Let p > 3 be a prime number and write P = S(∆p). Denote by

(Pi)i≥1 the lower central series of P . Then there exists a function f : Z>0 → Z≥0

with the following properties.

1. One has limc→∞ f(c) =∞.

2. For each finite p-group G of class c with int(G) > 1, the quotients G/Gf(c)

and P/Pf(c) are isomorphic.

Proof. For each positive integer c, let Int(p, c) denote the collection of all finite

p-groups of class c and intensity greater than 1. We define f : Z>0 → Z≥0

by mapping each element c ∈ Z>0 to the maximum index m ∈ Z>0 for which,

whenever G ∈ Int(p, c), the quotients G/Gm and P/Pm are isomorphic. The

map f is well-defined, thanks to Theorem 406, and it follows directly from the

definition of f that (2) is satisfied. Moreover, thanks to Lemma 101, the function

f is non-decreasing. We prove (1) by contradiction. Let C ∈ Z≥0 be such that,

for all c ≥ C, one has f(c) = f(C). In other words, for each c ∈ Z≥C , there exists
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G ∈ Int(p, c) such that G/Gf(C) and P/Pf(C) are isomorphic, but G/Gf(C)+1 and

P/Pf(C)+1 are not. For all c ≥ C, call Xc the collection of such G and note that,

for each c ≥ C, the set Xc is non-empty. Thanks to Lemma 101, for each c ∈ Z>C ,

we have a natural map Xc+1 → Xc, which is defined by G 7→ G/Gc+1. The

collection {Xc}c>C is thus an inverse system of non-empty sets. As a consequence

of Theorem 124, the constant C is at least 3 and so, for each c > C, Theorem 218

yields that Xc is finite. By Lemma 422, the set X = lim
←−
c>C

Xc is non-empty and

therefore there exists an infinite non-abelian pro-p-group of intensity larger than

1 and which is, by construction, not isomorphic to P . Contradiction to Theorem

405. It follows that (2) is satisfied and the proof is complete.

Proposition 451 is the last result of this thesis and, in summary, it states that, for

p > 3, each finite p-group G with int(G) > 1 shares a “relatively big” quotient

(growing in size with the class of G) with the infinite group S(∆p). One can then

ask: if p > 3 and G is a finite p-group of intensity greater than 1, then “how far is

G from being a quotient of S(∆p)”? More precisely, if G is a finite p-group of class

c with int(G) > 1 and f is as in Proposition 451, then what is the average size of

Gf(c)? Is there an absolute constant B such that, for each c ∈ Z>0 and for each

finite p-group G of class c and intensity greater than 1, one has |Gf(c)| ≤ pB? In

view of Theorem 375, we can surely answer this question if we manage to classify,

for each given prime p > 3, all framed p-obelisks that have an automorphism of

order 2 that induces the inversion map on the Frattini quotient of the group.
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Summary

Intense automorphisms of finite groups

Let G be a group. An automorphism α of G is intense if, for every subgroup H

of G, there exists an element x of G such that α(H) = xHx−1. The collection of

intense automorphisms of G is a subgroup of Aut(G), which is denoted by Int(G).

In this thesis we classify the pairs (p,G), where p is a prime number and G is

a finite p-group but Int(G) is not. To this end, for each finite p-group G, we define

the intensity int(G) of G to be the index of any Sylow p-subgroup of Int(G) in

Int(G). We prove that finite 2-groups have intensity 1. Next, we prove that, for

every prime number p, each non-trivial finite abelian p-group has intensity p− 1.

We proceed with the classification by progressively increasing the nilpotency class

of the groups we are looking at. Let p be an odd prime number. We show that the

finite p-groups of class 2 and intensity greater than 1 are exactly the extraspecial

p-groups of exponent p. We prove moreover that, if the class is 3, then a finite

p-group has intensity greater than 1 if and only if its abelianization has order p2.

The classification process becomes more difficult as the class increases. We prove

that there exists a unique 3-group, up to isomorphism, of class at least 4 and

intensity greater than 1; that group has order 729. In contrast with the case of

3-groups, we demonstrate that, if p > 3, there exists, for each positive integer c, a

p-group G of class c for which Int(G) is not itself a p-group. To do so, we extend

the notion of intensity to pro-p-groups and, if p > 3, we construct an infinite non-

abelian pro-p-group of intensity greater than 1. We later prove that the infinite

group we constructed is the unique infinite non-abelian pro-p-group of intensity

greater than 1, up to isomorphism. In conclusion, for each prime number p > 3,

we define a new family of 2-generated finite p-groups, which we call p-obelisks, and

we show that they have exceptionally pleasant properties. The classification of

finite p-groups of intensity greater than 1 is completed, modulo the existence of a

special kind of automorphisms of p-obelisks.
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Samenvatting

Intense automorfismen van eindige groepen

Zij G een groep. Een automorfisme α van G heet intens als er voor elke ondergroep

H van G een element x in G bestaat waarvoor geldt α(H) = xHx−1. De verza-

meling Int(G) van alle intense automorfismen van G is een ondergroep van Aut(G).

In dit proefschrift classificeren we de paren (p,G), met p een priemgetal en G

een eindige p-groep waarvoor Int(G) geen p-groep is. Daartoe definiëren we voor

elke p-groep G de intensiteit int(G) van G als de index van een willekeurige Sylow

p-ondergroep van Int(G) in Int(G). We bewijzen dat eindige 2-groepen intensiteit

1 hebben. Vervolgens bewijzen we dat, als p een priemgetal is, elke eindige non-

triviale abelse p-groep intensiteit p−1 heeft. We vervolgen de classificatie door de

nilpotentie klasse van de groepen die we bekijken te laten oplopen. Zij p een oneven

priemgetal. We laten zien dat de p-groepen van klasse 2 en intensiteit groter dan

1 precies de extraspeciale p-groepen met exponent p zijn. We bewijzen bovendien

dat, als de klasse 3 is, een eindige p-groep intensiteit groter dan 1 heeft dan en

slechts dan als zijn verabelisering orde p2 heeft. De classificatie wordt moeilijker

naarmate de klasse groeit. We bewijzen dat er op isomorfie na een unieke 3-groep

van klasse groter dan 4 en intensiteit groter dan 1 bestaat; deze groep heeft orde

729. In tegenstelling tot het geval van 3-groepen tonen we aan dat er, voor p > 3

en c een positief getal, een p-groep G van klasse c bestaat waarvoor Int(G) geen p-

groep is. Hiertoe breiden we het begrip intensiteit uit naar pro-p-groepen en voor

p > 3 construeren we een oneindige niet-abelse pro-p-groep van intensiteit groter

dan 1. Later bewijzen we dat de oneindige groep die we hebben geconstrueerd op

isomorfie na de unieke oneindige non-abelse pro-p-groep van intensiteit groter dan

1 is. Ten slotte definiëren we voor elk priemgetal p > 3 een nieuwe familie van

2-voortgebrachte eindige p-groepen, die we p-obelisken noemen, en we laten zien

dat ze bijzonder aangename eigenschappen hebben. De classificatie van eindige

p-groepen van intensiteit groter dan 1 is voltooid, op het bestaan van een speciaal

soort automorfismen van p-obelisken na.
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