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Abstract

Let G be a group. An automorphism of G is called intense if it sends each
subgroup of G to a conjugate; the collection of such automorphisms is denoted by
Int(G). In the special case in which p is a prime number and G is a finite p-group,
one can show that Int(G) is the semidirect product of a normal p-Sylow and a cyclic
subgroup of order dividing p−1. In this paper we classify the finite p-groups whose
groups of intense automorphisms are not themselves p-groups. It emerges from our
investigation that the structure of such groups is almost completely determined by
their nilpotency class: for p > 3, they share a quotient, growing with their class,
with a uniquely determined infinite 2-generated pro-p group.
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List of Symbols

General
p, a prime number
Z, ring of integers
Z≥x, set of integers that are at least x
Z>x, set of integers that are larger than x
Zp, ring of p-adic integers
Fq, finite field of q elements
R∗, group of units of the ring R
|X|, the cardinality of the set X
〈X〉, the subgroup generated by the set X and we write 〈a, b, c, . . .〉 for
〈{a, b, c, . . .}〉
idX , the identity map on the set X
α|X , the map α restricted to the set X
cl(X), the closure of the set X⊔

, disjoint union
⊗ = ⊗Z∧

=
∧

Z
GLn(k), the general linear group of degree n over k
MC(3), definition in Chapter 9

SL42 (Zp), definition in Section 13.4.1
S(∆p), definition in Section 13.4.2

For any group G
[x, y] = xyx−1y−1, for any x, y ∈ G
Z(G), the centre of G
Φ(G), the Frattini subgroup of G
(Gi)i≥1, the lower central series of G
Gn = 〈xn : x ∈ G〉
µn(G) = 〈x ∈ G : xn = 1〉
CG(X) =

⋂
x∈X Gx, where Gx is the stabilizer of x

NG(H), the normalizer of H in G
Aut(G), the automorphism group of G
Inn(G), the inner automorphism group of G
Int(G), the intense automorphism group of G, see Chapter 3
rk(G), the rank of G, see Sections 8.2 and 13.1

For a finite p-group G
ρ, the map x 7→ xp

dptG(x), the depth of x in G, see Section 2.3
wtGH(j), the j-th width of H in G, see Section 2.3
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2 LIST OF SYMBOLS

wtG(j) = wtGG(j)
χG, the intense character of G, see Section 3.2
int(G), the intensity of G, see Section 3.2

Exceptions
(Fi)i≥1, the p-central series of the free group F , in Sections 5.3, 9.4, and
9.6



CHAPTER 1

Introduction

Let G be a group and let Aut(G) denote its group of automorphisms. An au-
tomorphism α ∈ Aut(G) is intense if it sends each subgroup of G to a conjugate,
i.e., for every subgroup H of G there exists g ∈ G such that α(H) = gHg−1. The
collection of intense automorphisms is a normal subgroup of Aut(G), which is de-
noted by Int(G).

Such automorphisms come to light in the field of Galois cohomology, as we will
see at the end of this introductory section. Additionally, they give rise to a very
rich theory. We study the case in which G is a finite p-group and show that, if
Int(G) is not itself a p-group, then the structure of G is almost completely deter-
mined by its class.

If G is a finite abelian group, then the inversion map x 7→ x−1 is an intense au-
tomorphism of G and therefore, unless the exponent of G divides 2, the order of
Int(G) is even. It follows, for example, that if G is non-trivial abelian of odd order,
then G always has a non-trivial intense automorphism of order coprime to its order.
In Chapter 3 we prove the following result for groups of prime power order.

Theorem A. Let p be a prime number and let G be a finite p-group. Then
Int(G) is isomorphic to a semidirect product SGCG, where SG is a Sylow p-subgroup
of Int(G) and CG is a subgroup of the unit group F∗p of the finite field Fp. Moreover,
if G is non-trivial abelian, then CG = F∗p.

Theorem A is the same as Theorem 3.1 and is proven in Section 3.3. If p is an
odd prime number, then Theorem A guarantees the existence of infinitely many
p-groups, up to isomorphism, whose group of intense automorphisms is not itself a
p-group. Moreover, it is also clear from Theorem A that the order of the intense
automorphism group of a 2-group can never have prime divisors other than 2. We
define the intensity of a finite p-group G to be the order of CG and we denote it
by int(G). The main goal of this paper is to classify all pairs (p,G) such that p is
a prime number and G is a finite p-group of intensity greater than 1. Theorem A
classifies all such pairs (p,G) for which G is abelian. . . but what happens in general?

We proceed by separating into cases based on “how non-abelian” a group is. The
lower central series (Gi)i≥1 of a group G is defined by

G1 = G and Gi+1 = [G,Gi] = 〈xyx−1y−1 : x ∈ G, y ∈ Gi〉

and the (nilpotency) class of G is

cl(G) = #{k ∈ Z≥1 : Gk 6= 1}.

3



4 1. INTRODUCTION

It is a classical result that, for any finite p-group, the lower central series stabilizes
at {1} and so the class is finite. In Chapter 4 we look at finite p-groups of class 2
– the first non-abelian case we treat – and prove the following result.

Theorem B. Let p be a prime number and let G be a finite p-group of class 2.
Then the following are equivalent.

1. One has int(G) > 1.
2. One has int(G) = p− 1 and p is odd.
3. The group G is extraspecial of exponent p.

Theorem B is the same as Theorem 4.1 and is proven in Section 4.3. As we re-
mark in Chapter 4, extraspecial groups of exponent p are exactly those of the form
(F2n+1
p , ∗), where ∗ is a twist of the usual + by an inner product on Fnp . Thanks to

their pleasant shape, it is not a surprise that they carry intense automorphisms of
order coprime to p. Moreover, they provide, for each odd prime p, an infinite class
of examples of p-groups of class 2 and intensity different from 1.

Passing to class at least 3, things drastically change: in Chapter 5, we prove the
following very restrictive result.

Theorem C. Let p be a prime number and let G be a finite p-group of class
at least 3. Then the following hold.

1. One has int(G) ≤ 2.
2. If int(G) = 2, then p is odd and |G : G2| = p2.

Theorem C is a reformulation of Theorem 5.2, which is proven in Section 5.1.
Moreover, Theorem C tells us that, for class greater than 2, a p-group G always has
intensity 1 or 2; in the latter case, if p is odd, then the order of the abelianization
of G is “small”.

Starting from class 3, we want to understand the structure of the groups from
Theorem C(2). To this end, let p be an odd prime number and let G be a finite
p-group of class 3 with |G : G2| = p2. In Section 5.2, we prove that G/G3 is ex-
traspecial of exponent p and that the order of G is p4 or p5. Moreover, if we write
wi = logp |Gi : Gi+1|, then either (w1, w2, w3) = (2, 1, 1) or (w1, w2, w3) = (2, 1, 2).
As a consequence, for the given prime number p, there are, up to isomorphism,
only finitely many possibilities for G (for a sharp bound see for example [Ben27])
and so, contrarily to what happens for class 1 and 2, there are only finitely many
isomorphism classes of finite p-groups of class 3 and intensity greater than 1. The
fortunate outcome of our investigation in class 3 is the following.

Theorem D. Let p be an odd prime number and let G be a finite p-group of
class 3. Then the following are equivalent.

1. One has int(G) = 2.
2. One has |G : G2| = p2.

The last theorem is a simplification of Theorem 5.1, whose proof is given in Section
5.3. Thanks to Theorem D, we now know that the only condition, given an odd
prime number p, for a finite p-group of class 3 to have intensity 2 is just that of
having an abelianization of order p2. The most urgent problem at this point is that
of constructing examples of p-groups of class greater than 3 and intensity 2: those
will serve as a model for further investigation.
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Example 1.1. Let p > 3 be a prime number and let Zp denote the ring of
p-adic integers. Let t be a quadratic non-residue modulo p and denote by ∆p the
quaternion algebra ∆p = Zp+Zpi+Zpj+Zpij with defining relations i2 = t, j2 = p,
and ji = −ij. The algebra ∆p is equipped with a standard involution, which is given
by

x = a+ bi + cj + dij 7→ x = a− bi− cj− dij

and which is an anti-ring-automorphism of ∆p. Moreover, m = ∆pj is the unique (2-
sided/left/right) maximal ideal of ∆p and the residue field ∆p/m, as well as every
quotient mk/mk+1, has cardinality p2. Via the natural isomorphisms of groups
(1 +mk)/(1 +mk+1)→ mk/mk+1, the multiplicative group 1 +m is then seen to be
a pro-p-subgroup of ∆∗p. We define S(∆p) to be the subgroup of 1 + m consisting

of those elements x satisfying x = x−1. Being closed in 1 + m, the group S(∆p) is
itself a pro-p-subgroup of ∆∗p and, if (S(∆p)i)i≥1 denotes the lower central series of
S(∆p), then

(logp |S(∆p)i : S(∆p)i+1|)i≥1 = (2, 1, 2, 1, 2, 1, . . .).

We show in Section 13.4.2 that each non-trivial discrete quotient of S(∆p) has
intensity greater than 1.

Because of the last example, we know that, whenever p is a prime larger than
3 and c is a positive integer, then there always exists a finite p-group of class c
and intensity greater than 1. We cannot however use the same strategy to build
examples of high class 3-groups of intensity 2. As a matter of fact, even though
the group S(∆p) can be defined also for p = 3, the image of the 3-torsion of S(∆3)
in S(∆3)/S(∆3)2 is non-trivial. The next result, which is obtained by combining
Theorem 6.1 and Lemma 7.12(1), explains why this is a problem.

Theorem E. Let p be an odd prime number and let G be a finite p-group.
Let (Gi)i≥1 denote the lower central series of G and write wi = logp |Gi : Gi+1|.
Assume that the class of G is at least 4 and that int(G) = 2. Then the following
conditions are satisfied.

1. One has (w1, w2, w3, w4) = (2, 1, 2, 1).
2. The map x 7→ xp induces a bijection ρ : G/G2 → G3/G4.

Relying on regularity, one can prove that, whenever p > 3, the map ρ from Theorem
E is a group isomorphism, while in the case of 3-groups it never is: because of this
structural difference, we separate the two cases.

We define a κ-group to be a finite 3-group G such that |G : G2| = 9 and such
that cubing induces a bijection κ : G/G2 → G3/G4. In particular, κ coincides with
ρ from Theorem E(2). In Chapter 9, we prove several structural results about κ-
groups: we show, for example, that in class 3 there is, up to isomorphism, a unique
κ-group and that the minimal extensions of that group to class 4 (which then have
order 729) have an elementary abelian commutator subgroup. The just-mentioned
results are presented in the form of Theorems 9.3 and 9.4. Our investigation of
κ-groups leads to the construction of the following example.

Example 1.2. Let R = F3[ε] be of cardinality 9, with ε2 = 0. Denote by ∆
the quaternion algebra ∆ = R + Ri + Rj + Rij with defining relations i2 = j2 = ε
and ji = −ij. Let moreover the standard involution on ∆ be the R-linear map that
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is given by (1, i, j, ij) = (1,−i,−j,−ij). Then, for each x, y ∈ ∆, one has xy = y x.
We write m = ∆i + ∆j, which is a nilpotent maximal 2-sided ideal of ∆ with
∆/m isomorphic to F3. We define additionally MC(3) to be the subgroup of the
multiplicative group 1 + m consisting of those elements x satisfying x = x−1. The
group MC(3) has order 729, class 4, and it is a κ-group. Moreover, int(MC(3)) = 2.

In Chapter 9 we prove the following result, which is a simplified version of
Theorem 9.1.

Theorem F. Let G be a finite 3-group of class at least 4. Then the following
conditions are equivalent.

1. One has int(G) = 2.
2. The group G is isomorphic to MC(3).

Theorem F concludes the classification of finite 3-groups of intensity greater than
1. Except for the two infinite families of finite non-trivial abelian 3-groups and ex-
traspecial 3-groups of exponent 3, there are, up to isomorphism, exactly 17 groups
in class 3 (specifically 4 of order 81 and 13 of order 243), and 1, namely MC(3), in
class 4. In class higher than 4, there are no 3-groups of intensity greater than 1.

To continue our investigation, we let p > 3 be a prime number. In Chapter 10, we
define a p-obelisk to be a finite non-abelian p-group G such that |G : G3| = p3 and
Gp = G3. Among other things, we prove that p-obelisks of class at least 4 satisfy
both (1) and (2) from Theorem E and it is in fact true that, for each p-obelisk G,
one has

(logp |Gi : Gi+1|)i≥1 = (2, 1, 2, 1, . . . , 2, 1, f, 0, 0, . . .) with f ∈ {0, 1, 2},

where the index i ∈ {cl(G), cl(G) + 1} to which f corresponds is odd and larger
than 2. We will see in Chapter 13 that, for every prime number p > 3, each non-
abelian quotient of S(∆p) is a special kind of p-obelisk that we call framed.

Let p be a prime number and let G be a finite p-group. The Frattini subgroup
of G is Φ(G) = [G,G]Gp; then G/Φ(G) is the largest possible quotient of G that is
vector space over Fp. If p > 3, then a p-obelisk G is framed if the Frattini subgroup
of each maximal subgroup of G coincides with G3, i.e. for each maximal subgroup
M of G, one has Φ(M) = G3. Though it might not be evident at first sight, asking
for a p-obelisk to be framed is equivalent to imposing strong limitations to the
interaction of commutator maps and power maps in the group.

Using a wide range of techniques, we are able to prove the following character-
ization for p-groups of class at least 4, which coincides with the combination of
Theorems 11.1, 12.2, and 12.1.

Theorem G. Let p > 3 be a prime number and let G be a finite p-group of
class at least 4. For each i ∈ Z≥1, write wi = logp |Gi : Gi+1|. Then int(G) = 2
if and only if there exists α ∈ Aut(G) of order 2 such that α induces the inversion
map x 7→ x−1 on G/G2 and one of the following holds.

1. The group G is a p-obelisk of class 4.
2. The group G is a p-obelisk with w5 = 1 and Φ(CG(G4)) = G3.
3. The group G is a framed p-obelisk with w5 = 2.
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Theorem G makes the role of p-obelisks in our theory clear and it can be used to
prove that any p-group of class at least 6 and intensity greater than 1 is a framed
p-obelisk. Class 5 is the highest class in which there still exist p-obelisks of intensity
greater than 1 that are not framed . . . but “semi-framed”. More precisely, if, as in
Theorem G(2), the group G is a p-obelisk with w5 = 1, then the class is 5, the order
of G5 is p, and CG(G4) is a maximal subgroup; it is the only maximal subgroup
whose Frattini subgroup is required to coincide with G3.

Theorem G completes the classification of prime power order groups of intensity
greater than 1, modulo the existence of some special automorphism. Because of
their relevance in the theory of intense automorphisms, we give a name to such an
automorphism. If G is a group, we call an automorphism α ∈ Aut(G) concrete
if it has order 2 and the automorphism of G/G2 that is induced by α coincides
with the inversion map x 7→ x−1. To the present day, we know very little about
concrete automorphisms and how to construct them in general: finding necessary
and sufficient conditions for a p-obelisks to possess a concrete automorphism is an
interesting problem that we have not yet addressed.

In the following table, we summarize the results we have formulated so far. We
denote by p a prime number and by G a finite p-group of class c.

Intensity
H
HHHHc

p
2 3 ≥ 5

0

1

1
1 p− 1
2 p− 1 if G extraspecial of exponent p;

1 otherwise
3 2 if |G : G2| = p2;

1 otherwise
4 2 if G ∼= MC(3); 2 if G is a p-obelisk

with a concrete automorphism;
1 otherwise 1 otherwise

2 if G is a p-obelisk of class 5
with |G5| = p, Φ(CG(G4)) = G3,

and G has a concrete automorphism;
≥ 5 1 2 if G is framed p-obelisk with |G5 : G6| = p2

and G has a concrete automorphism;
1 in all other cases

We now have a clear picture of the intensity of groups of prime power order, ac-
cording to their (finite) class. However, the theory of intense automorphisms can
be extended to a larger family of groups with a striking result. In Chapter 13, we
complete the picture by moving to infinite class and computing the intensity of
infinite pro-p-groups.

We call an automorphism α of a profinite group G topologically intense if, for each
closed subgroup H of G, there exists an element g in G such that α(H) = gHg−1.
The group of topologically intense automorphisms of a profinite group G is denoted
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by Intc(G) and it is itself profinite. As a consequence, several results concerning
intense automorphisms of finite p-groups can be generalized to topologically intense
automorphisms of pro-p-groups. For example, Theorem 13.15 asserts that, if p is a
prime number and G is a pro-p-group, then Intc(G) decomposes as

Intc(G) = SGCG,

where SG is a Sylow pro-p-subgroup of Intc(G) and CG is isomorphic to a subgroup
of F∗p. Similarly to the finite case, we define the intensity int(G) of a pro-p-group
G to be the order of CG and we ask which are the infinite pro-p-groups of intensity
greater than 1. Surprisingly, this question can be answered much more exhaustively
than in the finite case, as follows.

Theorem H. Let p be a prime number and let G be an infinite pro-p-group.
Then int(G) > 1 if and only if exactly one of the following holds.

1. One has p > 2 and G is abelian.
2. One has p > 3 and G is topologically isomorphic to S(∆p).

Moreover, one has int(S(∆p)) = 2 and, if G is abelian, then int(G) = p− 1.

Theorem H tells us that, “in the limit”, for a given prime number p > 3, there is
a unique non-abelian pro-p-group, up to isomorphism, of intensity greater than 1.
From the point of view of finite groups, this last statement translates into saying
that, if p > 3 is a prime number, then each finite p-group G with int(G) > 1 shares
a “relatively big” quotient (growing in size with the class of G) with the infinite
group S(∆p). In a more definite way, we present this result in Section 13.6.3, under
the name of Proposition 13.39.

We conclude our introductory section by giving a “cohomological context” to intense
automorphism. As we already mentioned at the beginning of this paper, intense
automorphisms arise naturally as solutions to certain problems coming from the
field of Galois cohomology and we would like, with these last lines, to make this
statement a little less vague. We start by looking at some examples.

Example 1.3. Let k be a field and let n be a positive integer. Moreover, let
a be a non-zero element of k. Then the least degree of the irreducible factors of
xn − a divides all other degrees.

Example 1.4. Let k be a field and let Br(k) denote the group of similarity
classes of central simple algebras over k, endowed with the multiplication ⊗k. If
[A] ∈ Br(k), then an extension `/k is said to split A if [A ⊗k `] = [`]. In [GT06,
Ch. 4.5], it is proven that the minimal degree of finite separable extensions of k
that split a given central simple algebra A over k divides all other degrees.

Example 1.5. Let k be a field and let C be a smooth projective absolutely
irreducible curve of genus 1 over k. As a consequence of the Riemann-Roch theorem,
as explained for example in [LT58, §2], the least degree of the finite extensions of
k for which C has a rational point divides all other degrees.

In a quite simplified manner, the last three examples suggest the following
question: When does it happen that “a problem”, defined on a base field k, is
solvable over a field extension `/k whose degree divides the degrees of all extensions
m/k over which the given problem can be solved? The difficulty of translating
this last question into rigorous mathematics is given by the fact that the known
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examples are quite diverse; however, we can try to unify them from the perspective
of Galois cohomology. A first attempt of getting closer to the observed phenomena
is Theorem I(1) from [Sta13].

Theorem I. Let G be a finite group. Then the following are equivalent:

1. For every G-module M , integer q, and c ∈ Ĥq(G,M), the minimum of

the set { |G : H| : H ≤ G with ResGH(c) = 0 } coincides with its greatest
common divisor.

2. There exist nilpotent groups N and T of coprime orders and a homomor-
phism φ : T → Int(N) such that G = NφT .

A way to interpret (1) from Theorem I is the following. In some sense, the non-zero
elements of a cohomology group are the obstructions to having solutions so, ide-
ally, each subgroup H of G for which ResGH(c) = 0 corresponds to a field extension
“solving the problem”. The merit of Theorem I is that of giving a splendid corre-
spondence between a rather technical cohomological condition and a very concrete
requirement regarding intense automorphisms. More about Theorem I and its proof
can be found in [Sta13].





CHAPTER 2

Coprime Actions

The aim of this chapter is to create tools for later use, giving them however
their own chance to shine. In Section 2.1, we define actions through characters and
prove a fundamental result, Theorem 2.9, in the context of intense automorphisms
of groups. In Section 2.2, we prove some elementary, yet quite entertaining, results
concerning involutions of groups of odd order. The results from Section 2.2 will
spark throughout the paper, starting with Chapter 5. The last section of this chap-
ter, Section 2.3, is dedicated to the theory of jumps. In some sense, through jumps
(and their width), we are able to recover structural information about subgroups of
a given finite p-group. This theory will be heavily used when dealing with p-obelisks
(from Chapter 10 onwards).

2.1. Actions through characters

Until the end of Section 2.1, let p be a prime number. Every finite abelian p-group
G is naturally a Zp-module, with scalar multiplication Zp → End(G) defined by

m 7→ [x 7→ (m mod |G|)x] .

It follows directly from this definition that every homomorphism between abelian
p-groups is Zp-linear, a fact that we will make hidden use of in several proofs from
Chapter 2. We remark that we have here adopted the additive notation for the
abelian group G, but this will not be the case through the whole paper. We will
indeed often deal, instead of abelian groups, with abelian quotients of non-abelian
groups (for which the multiplicative notation will be used). The first time we adopt
the multiplicative notation in this context is in the proof of Lemma 2.12.

Definition 2.1. Let A be a group acting on a set X. A subset Y of X is
A-stable (or stable under the action of A) if the action of A on X restricts to an
action of A on Y .

Definition 2.2. Let A be a group and let ZA denote its group ring over Z.
An A-module is a module over ZA.

With respect to the last definition, any finite abelian p-group is naturally a Z∗p-
module. We stress that, if A is a group, then each A-module is, in particular, an
abelian group.

Definition 2.3. Let A be a group and let G be a finite p-group that is also
an A-module. Let χ : A → Z∗p be a homomorphism. Then A acts on G through χ
if, for all a ∈ A and x ∈ G, one has ax = χ(a)x.

We want to emphasize the fact that Hom(A,Z∗p) is a group under multiplication
(induced by that in Z∗p). We will refer to the elements of Hom(A,Z∗p) as characters
of A.

11



12 2. COPRIME ACTIONS

Lemma 2.4. Let X, Y , and Z be finite abelian p-groups. Let A be a group
acting on X, Y , and Z and let φ : X × Y → Z be a bilinear map respecting the
action of A. Let moreover, χ and ψ be group homomorphisms A → Z∗p such that
A acts on X and Y respectively through χ and ψ. Then A acts on 〈φ(X × Y )〉
through χψ.

Proof. For each (x, y) ∈ X × Y and a ∈ A, one has aφ(x, y) = φ(ax, ay) =
φ(χ(a)x, ψ(a)y) = χ(a)ψ(a)φ(x, y) = (χψ)(a)φ(x, y). �

Lemma 2.5. Let p be a prime number and let G be a finite p-group. Let more-
over A be a finite group acting on G and let χ : A → Z∗p be a homomorphism.
Denote by (Gi)i≥1 the lower central series of G and assume that the induced action
of A on G/G2 is through χ. Then, for all i ∈ Z≥1, the induced action of A on
Gi/Gi+1 is through χi.

Proof. We work by induction on i. If i = 1, we are done by hypothesis.
Suppose now that i > 1 and that the result holds for all indices smaller than i.
The commutator map induces a bilinear map G/G2 ×Gi−1/Gi → Gi/Gi+1 whose
image generates Gi/Gi+1. By the induction hypothesis, the induced action of A
on Gi−1/Gi is through χi−1 and so, thanks to Lemma 2.4, the group A acts on
Gi/Gi+1 through χχi−1 = χi. �

Lemma 2.6. Let A be a group and let G and H be finite p-groups that are also
A-modules. Let moreover φ : G → H and χ : A → Z∗p be group homomorphisms.
Assume that the action of A on G is through χ. If φ is surjective and φ respects
the action of A, then A acts on H through χ.

Proof. Let a ∈ A and g ∈ G. Then one has aφ(g) = φ(ag) = φ(χ(a)g) =
χ(a)φ(g). �

It is a classical result, which can be found for example in [Coh07, §4.3], that the
short exact sequence of abelian groups

1 −→ 1 + pZp −→ Z∗p −→ F∗p −→ 1

has a unique section ω : F∗p → Z∗p, called the Teichmüller character at p. The
image of ω is contained in the torsion subgroup of Z∗p and, if p is odd, ω(F∗p) is in
fact equal to the torsion subgroup of Z∗p (see e.g. [Coh07, §4.3]). We note that,
because of the definition of ω, the natural action of F∗p on any vector space over Fp
is through the Teichmüller character.

Lemma 2.7. Let A be a finite group and let λ, µ : A → Z∗p be distinct group
homomorphisms. Assume that p is odd. Then there exists a ∈ A such that the
element λ(a)− µ(a) belongs to Z∗p.

Proof. Let π : Zp → Fp denote the canonical projection and let ω : F∗p → Z∗p
be the Teichmüller character. The group A being finite, the images of λ and µ
live in the torsion of Z∗p, which is equal to ω(F∗p). Let now a ∈ A be such that
λ(a) 6= µ(a). Since each element of ω(F∗p) is uniquely determined by its image
modulo p and, the characters being distinct, π(χ(a) − ψ(a)) ∈ F∗p. It follows that
χ(a)− ψ(a) is invertible in Zp. �

Lemma 2.8. Let A be a finite group and let G be a finite p-group that is also an
A-module. Let moreover λ, µ : A→ Z∗p be distinct group homomorphisms. Assume
that p is odd and that A acts on G through both λ and µ. Then G = {0}.
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Proof. Let x ∈ G and let a ∈ A be as in Lemma 2.7. Then λ(a)x = ax =
µ(a)x and (λ(a) − µ(a))x = 0. The element λ(a) − µ(a) being invertible in Zp, it
follows that x = 0. �

Theorem 2.9. Assume that p is odd. Let A be a finite abelian group and let

0 −→ N
ι−→ G

π−→ G/N −→ 0

be a short exact sequence of A-modules. Let moreover λ, µ : A→ Z∗p be two distinct
group homomorphisms and assume that the following hold.

1. The group G is a finite p-group.
2. The group A acts on N through λ.
3. The group A acts on G/N through µ.

Then ι(N) has a unique A-stable complement in G.

We will devote the remaining part of Section 2.1 to the proof of Theorem 2.9. For
this purpose, let R = ZpA be the group algebra of A over Zp and let σλ and σµ
be the homomorphisms of Zp-algebras R → Zp that are respectively induced, via
linear extension, by λ and µ. We define Iλ = kerσλ and Iµ = kerσµ. Then, as
a consequence of Lemma 2.7, there exists a ∈ A such that the element λ(a) −
µ(a) = −(a− λ(a)) + (a− µ(a)) is an invertible element of Iλ + Iµ: it follows that
R = Iλ + Iµ. We now claim that ι(N) has an A-stable complement in G. To this
end, let (e, f) ∈ Iλ × Iµ be such that e + f = 1 in R. As a direct consequence of
the definition of Iµ, the group G/N is annihilated by f and f(G) ⊆ ι(N). From
the fact that f ≡ 1 mod Iλ, it follows that f(G) = ι(N). With a similar argument,
one shows that e(G) is isomorphic to e(G/N) = G/N . We now have that

G = (e+ f)G = e(G) + f(G) = e(G) + ι(N)

and so G = e(G)⊕ι(N). The ring R being commutative, for all a ∈ A, one has that
ae(G) = ea(G) is contained in e(G) and therefore e(G) is an A-stable complement
of ι(N). This proves the claim. We conclude the proof of Theorem 2.9 by proving
uniqueness. Assume ι(N) has two A-stable complements in G. Then there exist
maps f, f ′ : G → N respecting the action of A such that f ◦ ι = f ′ ◦ ι = idN . We
fix such f, f ′ and write r = f − f ′; we will show that r = 0. Since f ◦ ι = f ′ ◦ ι, the
subgroup ι(N) is contained in the kernel of r. It follows that r ∈ Hom(G/ι(N), N),
and so, thanks to Lemma 2.6, the group A acts on the image of r through µ. On
the other hand, the image of r is contained in N and hence the action of A on r(G)
is also through λ. It follows from Lemma 2.8 that r = 0, as claimed. In particular,
f = f ′, and so ι(N) has a unique A-stable complement in G. The proof of Theorem
2.9 is now complete.

2.2. Involutions

Let G be a finite group of odd order and let A = 〈α〉 be a multiplicative group
of order 2. It follows that the orders of G and A are coprime. Assume that A acts
on G and define

G+ = {g ∈ G : α(g) = g} and G− = {g ∈ G : α(g) = g−1} .

It is not difficult to show that G+ ∩ G− = {1} and that G+ is a group acting by
conjugation on the set G−. We keep the notation we just introduced until the end
of Section 2.2.
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Lemma 2.10. The map G/G+ → G− that is defined by xG+ 7→ xα(x)−1 is a
bijection. Moreover, |G| = |G+||G−|.

Proof. Denote by φ the mapG/G+ → G− that is defined by xG+ 7→ xα(x)−1.
To show that φ is injective is a straightforward exercise. To prove that it is surjec-
tive, we take b ∈ G− and we let a ∈ G be such that a2 = b. Since a belongs to 〈b〉,
we have α(a) = a−1 and therefore aα(a)−1 = a2 = b. We have proven that φ is a
bijection, from which it follows that |G|/|G+| = |G−|. �

Lemma 2.11. The map G+ ×G− → G, defined by (x, y) 7→ xy, is a bijection.

Proof. Let (x, y) and (z, t) be elements of G+×G− satisfying xy = zt. Then
ty−1 = z−1x is an element of G+ and thus ty−1 = α(ty−1) = t−1y. It follows
that t2 = y2 so, the order of G being odd, t = y. Consequently, (x, y) = (z, t)
and the map is injective. Lemma 2.10 yields that the given multiplication is also
surjective. �

Assume G is abelian. Then G = G+ ⊕G−.

Lemma 2.12. Let N be a normal A-stable subgroup of G such that the restriction
of α to N equals the map x 7→ x−1. Assume moreover that the automorphism of
G/N that is induced by α is equal to the inversion map g 7→ g−1. Then G = G−

and G is abelian.

Proof. For each x ∈ G, the element α(x)x belongs to N and so, the order of
G being odd, the subgroup G+ is contained in N . It follows that G+ is contained
in G− and so G+ is trivial. As a consequence of Lemma 2.11, the group G is equal
to G−, which is a group if and only if any two of its elements commute. It follows
that G is abelian. �

In a similar way, one can prove the following result.

Lemma 2.13. Let N be a normal A-stable subgroup of G. Assume that the
action of A on N and the induced action of A on G/N are both trivial. Then
G = G+.

Lemma 2.14. Let 1 → N
f−→ G

g−→ Γ → 1 is a short exact sequence of A-
groups. Denote by f ′ and g′ the restrictions of f and g respectively to N+ and G+.

Then 1→ N+ f ′−→ G+ g′−→ Γ+ → 1 is a short exact sequence of A-groups.

Proof. We prove the surjectivity of g′. Let γ ∈ Γ+. Then there exists x ∈ G
such that g(x) = γ and, by Lemma 2.11, there exists (a, b) ∈ G+ × G− such that
x = ab. Now, the pair (g(a), g(b)) belongs to Γ+ × Γ− and so g(b) = g(a)−1γ ∈
Γ+ ∩ Γ− = {1}. As a result, one has γ = g(a). �

Lemma 2.15. Let H be an A-stable subgroup of G and let g be an element of
G. Then the following are equivalent.

1. The subgroup gHg−1 is A-stable.
2. The element g belongs to G+ NG(H).

Proof. Let I = NG(H); then I is A-stable, because H is. We first prove
that (1) implies (2). It follows from the assumptions that α(gHg−1) = gHg−1

and so g−1α(g) belongs to I. As a consequence, α(gI) = α(g)I = gI and so, the
cardinality of I being odd, there is an element x in I such that α(gx) = gx. For
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such an element x, we then have that gx ∈ G+, so g = gx · x−1 ∈ G+I. Assume
now (2) is satisfied. Since g belongs to G+I, there exists (γ, n) ∈ G+ × I such
that g = γn. For such pair (γ, n), we have that gHg−1 = γHγ−1, and therefore
α(gHg−1) = gHg−1. This proves (1). �

2.3. Jumps and width

Let p be a prime number and let G be a finite p-group. Denote by (Gi)i≥1

the lower central series of G. If x is a non-trivial element of G, then there exists a
positive integer d such that x ∈ Gd \Gd+1. The number d is called the depth of x
(in G) and it is denoted by dptG(x). Let now H be a subgroup of G and let j be
a positive integer. The j-th width of H in G is

wtGH(j) = logp |H ∩Gj : H ∩Gj+1|.

We observe that, if πj : Gj → Gj/Gj+1 denotes the canonical projection, then

πj(H ∩Gi) has cardinality pwtGH(j). An index j is a jump of H in G if wtGH(j) 6= 0
and, whenever it will be clear that j is a jump of H in G, we will refer to wtGH(j) as
the width of j in G. If G = H, we denote the j-th width of G by wtG(j) instead of
wtGG(j) and, in several results, we will lighten the notation even further by writing
wj = wtG(j). The width of G is defined as wt(G) = maxi≥1 wtG(i); for a general-
ization to general pro-p-groups, see [KLGP97].

In the following lemma, we collect some straightforward properties of jumps.

Lemma 2.16. Let p be a prime number, let G be a finite p-group, and let H be
a subgroup of G. Then the following are satisfied.

1. If α ∈ Aut(G), then H and α(H) have the same jumps in G.
2. Let j ∈ Z>0. Then j is a jump of H in G if and only if H contains an

element of depth j in G.

3. Let J be the collection of all jumps of H in G. Then |H| =
∏
j∈J p

wtGH(j).

Lemma 2.17. Let p be an odd prime number and let G be a finite p-group. Let
A = 〈α〉 be a multiplicative group of order 2 acting on G. Let χ : A → {±1} be
an isomorphism. Let (Gi)i≥1 denote the lower central series of G and assume that
the induced action of A on G/G2 is through χ. Let H be an A-stable subgroup of
G and let O and E be the collections of respectively all odd and all even jumps of
H in G. Then the following hold.

1. One has |H+| =
∏
j∈E p

wtGH(j) and E is the set of jumps of H+ in G.

2. One has |H−| =
∏
j∈O p

wtGH(j).

Proof. For all j ∈ Z≥1, we define Vj = (H ∩Gj)/(H ∩Gj+1) and we consider
the short exact sequence

1→ H ∩Gj+1 → H ∩Gj → Vj → 1

of A-groups. If j ∈ Z≥1, we note that (H ∩Gj)+ = H+ ∩Gj , so Lemma 2.14 yields

|H+ ∩Gj : H+ ∩Gj+1| = |V +
j |.

From Lemma 2.5 it follows that A acts on Gj/Gj+1 by scalar multiplication by
(−1)j , and so, whenever j is an odd positive integer, the group (Gj/Gj+1)+ is
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trivial and thus so is V +
j . On the other hand, if j is even, then Vj is equal to V +

j .

The cardinality of H+ being equal to
∏
j≥1 |H+ ∩Gj : H+ ∩Gj+1|, we get that

|H+| =
∏
j≥1

|V +
j | =

∏
j∈E
|V +
j | =

∏
j∈E
|Vj | =

∏
j∈E

pwtGH(j).

Lemma 2.10 now yields |H−| = |H|/|H+| =
∏
j∈O p

wtGH(j). �



CHAPTER 3

Intense Automorphisms

Let G be a group. An automorphism α of G is intense if for every subgroup
H of G there exists g ∈ G such that α(H) = gHg−1. We denote by Int(G) the
collection of all intense automorphisms of G, which is easily seen to be a normal
subgroup of Aut(G). A clear example of intense automorphisms is given by inner
automorphisms, but, as we will see, one can builm more interesting ones.

In this chapter we will prove some basic properties of intense automorphisms and
formulate the main research question of this paper. Among others, we will prove
the following result.

Theorem 3.1. Let p be a prime number and let G be a finite p-group. Then
Int(G) is isomorphic to SC, where S is a Sylow p-subgroup of Int(G) and C is a
subgroup of F∗p. Moreover, if G is non-trivial abelian, then C = F∗p.

3.1. Basic properties

Section 3.1 is devoted to basic properties of intense automorphisms. The next
lemma is a collection of the most straightforward ones.

Lemma 3.2. Let G be a group and let N be a normal subgroup of G. Then the
following hold.

1. The subgroup N is Int(G)-stable.
2. The natural projection G → G/N induces a well-defined homomorphism

Int(G)→ Int(G/N), by means of α 7→ (xN 7→ α(x)N).

In the following lemma, ω : F∗p → Z∗p is the Teichmüller character at p, as defined
in Section 2.1.

Lemma 3.3. Let p be a prime number and let V be a vector space over Fp.
Then there exists a unique injective homomorphism λ : Int(V )→ Z∗p such that the
following hold.

1. The group Int(V ) acts on V through λ.
2. If V 6= 0, then λ(Int(V )) = ω(F∗p).

Proof. If V = 0, define λ : idV 7→ 1. Assume V 6= 0. Since V is abelian, every
one-dimensional subspace of V is stable under the action of Int(V ). It follows that,
for all v ∈ V \ {0} and α ∈ Int(V ), there exists (a unique) µ(α, v) ∈ F∗p such that
α(v) = µ(α, v)v. Because of the linearity of α, the value of µ(α, v) is independent of
the choice of v: we fix thus v ∈ V \ {0} and define µ : Int(V )→ F∗p by α 7→ µ(α, v).
The map µ is an injective homomorphism of groups by construction. Moreover,
µ is surjective, because scalar multiplication by any element of F∗p is an intense
automorphism of V . We define λ = ω ◦ µ. Then Int(V ) acts on V through λ and
the image of λ is equal to ω(F∗p). The uniqueness of λ follows from Lemma 2.8. �

17
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Lemma 3.4 (Glauberman’s lemma). Let G and A be finite groups of coprime
orders. Assume that at least one of A and G is solvable. Assume A acts on G and
that each of them acts on some set X, where the action of G is transitive. Finally,
assume the three actions are compatible. Then there exists an A-stable element in
X.

Proof. See [Isa08, Lemma 3.24]. �

Lemma 3.5. Let G be a finite group and let α ∈ Aut(G) be of order coprime to
the order of G. Let H and N be subgroups of G and assume that α(N) = N . Then
the following are equivalent.

1. There exists a ∈ N such that α(H) = aHa−1.
2. There exists b ∈ N such that bHb−1 is 〈α〉-stable.

Moreover, α ∈ Int(G) if and only if each subgroup of G has an 〈α〉-stable conjugate.

Proof. The implication (2)⇒ (1) is easy so we prove the other one. Assume
(1) holds and write X = {gHg−1 : g ∈ N}. Then N acts on X by conjugation
and 〈α〉 acts on X by assumption. The actions are compatible and the action of
N is transitive. By Lemma 3.4, there exists an element of X that is fixed by α.
This proves (2). To prove that α ∈ Int(G) if and only if any subgroup of G has a
〈α〉-stable conjugate, it now suffices to take N = G. �

Lemma 3.6. Let G be a finite group and let α ∈ Int(G) be of order coprime
to the order of G. Let X be a collection of subgroups of G on which G acts by
conjugation and let X+ = {H ∈ X : α(H) = H}. Then

|X| ≤
∑

H∈X+

|G : NG(H)|.

Equality holds if and only if the elements of X+ are pairwise non-conjugate in G.

Proof. Let C be the collection of orbits of X under G. By Lemma 3.5, there
exists a subset R of X+ whose elements are representatives for the elements of C.
It follows that

|X| =
∑
C∈C
|C| =

∑
H∈R

|G : NG(H)| ≤
∑

H∈X+

|G : NG(H)|.

Equality holds if and only if R = X+. �

3.2. The main question

In Section 3.2 we build the foundation for our theory and we give the dictionary
that we will use throughout the whole paper. We will also prove the following
result.

Proposition 3.7. Let G be a finite 2-group. Then Int(G) is a finite 2-group.

Definition 3.8. Let p be a prime number and let G be a finite p-group. The
intense character of G is the homomorphism χG : Int(G)→ Z∗p that is gotten from
the composition of the following.

◦ The homomorphism Int(G)→ Int(G/Φ(G)) from Lemma 3.2(2).
◦ The homomorphism λ : Int(G/Φ(G))→ Z∗p from Lemma 3.3.
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Lemma 3.9. Let p be a prime number and let G be a finite p-group. Let more-
over χG : Int(G)→ Z∗p be the intense character of G. Then the group kerχG is the
unique Sylow p-subgroup of Int(G).

Proof. If G is the trivial group, then Int(G) = kerχG = {1}. Assume now
G is non-trivial and set V = G/Φ(G). Let moreover φ : Aut(G) → Aut(V ) be the
natural homomorphism. By Lemma 3.3, the map λ : V → Int(V ) is injective and
so kerχG = Int(G) ∩ kerφ. The kernel of φ being a normal p-subgroup of Aut(G),
the kernel of χG is a normal Sylow p-subgroup of Int(G). �

Definition 3.10. Let p be a prime number and let G be a finite p-group. Let
χG : Int(G) → Z∗p be the intense character of G. The intensity of G is int(G) =
| Int(G) : kerχG|.

We remark that the intensity of a p-group G is equal to the size of the image of
the intense character χG inside ω(F∗p). In particular, if G is a 2-group, then its
intensity is always 1. The next lemma implies Proposition 3.7.

Lemma 3.11. Let p be a prime number and let G be a finite p-group. Then
int(G) divides p− 1 and kerχG has a cyclic complement in Int(G) of order int(G).

Proof. The group χG(Int(G)) is contained in ω(F∗p). It follows that int(G)
divides p − 1 and, from Proposition 3.9 and the Schur-Zassenhaus theorem, that
kerχG has a cyclic complement in Int(G) of order int(G). �

The major goal of this paper if classifying all pairs (p,G) where p is a prime number
and G is a finite p-group with int(G) > 1. Because of Proposition 3.7, we will
therefore often be working with odd primes. Explicit assumptions will be made at
the beginning of each section.

3.3. The abelian case

In the present section we treat the case of abelian p-groups. In that respect,
we prove the following proposition, which is the main result of Section 3.3.

Proposition 3.12. Let p be a prime number and let G be a finite non-trivial
abelian p-group. Then int(G) = p− 1.

Lemma 3.13. Let p be a prime number, let G be a finite p-group, and let N be
a normal subgroup of G. If N 6= G, then int(G) divides int(G/N).

Proof. Assume N 6= G and let φ : Int(G)→ Int(G/N) be as in Lemma 3.2(2).
The subgroup NΦ(G) being different from G, one has χG = χG/N ◦ φ. It follows
that the image of χG is contained in the image of χG/N and thus int(G) divides
int(G/N). �

We recall that a group A acts through a character on a finite abelian p-group G if
there exists a homomorphism χ : A → Z∗p such that, for all a ∈ A and x ∈ G, one
has ax = χ(a)x. For more details, see Section 2.1.

Lemma 3.14. Let p be a prime number and let G be a finite abelian p-group.
Let α be an intense automorphism of order dividing int(G) and write χ = χG|〈α〉.

Then 〈α〉 acts on G through χ and, if G is non-trivial, then int(G) = p− 1.
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Proof. Write A = 〈α〉. If G is the trivial group, then the only automorphism
of G is the identity, which is intense. Assume now G is non-trivial. The group ω(F∗p)
acts on G (as described at the beginning of Section 2.1) via intense automorphisms
and it induces scalar multiplication by elements of F∗p on G/Φ(G). The image of
the intense character of G is thus ω(F∗p), and so, int(G) = p− 1. Let now Ω denote
the image of ω(F∗p)→ Int(G) and write Ω = 〈β〉. Then Int(G) = kerχGΩ, and, as
a consequence of Schur-Zassenhaus, there exist m ∈ Z≥0 and γ ∈ kerχG such that
α = γβmγ−1. We get

χ(α) = χG(α) = χG(γβmγ−1) = χG(βm).

Since each homomorphism of abelian groups is Zp-linear and Ω acts on G through
χG|Ω, the group A acts on G through χ. �

We remark that Proposition 3.12 is a special case of Lemma 3.14. Moreover, The-
orem 3.1 is proven by combining Lemmas 3.9, 3.11, and Proposition 3.12.

Let p be a prime number and let G be a finite p-group. Let moreover α be an
intense automorphism of G of order dividing int(G). Then 〈α〉 acts on the centre
of G through a character 〈α〉 → Z∗p.

Proof. The group Z(G) being normal in G, Lemma 3.2(1) yields a map ζ :
Int(G) → Aut(Z(G)) whose image is easily seen to be contained in Int(Z(G)). Set
now A = 〈α〉 and define σ = χZ(G)|ζ(A)

◦ ζ|A. Then, as a consequence of Lemma

3.9, the group A acts on Z(G) through σ. �

Lemma 3.15. Let p be a prime number and let G be a finite p-group. Let α
be an intense automorphism of G of order dividing int(G) and write A = 〈α〉 and
χ = χG|A. Denote by (Gi)i≥1 the lower central series of G. Then, for all i ∈ Z≥1,

the induced action of A on Gi/Gi+1 is through χi.

Proof. As a consequence of Lemma 3.2(2), the action of A on G induces an
action of A on G/G2. By Lemma 3.14, the action of A on G/G2 is through χ. We
now apply Lemma 2.5. �



CHAPTER 4

Intensity of Groups of Class 2

The main goal of this paper, as stated in Section 3.2, is to classify all finite p-groups
whose group of intense automorphisms is not itself a p-group. We will proceed to a
classification by separating the cases according to the class of the p-groups. If the
class is 0, the group is trivial and the intensity is 1. For the case in which the class
is 1 (non-trivial abelian case) we refer to Chapter 3. In this chapter we study the
case in which the class is equal to 2. We prove the following main result.

Theorem 4.1. Let p be a prime number and let G be a finite p-group of class
2. Then the following are equivalent.

1. One has int(G) 6= 1.
2. The group G is extraspecial of exponent p.
3. The prime p is odd and int(G) = p− 1.

4.1. Small commutator subgroup

Let p be a prime number. We recall that a group A acts on a finite abelian p-group
G through a character if there exists a homomorphism χ : A → Z∗p such that, for
all x ∈ G, a ∈ A, one has ax = χ(a)x. For more detail about actions through
characters see Section 2.1.

Until the end of Section 4.1, the following assumptions will be valid. Let p be
a prime number, let G be a finite p-group of nilpotency class 2, and let (Gi)i≥1

denote the lower central series of G. Let moreover α be intense of order int(G).
Write A = 〈α〉 and χ = χG|A. Assume that the intensity of G is greater than 1.

It follows that G is non-trivial, that p is odd (see Sections 3.2 and 3.3), and that
χ 6= χ2.

Lemma 4.2. Assume G2 has exponent p. Then Z(G) = Φ(G) = G2 and A acts
on Z(G) through χ2.

Proof. The group G2 is a non-trivial subgroup of Z(G) and, by Lemma 3.15,
the group A acts on G2 through χ2. By Corollary 3.3, the group A acts on Z(G)
through a character and, as a consequence of Lemma 2.8, the action of A on the
centre is through χ2. On the other hand, by Lemma 3.15, the induced action of A
on G/G2 is through χ. The group A acts hence on Z(G)/G2 both through χ and χ2.
The characters χ and χ2 being distinct, Lemma 2.8 yields Z(G) = G2. Since G2 is
elementary abelian, the subgroup Φ(G) is central, and thus G2 = Φ(G) = Z(G). �

Lemma 4.3. Assume G2 has order p. Then G is extraspecial of exponent p.

Proof. Thanks to Lemma 4.2 we are only left with showing that G has ex-
ponent p. Assume by contradiction that there exists g ∈ G of order p2 and write

21
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H = 〈g〉. Then Hp has order p and, as a consequence of Lemma 4.2, the subgroup
H contains Φ(G). In particular, H is normal in G and thus A-stable. As a conse-
quence of Lemma 3.15, the actions of A on H/G2 and G2 are respectively through
χ and χ2 and so, χ and χ2 being distinct, it follows from Theorem 2.9 that H and
(H/G2)⊕G2 are isomorphic. Contradiction. �

Lemma 4.4. Let Q be a finite p-group of both class and intensity greater than
1. Denote by (Qi)i≥1 the lower central series of Q. Then, for all i ∈ Z≥1, the
exponent of Qi/Qi+1 divides p.

Proof. We work by induction on i. Let first i = 1 and let M be a normal
subgroup of Q that is contained in Q2 with index p. We write Q = Q/M and use
the bar notation for the subgroups of Q. Then Q2 = [Q,Q] has order p and Q has
intensity greater than 1, by Lemma 3.13. From Lemma 4.3, it follows that Q/Q2

is elementary abelian and therefore so is Q/Q2. Assume now that i is greater than
1 and that the result holds for all indices smaller than i. The property of being
annihilated by p is preserved by tensor products and surjective homomorphisms so,
since the commutator map induces a surjective homomorphism Q/Q2⊗Qi−1/Qi →
Qi/Qi+1, the exponent of Qi/Qi+1 divides p. �

Let Q be a finite p-group of nilpotency class 2. If int(Q) > 1, then Z(Q) = Q2.

Proof. This follows directly from Lemmas 4.4 and 4.2. �

4.2. More general setting

Throughout Section 4.2, let p be a prime number and let G be a finite p-group of
class 2 and intensity greater than 1. Let α be intense of order int(G) and write
A = 〈α〉 and χ = χG|A. It follows from the work done in Sections 3.2 and 3.3 that G

is not trivial, that p is odd, and that χ 6= χ2. We denote by V and Z respectively
G/G2 and G2 and by π the canonical projection G → V . From Lemma 4.4 it
follows that both V and Z are vector spaces over Fp. By Corollary 4.1, the non-
trivial subgroup Z is equal to Z(G) and so the map φ : V × V → Z that is induced
by the commutator map is alternating.

Lemma 4.5. Let H be a linear subspace of Z of codimension 1. Then the map
φH : V ×V → Z/H, defined by (x, y) 7→ φ(x, y) +H, is non-degenerate. Moreover,
dimV is even.

Proof. The subgroup H is contained in the centre Z and is therefore a normal
subgroup of G. It follows from Lemma 3.13 that int(G/H) > 1. As a consequence
of Lemma 4.3, the group G/H is extraspecial, and so the map φH : V × V →
Z/H = [G/H,G/H] is non-degenerate. The dimension of Z/H being 1, it follows
from linear algebra that dimV is even. �

In the proof of Theorem 4.1, an important role is played by isotropic subspaces of
V associated to φ, i.e. linear subspaces T of V such that φ(T × T ) = 0. It is not
difficult to show that, because of the definition of φ, a linear subspace T of V is
isotropic if and only if π−1(T ) is abelian. The next lemma is a standard result and
its proof is straightforward.

Lemma 4.6. Let Γ be a group, let N be a central subgroup, and let H be a
complement of N in Γ. Let moreover CN be the collection of complements of N
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in Γ and, for all f ∈ Hom(H,N), call Gf = {f(h)h : h ∈ H}. Then the map
Hom(H,N)→ CN , given by f 7→ Gf , is well-defined and bijective.

Lemma 4.7. Let T be an isotropic subspace of V . Then the map φT : V/T →
Hom(T,Z), defined by v + T 7→ (t 7→ φ(v, t)), is surjective.

Proof. Let T be an isotropic subspace of V . Then π−1(T ) is abelian and it
contains Z. It follows that π−1(T ) is normal and so A-stable. By Lemma 3.15, the
actions of A on π−1(T )/Z and on Z are respectively through χ and χ2, which are
distinct. By Theorem 2.9 the subgroup Z has hence a unique A-stable complement
H in π−1(T ), which is isomorphic to T via π. Let now f ∈ Hom(T,Z) and note
that Hom(T,Z) and Hom(H,Z) are naturally isomorphic. We identify f with its
image in Hom(H,Z). By Lemma 4.6, the set L = {f(t)t | t ∈ H} is a complement
of Z in π−1(T ) and so, being H the unique A-stable complement of Z, Lemma 3.5
guarantees that there exists g ∈ G such that L = gHg−1. Fix such an element
g. Then, for each h ∈ H, there exists t ∈ H such that [g, h]h = ghg−1 = f(t)t.
It follows that ht−1 = [h, g]f(t) belongs to both H and Z, but H and Z intersect
trivially, so h = t. We have proven that f is the map t 7→ [g, t] and thus, the choice
of f being arbitrary, φT is surjective. �

A subspace of V is maximal isotropic with respect to φ if it is isotropic and if it
is not properly contained in any other isotropic subspace of V . As a consequence
of Lemma 4.7, a subspace T of V is maximal isotropic if and only if the map
φT : V/T → Hom(T,Z) is a bijection.

Lemma 4.8. The dimension of Z is different from 2.

Proof. Assume by contradiction that Z has dimension 2. Let T be an isotropic
subspace of V of maximal dimension t and let d = dimV , which is positive. Since
φT is a bijection, we have that d = 3t and in particular that t > 0. Let L be a
subspace of T of codimension 1, which is itself isotropic. Let moreover φL : V/L→
Hom(L,Z) be defined by v+L 7→ (l 7→ φ(v, l)). The linear map φL is surjective by
Lemma 4.7. Let U be the kernel of φL and let φU : U × U → Z be induced by φ.
Then dimU = d − 3(t − 1) = 3 and φU is alternating. By the universal property

of wedge products, there exists a unique linear map ψ :
∧2

U → Z that, composed

with the canonical map U ×U →
∧2

U , gives φU . The dimension of
∧2

U being 3,

the map U × U →
∧2

U is surjective and the dimension of kerψ is positive.There
are thus linearly independent elements s, r ∈ U such that ψ(s ∧ r) = 0. Set
R = L ⊕ Fps ⊕ Fpr. By construction, R is an isotropic subspace of V of dimension
t+ 1. Contradiction to the maximality of t. �

The group G is extraspecial of exponent p.

Proof. If G2 has order p, then G is extraspecial of exponent p, by Lemma
4.3. We claim that the order of G2 is in fact p. Assume by contradiction that G2

has order larger than p and let M be a normal subgroup of G that is contained in
G2 with index p2. The group G/M has class 2 and, by Lemma 3.13, its intensity
is greater than 1. This is a contradiction to Lemma 4.8, with G2/M in the role of
Z. �

We remark that Corollary 4.2 gives (1) ⇒ (2) in Theorem 4.1. We complete the
proof in the next section.
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4.3. The extraspecial case

In Section 4.3 we will see how the structure of extraspecial groups of exponent p
is particularly suitable for explicit construction of intense automorphisms of order
coprime to p. In this section, we conclude the proof of Theorem 4.1.

Lemma 4.9. Let p be a prime number and let G be an extraspecial group of
exponent p. Let moreover H be a subgroup of G that trivially intersects G2. Then
|G : NG(H)| = |Hom(H,G2)|.

Proof. The subgroup H ∩ G2 is trivial and therefore NG(H) = CG(H) and
H is abelian. Moreover, the commutator map G × G → G2 is bilinear and, since
H ∩ Z(G) is trivial, it induces a non-degenerate map G/CG(H)×H → G2. Now,
both G/CG(H) and H are Fp-vector spaces and G2 has order p. It follows from
linear algebra that |G : NG(H)| = |G : CG(H)| = |H| = |Hom(H,G2)|. �

Lemma 4.10. Let p be a prime number and let G be an extraspecial group of
exponent p. Let α be an automorphism of G such that 〈α〉 acts on G/G2 through a
character. Then α ∈ Int(G).

Proof. Let H be a subgroup of G and write A = 〈α〉. We want to show
that H and α(H) are conjugate in G. Since G2 has order p, either H contains
G2 or the intersection of H with G2 is trivial. In the first case, H/G2 is a linear
subspace of G/G2, and is therefore A-stable; in particular, H is A-stable. We now
consider the case in which H ∩G2 = {1}. In this case, H is abelian and the group
T = H ⊕ G2 is A-stable. The group G2 being A-stable, α(H) is a complement of
G2 in T . Also each G-conjugate of H is a complement of G2 in T , because G2 and
T are both normal. By Lemma 4.6, the number of complements of G2 in T equals
the cardinality of Hom(H,G2), which is equal to |G : NG(H)| by Lemma 4.9. As
all conjugates of H are themselves complements of G2 in T , every complement of
G2 in T is conjugate to H in G. In particular, H and α(H) are conjugate in G. �

Lemma 4.11. Let p be a prime number and let G be an extraspecial p-group of
exponent p. Then p is odd and int(G) = p− 1.

Proof. The prime p is odd, because all groups of exponent 2 are abelian. We
show that int(G) = p− 1. Since G is extraspecial of exponent p, there exist finite-
dimensional vector spaces X,Y, Z over Fp, with dimFp

Z = 1, and a non-degenerate
bilinear map θ : X × Y → Z such that G is isomorphic to the group G(Z, Y,X, θ)
whose underlying set is Z × Y ×X and whose multiplication is defined by

(z, y, x)(z′, y′, x′) = (z + z′ + θ(x, y′), y + y′, x+ x′).

Now, the group F∗p acts on X, Y , and Z, as described in Section 2.1, and so each
m ∈ F∗p gives rise to an automorphism of each of the three vector spaces. Moreover,
by the bilinearity of θ, for each m ∈ F∗p, the following diagram is commutative.

X × Y

m

��
m

��

θ // Z

m2

��
X × Y θ // Z

Thanks to the definition of G(Z, Y,X, θ), one can show that, for each m ∈ F∗p, there
exists an automorphism am of G such that the maps induced by am respectively on
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X × Y and Z are scalar multiplications by m and m2. The set A = {am : m ∈ F∗p}
is a subgroup of Aut(G) that is isomorphic to F∗p. Thanks to Lemma 4.10, the
subgroup A is contained in Int(G) and therefore int(G) = p− 1. �

We remark that Lemma 4.11 is the same as (2) ⇒ (3) in Theorem 4.1. Since the
implication (3)⇒ (1) is clear and (1)⇒ (2) is given by Corollary 4.2, Theorem 4.1
is finally proven.

Proposition 4.12. Let p be a prime number and let G be a finite p-group.
Denote by (Gi)i≥1 the lower central series of G. Assume that both the class and the
intensity of G are greater than 1. Then, for all i ∈ Z≥1, the exponent of Gi/Gi+2

divides p.

Proof. Let α be intense of order int(G) and write χ = χG|〈α〉. Let moreover i
be a positive integer. The case in which i = 1 is given by the combination of Lemma
3.13 and Theorem 4.1. We now assume that i > 1: then Gi/Gi+2 is abelian. By
Lemma 3.15, the action of 〈α〉 on Gi/Gi+1 and Gi+1/Gi+2 is respectively through
χi and χi+1, which are distinct because int(G) 6= 1. It follows from Theorem 2.9
that the groups Gi/Gi+2 and Gi/Gi+1⊕Gi+1/Gi+2 are isomorphic. The exponent
of Gi/Gi+2 divides p as a consequence of Lemma 4.4. �





CHAPTER 5

Intensity of Groups of Class 3

The purpose of this chapter is giving a complete overview of the case in which the
class is 3. We will prove the following theorems.

Theorem 5.1. Let p be a prime number and let G be a finite p-group of class
3. Then the following are equivalent.

1. One has int(G) > 1.
2. The prime p is odd and int(G) = 2.
3. The prime p is odd and |G : G2| = p2.

We remind the reader that, if G is a finite p-group and j is a positive integer, then
the j-th width of G is wtG(j) = logp |Gj : Gj+1|. For more detail, see Section 2.3.

Theorem 5.2. Let p be a prime number and let G be a finite p-group of class
at least 3. Assume that int(G) > 1. For each positive integer j, set moreover
wj = wtG(j). Then the following hold.

1. One has int(G) = 2.
2. One has (w1, w2, w3) = (2, 1, f), where f ∈ {1, 2}.

5.1. Low intensity

In Section 5.1 we derive some restrictions on the structure of finite p-groups
of class at least 3 and intensity greater than 1. We will prove the following main
result.

Proposition 5.3. Let p be a prime number and let G be a finite p-group of
class at least 3. Assume that int(G) > 1. Then the following hold.

1. The prime p is odd.
2. One has int(G) = 2.
3. One has |G : G2| = p2.

Our main goal for this section being the proof of Proposition 5.3, we will work under
the following assumptions until the end of Section 5.1. Let p be a prime number
and let G be a finite p-group of class at least 3. Assume that int(G) > 1 and let
α be intense of order int(G). Write A = 〈α〉 and χ = χG|A, where χG denotes the

intense character of G (see Section 3.2). For the rest of the notation we refer to the
List of Symbols. We remark that, int(G) being greater than 1, the prime p is odd
and G is non-trivial. For more detail see Chapter 3.

Lemma 5.4. Assume that G has class 3. Then the following hold.

1. One has Gp ⊆ G3.
2. One has |G2 : G3| = p.
3. One has Z(G) = G3.

27
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Proof. By Lemma 3.13 the intensity of G/G3 is greater than 1, and thus, by
Theorem 4.1, the group G/G3 is extraspecial of exponent p. It follows that G2/G3

has size p and that Gp is contained in G3. Moreover, one has Z(G/G3) = G2/G3

and, since Z(G)/G3 is contained in Z(G/G3), we get G3 ⊆ Z(G) ⊆ G2. As the class
of G is 3, we derive Z(G) = G3. �

Lemma 5.5. Assume that G has class 3. Then the following hold.

1. The group G2 is elementary abelian.
2. The group CG(G2) is abelian and A-stable.

Proof. The group G2 is abelian, since G4 is trivial, and it has exponent p
thanks to Proposition 4.12. Set now C = CG(G2). Then the commutator map
induces a bilinear map φ : C/G2 × C/G2 → [C,C]. The subgroups C and [C,C]
are characteristic in G and thus A-stable. Thanks to Lemma 3.15, the group A
acts on C/G2 through χ and, by Lemma 2.4, it acts on [C,C] through χ2. Again
by Lemma 3.15, the action of A on G3 is through χ3. The character χ not being
trivial, one has χ2 6= χ3 and so Lemma 2.8 yields [C,C] ∩ G3 = {1}. By Lemma
5.4(3), the group G3 is equal to Z(G) so the group [C,C] is a normal subgroup of
G that trivially intersects Z(G). It follows that [C,C] = {1}. �

Lemma 5.6. Assume that G3 has order p. Then the following hold.

1. One has |G : CG(G2)| = p.
2. One has |G : G2| = p2.
3. One has |CG(G2)| = p3.

Proof. Let C = CG(G2), V = G/G2, Z = G2/G3, and T = C/G2. The
groups V , Z, and T are vector spaces over Fp, as a consequence of Lemma 4.4. Let
moreover ψ : V × Z → G3 be the bilinear map that is induced by the commutator
map and note that the left kernel of ψ is T . The centre of G is equal to G3, by
Lemma 5.4(3), and so the function ψC : V/T × Z → G3 that is induced by ψ is
non-degenerate. The dimension of G3 being 1, Lemma 5.4(2) yields dimV/T =
dimZ = 1. This proves (1). We prove (2) and (3) together. Let φ : V × V → Z be
the bilinear map that is induced by the commutator map. By Lemma 5.5(2), the
group C is abelian and therefore T is isotropic with respect to φ. As a consequence
of (1), the space T has codimension 1 in V and T is thus maximal isotropic. It
follows that the map φT from Lemma 4.7 is a bijection and hence 1 = dim(V/T ) =
dim Hom(T,Z) = dimT . As a result, one gets dimV = 2 and therefore |G : G2| =
p2 and |C| = p3. �

Lemma 5.7. Assume that χ2 6= 1 and that G has class 3. Then CG(G2) is
elementary abelian.

Proof. Let C = CG(G2). The group C is abelian and A-stable by Lemma
5.5(2). We will show that C has exponent p. By Lemma 5.5(1) the group G2

is elementary abelian and G2 ⊆ C. The group A acts on C/G2 through χ, as a
consequence of Lemma 3.15, and, by Lemma 2.6, it acts on Cp also through χ. It
follows from Lemma 5.4(1) that Cp ⊆ G3. The action of A on G3 is through χ3, by
Lemma 5.5(2), and thus A acts on Cp both through χ and χ3. Since χ2 6= 1, the
characters χ and χ3 are distinct and, as a consequence of Lemma 2.8, the group C
has exponent p. �
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Lemma 5.8. Assume that χ2 6= 1 and that G3 has order p. Then CG(G2) is a
vector space over Fp with unique 1-dimensional A-stable subspaces C1 and C2 such
that CG(G2) = C1 ⊕ C2 ⊕G3.

Proof. Set C = CG(G2). Then C is a vector space over Fp of dimension 3, as
a consequence of Lemmas 5.6(3) and 5.7, and it is A-stable, by Lemma 5.5(2). By
Lemma 3.15, the action of A on C/G2, G2/G3, and G3 is respectively through χ, χ2,
and χ3, which are pairwise distinct. We first apply Theorem 2.9 to C/G3, getting
a unique A-stable complement D1/G3 of G2/G3. It follows that D1 ∩ G2 = G3.
We now apply Theorem 2.9 to both D1 and G2 to get unique A-stable subspaces
C1 and C2 of C satisfying D1 = C1 ⊕G3 and G2 = C2 ⊕G3. As a consequence of
Lemma 5.4(2), the subspace G2 has dimension 2, so both C1 and C2 have dimension
1. Moreover, the intersection of D1 with G2 being equal to G3, it follows that
C = C1 ⊕ C2 ⊕G3. �

Lemma 5.9. Assume that G3 has order p. Then int(G) = 2.

Proof. If χ2 = 1, then 1 < int(G) ≤ 2 and we are done. We assume now that
χ2 6= 1 and we will derive a contradiction. Let C1 and C2 be as in Lemma 5.8 and
denote by X be the collection of subspaces of dimension 1 of C. Since C is normal,
the group G acts on X by conjugation. By Lemma 5.6(1), the index of C in G is
equal to p and the size of each orbit of X under G is thus at most p. Moreover, the
elements of X that are stable under the action of A are precisely C1, C2, and G3.
Lemma 3.6 yields

p2 + p+ 1 = |X| ≤ |G : NG(C1)|+ |G : NG(C2)|+ |G : NG(G3)| ≤ 3p,

which is satisfied if and only if (p− 1)2 ≤ 0. Contradiction. �

We can finally give the proof of Proposition 5.3. Since G has class at least 3, the
group G3 is non-trivial, so there exists a normal subgroup M of G that is contained
in G3 with index p. By Lemma 3.13, the group G/M has intensity greater than
1 and, as a consequence of Lemma 5.9, the intensity of G/M is equal to 2. From
Lemma 3.13 it follows that 1 < int(G) ≤ int(G/M) = 2 and, from Lemma 5.6(2),
that |G : G2| = p2. This concludes the proof of Proposition 5.3. We remark
that Proposition 5.3 gives (1) ⇔ (2) and (1) ⇒ (3) in Theorem 5.1: we conclude
the proof in Section 5.3. On the other hand, Theorem 5.2 follows directly from
Proposition 5.3 and some basic commutator calculus.

Proposition 5.10. The automorphism α has order 2 and, for all i ≥ 1, it
induces scalar multiplication by (−1)i on Gi/Gi+1.

Proof. Let χ denote the restriction of χG to 〈α〉. By Proposition 5.3, the
intensity of G is 2 and p is odd. In particular, χ(α) has order 2 in ω(F∗p), so
χ(α) = −1. We conclude thanks to Lemma 3.15. �

5.2. Intensity given the automorphism

We recall that, for any group G, the lower central series of G is denoted (Gi)i≥1

and it consists of characteristic subgroups of G. The main result of this section is
the following.

Proposition 5.11. Let p be an odd prime number and let G be a finite p-group
of class 3 such that |G : G2| = p2. Let moreover α be an automorphism of G of
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order 2 that induces the inversion map x 7→ x−1 on G/G2. Then α is intense and
int(G) = 2.

The following assumptions will be valid until the end of Section 5.2. Let p be an
odd prime number and let G be a finite p-group of class 3 such that |G : G2| = p2.
As a consequence, the following are satisfied:

i. one has Φ(G) = G2;
ii. one has |G2 : G3| = p and |G3| ∈ {p, p2};
iii. the subgroup CG(G2) is abelian and |G : CG(G2)| = |G3|.

We will make some additional assumptions right before stating Lemma 5.14.

Lemma 5.12. The group G/G3 is extraspecial of exponent p and G3 = Z(G).

Proof. We write G = G/G3 and we use the bar notation for the subgroups
of G. The group G has class 2 and G2 is contained in Z(G). Moreover, the order
of G2 is equal to p and, since G is not abelian, the groups G2 and Z(G) coincide.
In particular, G is extraspecial. We now show that G has exponent p. Define
C = CG(G2) and D = {x ∈ G : xp ∈ G3}. Then C 6= G and D is a group, as a
consequence of the Hall-Petrescu formula. Let now x ∈ G \ C: then xp belongs
to G2. The commutator map induces an isomorphism G/C ⊗G2/G3 → G3, so,
since x is not in the centralizer of G2, the element xp belongs to G3. It follows
that x ∈ D and, in particular, we have proven that G = C ∪ D. The group C is
different from G, thus the groups D and G are the same. In particular, G = D and
so G has exponent p. To conclude, the groups G3 and Z(G) are the same because
G3 ⊆ Z(G)G2 and |G2 : G3| = p. �

Lemma 5.13. The subgroup G2 is elementary abelian.

Proof. The group G2 is abelian, because G4 is trivial; we prove that it has
exponent p. Let M be a maximal subgroup of G3. Then M has index p in G3 and
it is normal in G. We write G = G/M and use the bar notation for the subgroups
of G. The subgroup G3 has order p and |G : G2| = |G : G2| = p2. It follows that
CG(G2) is abelian and that it contains G2 with index p. Write C = CG(G2). As

a consequence of Lemma 5.12, the subgroup C
p

is contained in G3, so µp(C) is a

normal subgroup of G of order at least p2. Moreover, G3 is contained in µp(C),

so µp(C)/G3 is a non-trivial normal subgroup of G/G3. The quotient G/G3 is
extraspecial, by Lemma 5.12, so G2/G3 is equal to Z(G/G3). The quotient G2/G3

having order p, we get that G2 ⊆ µp(C). In particular, one has Gp2 ⊆ M . If
M = {1} we are done, otherwise let N be another maximal subgroup of G3. In this
case, G3 is elementary abelian of order p2 and Gp2 is contained in N ∩M = {1}. In
each case, the exponent of G2 is thus p. �

Let α be an automorphism of G of order 2 and write A = 〈α〉. Let moreover
χ : A→ {±1} be an isomorphism of groups and assume that the induced action of
A on G/G2 is through χ. These assumptions will hold until the end of Section 5.2.
We will prove that α is intense.

Lemma 5.14. Every subgroup of G that contains G3 has an A-stable conjugate
in G.

Proof. LetH be a subgroup ofG that containsG3. By Lemma 5.12, the group
G/G3 is extraspecial of exponent p and by assumption A acts on G/G2 through
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χ. As a consequence of Lemmas 4.10 and Lemma 3.5, there exists g ∈ G such that
α(gHg−1)/G3 = (gHg−1)/G3 and so, G3 being A-stable, α(gHg−1) = gHg−1. �

We remind the reader that, if H is a subgroup of G, then a positive integer j is a
jump of H in G if H ∩ Gj 6= H ∩ Gj+1. The j-th width of H in G is wtGH(j) =
logp |H ∩Gj : H ∩Gj+1|. For more information about jumps and width see Section
2.3.

Lemma 5.15. Let H be a subgroup of G that trivially intersects G3. Then the
following hold.

1. If 1 is a jump of H in G, then wtGH(1) = 1.
2. If 2 is a jump of H in G, then H ⊆ CG(G2).

Proof. Assume first that 1 is a jump of H in G. Since H does not contain G3,
one has H 6= G. It follows that HΦ(G) 6= G and thus HΦ(G)/Φ(G) = HG2/G2 has
order p. In particular, the 1-st width of H in G is 1. Assume now that 2 is a jump
of H in G. Then by Lemma 2.16(2) there exists an element x ∈ (H ∩G2) \G3. Fix
x. Then G2 = 〈x〉G3 and so, G3 being central, it follows that [H,G2] = [H, 〈x〉].
The subgroup [H, 〈x〉] is contained in H ∩ [G,G2] = H ∩ G3, which is trivial by
assumption, and hence H centralizes G2. �

Lemma 5.16. Let H be a subgroup of G that trivially intersects G2. Then H
has an A-stable conjugate in G.

Proof. The group H is abelian, because [H,H] ⊆ H ∩ [G,G] = {1}. By
Lemma 5.12, the groups G3 and Z(G) are equal, so the group T = H ⊕ G3 is
abelian. By Lemma 5.14, there exists g ∈ G such that gTg−1 is A-stable and, the
group G3 being characteristic, gTg−1 = gHg−1 ⊕ G3. We fix such element g and
note that gTg−1 ∩ G2 = G3. It follows from Lemma 2.6 that the induced action
of A on gTg−1/G3 is through χ. Moreover, by Lemma 2.5, the group A acts on
G3 through χ3 = χ. From Lemma 2.12, it follows that α sends each element of
gTg−1 to its inverse, so each subgroup of gTg−1 is A-stable. In particular, gHg−1

is A-stable. �

Lemma 5.17. Let H be a subgroup of G with G2 = H ⊕ G3. Then H has an
A-stable conjugate in G.

Proof. By Lemma 2.5, the induced action of A on G2/G3 and G3 is re-
spectively through χ2 and χ3 = χ. Moreover, since G4 is trivial, G2 is abelian
and so, by Theorem 2.9, there exists a unique A-stable complement K of G3

in G2. We want to show that H and K are conjugate in G. The groups G3

and Z(G) coincide, by Lemma 5.12, thus CG(H) = CG(G2) and moreover, since
H ∩ [H,G] ⊆ H ∩ G3 = {1}, we have that CG(H) = NG(H). Let now X be the
collection of complements of G3 in G2. Since H has order p, Lemma 4.6 yields that
the cardinality of X is equal to the cardinality of Hom(H,G3), which coincides with
|G3| = |G : CG(G2)|. It follows that |X| = |G : NG(H)| and so, every conjugate of
H being in X, every complement of G3 in G2 is G-conjugate to H. In particular,
K and H are conjugate in G. �

Lemma 5.18. Let H be a subgroup of G that is not contained in CG(G2) and
that has trivial intersection with G3. Then H has a conjugate that is A-stable.
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Proof. As a consequence of Lemma 5.15(2), the subgroup H has trivial in-
tersection with G2. We now apply Lemma 5.16. �

Lemma 5.19. Let H be a subgroup of CG(G2) of order p that has trivial inter-
section with G3. Then H has a conjugate that is A-stable.

Proof. Set T = H ⊕ G3. If T = G2, then H has an A-stable conjugate by
Lemma 5.17. Assume now that T ∩ G2 = G3. Then H ∩ G2 = H ∩ T ∩ G2 =
H ∩G3 = {1}, so we are done by Lemma 5.16. �

We write G+ = {x ∈ G : α(x) = x} and G− = {x ∈ G : α(x) = x−1}, in concor-
dance with the notation from Section 2.2. We adopt this notation in Lemmas 5.20
and 5.21.

Lemma 5.20. Let H be a subgroup of CG(G2) such that H ∩G3 = {1}. Then
the following hold.

1. The subgroup H is elementary abelian.
2. One has G+ NG(H) = NG(H).

Proof. The subgroup CG(G2) is abelian and therefore so is H. Moreover, as
a consequence of Lemma 5.12, the subgroup Hp is contained in H ∩ G3 = {1}, so
H is elementary abelian. Now, G+ is contained in G2, thanks to Lemma 2.17, and
G2 centralizes C. It follows that G+ NG(H) ⊆ G2 NG(H) = NG(H). �

Lemma 5.21. Let H be a subgroup of G such that CG(G2) = H ⊕G3. Then H
has a conjugate in G that is A-stable.

Proof. Write C = CG(G2). If C = G2, then we are done by Lemma 5.17.
Assume now that C 6= G2. Then C contains G2 with index p and G3 has order p.
We define X to be the collection of subgroups K of G such that C = K ⊕G3 and
denote X+ = {K ∈ X | α(K) = K}. The centre of G is equal to G3, by Lemma
5.12, and so all elements of X are non-normal subgroups of G. In particular, for
any K ∈ X, one has |G : NG(K)| ≥ p. Now, by Lemma 5.20(1), the subgroup
H is elementary abelian, and, G3 being central of order p, it follows that C is an
Fp-vector space of dimension 3. Write C+ = C ∩ G+ and C− = C ∩ G−. Then
C = C+ ⊕ C−, thanks to Corollary 2.2 and, as a consequence of Lemma 2.17, the
linear subspaces C+ and C− of C have respectively dimension 1 and 2. One shows
that

X+ = {C+ ⊕ ` : ` ⊆ G−, ` ∩G3 = {1}, dim(`) = 1}.
It follows that X+ has cardinality p, while the cardinality of X is p2. Moreover,
the combination of Lemmas 2.15 and 5.20(2) ensures that no two elements of X+

are conjugate in G. Lemma 3.6 yields

p2 = |X| ≥
∑

K∈X+

|G : NG(K)| ≥
∑

K∈X+

p = |X+|p = p2,

and therefore every element of X is conjugate in G to an element of X+. In
particular, H has an A-stable conjugate. �

Lemma 5.22. Every subgroup of G that trivially intersects G3 has an A-stable
conjugate in G.
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Proof. Let H be a subgroup of G such that H ∩G3 = {1}. If H is contained
in CG(G2) and has order p, then we are done by Lemma 5.19. Assume now that H
is contained in CG(G2) and that H has order p2. The group CG(G2) being abelian,
one has CG(G2) = H⊕G3 and hence H has an A-stable conjugate by Lemma 5.21.
We conclude by Lemma 5.18, in case H is not contained in CG(G2). �

Lemma 5.23. Let H be a subgroup of G such that H ∩G3 6= {1}. Then H has
a conjugate that is A-stable.

Proof. Lemma 5.14 covers the case in which H contains G3. Assume now
that the group H ∩ G3 is different from both {1} and G3. Then G3 has order p2

and H ∩G3 has order p. The subgroup H ∩G3 is normal, thanks to Lemma 5.12,
and so we write G = G/(H ∩ G3) and use the bar notation for the subgroups of
G. The group G has class 3 and |G : G2| = p2. Moreover, H ∩G3 = {1}. Thanks
to Lemma 5.22, the subgroup H has an A-stable conjugate, and therefore so does
H. �

Lemma 5.24. The automorphism α is intense and int(G) = 2.

Proof. We will show that α ∈ Int(G). Thanks to Lemma 3.5, it suffices to
show that every subgroup of G has an A-stable conjugate. Let H be a subgroup
of G. If H ∩G3 = {1}, we are done by Lemma 5.22, otherwise apply Lemma 5.23.
The automorphism α being intense, int(G) = 2. �

Thanks to Lemma 5.24, Proposition 5.11 is proven.

5.3. Constructing intense automorphisms

The aim of Section 5.3 is giving the proof of Theorem 5.1. We will prove the
following essential result.

Proposition 5.25. Let p be an odd prime number and let G be a finite p-group
of class 3 such that |G : G2| = p2. Then there exists an automorphism α of G of
order 2 that induces the inversion map x 7→ x−1 on G/G2.

In order to prove Proposition 5.25, let p be an odd prime number and let G be a
finite p-group of class 3. Let moreover (Gi)i≥1 denote the lower central series of G
and assume that |G : G2| = p2. We will keep these assumptions and notation until
the end of Section 5.3. We will work to construct an automorphism α of G and an
isomorphism χ : 〈α〉 → {±1} in order to apply the results achieved in the previous
section.

Let F be the free group on the set S = {a, b} and let ι : S → G be a map such
that G = 〈ι(S)〉. By the universal property of free groups, there exists a unique
homomorphism θ : F → G such that θ(a) = ι(a) and θ(b) = ι(b). In particular,
the map θ is surjective. We denote by (Fi)i≥1 the p-central series of F , which is
recursively defined as

F1 = F and Fi+1 = [F, Fi]F
p
i .

We want to stress the fact that the notation we use here for the p-central series of
F clashes with the notation we have adopted so far (see the section “Exceptions”
from the List of Symbols). Define additionally

L = F3F
p and E = [F,L]F p2 .
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The notation we just introduced will be valid until the end of Section 5.3. We will
introduce some extra notation between Lemma 5.28 and Lemma 5.29. We refer to
the diagram given at the end of the present section for a visualization of the proof
of Proposition 5.25.

Lemma 5.26. One has θ−1(G2) = F2.

Proof. This follows directly from the fact that Φ(G) = G2. �

Lemma 5.27. The commutator map induces an alternating map F/F2×F/F2 →
F2/L whose image generates F2/L. Furthermore, one has θ−1(G3) = L and |F2 :
L| = p.

Proof. We first claim that |F2 : L| ≤ p. To this end, we write F = F/L
and we will use the bar notation for the subgroups of F . The subgroup F being
annihilated by p, the subgroup F2 coincides with [F , F ] and so the commutator
map induces an alternating bilinear map φ : F/F2 × F/F2 → F2 whose image
generates F2 = [F , F ]. By the universal property of the exterior square, φ factors

as a surjective homomorphism
∧2

(F/F2) → F2 and therefore,
∧2

(F/F2) having
dimension 1, it follows that F2 has order at most p. This proves the claim. Note
now that, a consequence of Lemma 5.12, the group G3 contains Gp and hence
θ(L) = G3. As a consequence of Lemma 5.26, the subgroup θ−1(G3) is contained
in F2 and, since G2 and G3 are distinct, θ−1(G3) 6= F2. It follows that F2 is different
from L and so, as a consequence, |F2 : L| = p and θ−1(G3) = L. �

Lemma 5.28. One has E ⊆ ker θ ∩ F3.

Proof. The group E is clearly contained in F3. Moreover, as a consequence
of Lemmas 5.27 and 5.13, one has θ(E) = θ([F,L]F p2 ) = [G,G3]Gp2 = {1} and so
E ⊆ ker θ. �

Let β be the endomorphism of F sending a to a−1 and b to b−1, and note that β
exists by the universal property of free pro-p-groups. Then β2 is equal to idF , and
thus β is an automorphism of F . Write B = 〈β〉 and define the homomorphism
σ : B → {±1} by β 7→ −1. We will respect this notation until the end of Section
5.3.

Lemma 5.29. The induced action of B on F/F2 and F2/L is respectively
through σ and σ2.

Proof. By definition of β, the action of B on F/F2 is through σ and, by
Lemma 5.27, the commutator map induces a bilinear map φ : F/F2×F/F2 → F2/L
whose image generates F2/L. The group B acts on F/F2 through σ and so, by
Lemma 2.4, the action of B on F2/L is through σ2. �

Lemma 5.30. The induced action of B on L/F3 is through σ.

Proof. We write F = F/F3 and we use the bar notation for its subgroups.

Then L is equal to F
p

and F has class at most 2. Moreover, [F , F ] is annihilated by
p. By the Hall-Petrescu formula, the p-power map is an endomorphism of F , and
therefore L is an epimorphic image of F/F2. By Lemma 2.6, the induced action of
B on L is through σ. �

Lemma 5.31. The induced action of B on F3/E is through σ.



5.3. CONSTRUCTING INTENSE AUTOMORPHISMS 35

Proof. The group F2/L is cyclic, thanks to Lemma 5.27, so [F2, F2] = [F2, L]
is contained in E. Moreover, since [F, F3] is also contained in E, the commutator
map induces a bilinear map φ : F/F2×F2/L→ F3/E. By Lemma 5.29, the induced
actions of B on F/F2 and F2/L are respectively through σ and σ2 and thus, by
Lemma 2.4, the action of B on F3/E is through σ3 = σ. �

Lemma 5.32. The induced action of B on L/E is through σ. Moreover, the
kernel of θ is B-stable.

Proof. As a consequence of Lemmas 5.30 and 5.31, the induced actions of B
on L/F3 and F3/E are both through σ. It follows from Lemma 2.12 that the action
of B on L/E is through σ. As a consequence of Lemmas 5.27 and 5.28, one has
E ⊆ ker θ ⊆ L, and, in particular, the action of B on L/E restricts to an action of
B on ker θ/E. It follows that ker θ is B-stable and the proof is complete. �

F

−p2

// G

−

F2

+p

// G2

+

L = F3F
p

−

p2

−

p2

// G3

−

F3

−
p2

ker θ

−
p2

// 1

E = [F,L]F p2

Lemma 5.33. Given any two generators x and y of G, there exists an intense
automorphism of G such that α(x) = x−1 and α(y) = y−1.

Proof. Let x and y be generators of G. Without loss of generality, we assume
that ι(a) = x and ι(b) = y. Let moreover θ̄ : F/ ker θ → G be the isomorphism
that is induced from θ. By Lemma 5.32, the subgroup ker θ of F is B-stable,
and therefore β induces an automorphism β̄ of F/ ker θ. Define α : G → G by
α = θ̄◦ β̄ ◦ θ̄−1. Then α is an automorphism G of order 2 that inverts the generators
x and y. Proposition 5.11 yields that α is intense. �



36 5. INTENSITY OF GROUPS OF CLASS 3

We remark that Proposition 5.25 follows directly from Lemma 5.33. Moreover,
we are also finally ready to give the proof of Theorem 5.1. Proposition 5.3 gives
(1)⇔ (2) and (1)⇒ (3). On the other hand, the implication (3)⇒ (2) is given by
the combination of Lemma 5.33 and Proposition 5.11. The proof of Theorem 5.1 is
complete.



CHAPTER 6

Some Structural Restrictions

In this chapter we will see how the structure of finite p-groups whose intensity
is greater than 1 starts becoming more and more rigid, as soon as the class is at
least 4. We recall that, if (Gi)i≥1 denotes the lower central series of G, then, for
each positive integer i, the i-th width of G is wtG(i) = logp |Gi : Gi+1| (see Section
2.3). The main results from Chapter 6 are the following.

Theorem 6.1. Let p be a prime number and let G be a finite p-group of
class at least 4. For all i ∈ {1, 2, 3, 4}, write wi = wtG(i). If int(G) > 1, then
(w1, w2, w3, w4) = (2, 1, 2, 1).

Theorem 6.2. Let p be a prime number and let G be a finite p-group of class
at least 3. For all i ∈ Z≥1, write wi = wtG(i). Assume that int(G) > 1. Then, for
all i ∈ Z≥1, one has wiwi+1 ≤ 2.

6.1. Normal subgroups

We devote Section 6.1 to understanding the normal subgroup structure of a
finite p-group of intensity greater than 1. We prove the following result.

Proposition 6.3. Let p be a prime number and let G be a finite p-group with
int(G) > 1. Let N be a subgroup of G. Then N is normal if and only if there exists
i ∈ Z≥1 such that Gi+1 ⊆ N ⊆ Gi.

The following assumptions will be satisfied until the end of Section 6.1. Let p be a
prime number and let G be a finite p-group of intensity greater than 1. It follows
that p is odd and that G is non-trivial (see Section 3.2). Denote by (Gi)i≥1 the lower
central series of G and, for each positive integer i, write wi = wtG(i) for the i-th
width of G. Let α be intense of order 2 and write A = 〈α〉. Denote χ = χG|A, the

restriction of the intense character of G to A (once again, we refer to Section 3.2). In
concordance with the notation from Section 2.2, let G+ = {x ∈ G | α(x) = x} and
G− = {x ∈ G | α(x) = x−1}. For a subgroup H of G we will write H+ = H ∩G+

and H− = H ∩ G−. Thanks to Corollary 2.2 from Section 2.2 once can show,
for each subgroup H of G, that if H is A-stable and cyclic, then H ⊆ G+ or
H ⊆ G−. To conclude, we recall that, as defined in Section 2.3, if x is a non-trivial
element of G, then the depth dptG(x) of x is the unique positive integer d for which
x ∈ Gd \Gd+1.

Lemma 6.4. Let x ∈ G \ {1}. Then the following hold.

1. The depth of x is even if and only if there exists g ∈ G such that gxg−1

belongs to G+.
2. The depth of x is odd if and only if there exists g ∈ G such that gxg−1

belongs to G−.

37
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Proof. The automorphism α being intense, it follows from Lemma 3.5 that
there exists g ∈ G such that 〈gxg−1〉 is A-stable. Write d = dptG(x) = dptG(gxg−1)
and H = 〈gxg−1〉. Then the A-stable subgroup H is contained in G+ or in G−.
By Lemma 3.15, the action of A on (HGd+1)/Gd+1 is through χd and the choice
between G+ and G− only depends from the parity of d. �

We recall that, if H is a subgroup of G, then a jump of H in G is a positive integer
j such that H∩Gj 6= H∩Gj+1. A direct conseuqence of Lemma 6.4 is the following
result.

Lemma 6.5. All jumps of a cyclic subgroup of G have the same parity.

Lemma 6.6. Let c ∈ Z≥1 denote the class of G. Then the following hold.

1. The induced action of A on Z(G) is through χc.
2. If c is even, then Z(G) ⊆ G+.
3. If c is odd, then Z(G) ⊆ G−.

Proof. The subgroup Gc is contained in Z(G) and, by Lemma 3.15, the group
A acts on Gc through χc. From the combination of Corollary 3.3 with Lemma 2.8,
it follows that A acts on Z(G) through χc. If c is even, then χc = 1 and Z(G) is
contained in G+. Otherwise, χc = χ and Z(G) ⊆ G−. �

Lemma 6.7. Let c ∈ Z≥1 be the class of G. Then, for all i ∈ {1, . . . , c}, if H
is a quotient of G of class i, then Z(H) = Hi.

Proof. If i = 1 the result is clear; we assume that i is at least 2 and that the
result holds for i − 1. Let H be a quotient of G of class i, which has, thanks to
Lemma 3.13, intensity greater than 1. Let β be intense of order 2 and let B = 〈β〉
and ψ = χH |B . The subgroup Hi is central in H, so Z(H)/Hi is isomorphic to a

subgroup of Z(H/Hi). By the induction hypothesis Z(H/Hi) = Hi−1/Hi and it
follows that Hi ⊆ Z(H) ⊆ Hi−1. By Lemma 3.15, the group B acts on Hi−1/Hi and
Hi, respectively through ψi−1 and ψi, which are distinct characters since ψ 6= 1.
Moreover, the induced action of B on Z(H) is through ψi, by Lemma 6.6(1). Lemma
2.8 yields Z(H) = Hi. �

We remark that Proposition 6.3 follows now directly from Lemma 6.7 and the
following elementary lemma.

Lemma 6.8. Let q be a prime number and let Q be a finite q-group of class c.
Let moreover N be a subgroup of Q. Assume that, for all i ∈ {1, . . . , c}, if H is a
quotient of Q of class i, then Z(H) = Hi. Then N is normal if and only if there
exists i ∈ Z>0 such that Qi+1 ⊆ N ⊆ Qi.

6.2. About the third width

Let p be a prime number and let G be a finite p-group. If i is a positive integer,
we recall that the i-th width of G is defined to be wtG(i) = logp |Gi : Gi+1|, where
(Gi)i≥1 denotes the lower central series of G. Thanks to Theorem 5.2(2), we know
that, if G has class at least 3 and int(G) > 1, then (wtG(1),wtG(2)) = (2, 1)
and wtG(3) is either 1 or 2. In the case in which the class of G equals 3, then
both situations wtG(3) = 1 and wtG(3) = 2 occur. What about higher nilpotency
classes? We prove the following.
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Proposition 6.9. Let p be a prime number and let G be a finite p-group of
class at least 4. For each positive integer i, denote wi = wtG(i). Assume that
int(G) > 1. Then (w1, w2, w3) = (2, 1, 2).

Until the end of Section 6.2, the following assumptions will hold. Let p be a prime
number and let G be a finite p-group. Let (Gi)i≥1 denote the lower central series
of G and, for each positive integer i, denote wi = wtG(i). We assume that G has
class 4 and that (w1, w2, w3, w4) = (2, 1, 1, 1). We will show that int(G) = 1.

Lemma 6.10. Assume that p is odd. Then Z(G) = G4.

Proof. The group Z(G)/G4 is contained in Z(G/G4) and, thanks to Lemma
5.12, the centre of G/G4 is equal to G3/G4. It follows that G4 ⊆ Z(G)G3 and so
G4 = Z(G). �

Lemma 6.11. The subgroup G2 is abelian.

Proof. The group G2/G3 is cyclic so [G2, G2] = [G2, G3]. It follows that
[G2, G2] ⊆ G5 = {1}, and thus G2 is abelian. �

In the case in which p is odd, Lemmas6.10 and 6.11, together with some basic
commutator calculus, yield the following:

i. the subgroup [CG(G3), G2] is contained in G4; and
ii. one has |CG(G3) : G2| = p.

This last observation will turn out useful in the proofs of the following lemmas.

Lemma 6.12. If int(G) > 1, then CG(G3) is abelian.

Proof. Assume that int(G) > 1, so that p is odd. Let α be an intense au-
tomorphism of G of order 2 and write A = 〈α〉 and χ = χG|A. Write moreover

C = CG(G3). The index |C : G2| being p, one has [C,C] = [C,G2]; moreover,
[C,G2] is contained in G4 and G4 = Z(G), by Lemma 6.10. It follows that the
commutator map C × G2 → G4 is bilinear and, as a consequence of Lemma 6.11,
it factors as φ : C/G2 ×G2/G3 → G4. By Lemma 3.15, the group A acts on C/G2

and G2/G3 respectively through χ and χ2, so, as a consequence of Lemma 2.4, the
group A acts on [C,G2] through χ3 = χ. By Lemma 3.15, the group A acts on G4

through χ4 = 1. Since χ 6= 1, it follows from Lemma 2.8 that [C,C] is trivial, and
therefore C is abelian. �

We recall here that, if A = 〈α〉 is a multiplicative group of order 2 acting on
a finite group B of odd order, then one defines B+ = {x ∈ B : α(x) = x} and
B− = {x ∈ B : α(x) = x−1}. (See Section 2.2.)

Lemma 6.13. Assume that int(G) > 1 and let α be an intense automorphism
of G of order 2. Write C = CG(G3). Then C = C+ ⊕ C− and |C+| = |C−| = p2.

Proof. The group C is A-stable and it is abelian by Lemma 6.12. Corollary
2.2 yields C = C+ ⊕ C−, while the cardinalities of C+ and C− are both equal to
p2, thanks to Lemma 2.17. �

Lemma 6.14. Assume that int(G) > 1 and let α be an intense automorphism
of G of order 2. Write C = CG(G3). Then C+ is cyclic if and only if C− is cyclic.
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Proof. The subgroup Cp is characteristic in G, so Cp is A-stable. Moreover,
as a consequence of Lemma 6.6(2), the subgroup Z(G) is contained in G+. Assume
first that C− is cyclic. Then Cp is a non-trivial subgroup of the p-group G and thus
has non-trivial intersection with Z(G). In particular, Cp ∩G+ 6= {1} and so C+ is
cyclic. Assume now that C+ is cyclic. As a consequence of Lemma 2.17, the group
C+ is contained in G2. We claim that there exists an element x ∈ C \G2 of order
p2: if not, then C is equal to the union of two proper subgroups, namely C ∩ G2

with µp(C), which is impossible. Fix thus x ∈ C of order p2 with dptG(x) = 1. By
Lemma 6.4, there exists g ∈ G such that gxg−1 belongs to G−. Since both C− and
〈x〉 have order p2, the group C− is cyclic. �

Lemma 6.15. Let H be a subgroup of CG(G3). If int(G) > 1, then H has at
most p conjugates in G.

Proof. Assume that int(G) > 1. The group CG(G3) is abelian, by Lemma
6.12, and therefore CG(G3) normalizes H. It follows that |G : NG(H)| ≤ |G :
CG(G3)| = p and thus H has at most p conjugates. �

Lemma 6.16. Assume that int(G) > 1 and let α be an intense automorphism
of G of order 2. Write C = CG(G3). Then C+ is cyclic.

Proof. Assume the contrary. Then, as a consequence of Lemma 6.14, both C+

and C− are elementary abelian. From Lemma 6.13 it follows that C is an Fp-vector
space of dimension 4. Let X be the collection of 1-dimensional subspaces of C; then
we have |X| = p3 + p2 + p+ 1. Let moreover X+ = {H ∈ X : α(H) = H}. Then
X+ consists of the 1-dimensional subspaces of C that are contained in C+∪C− and
so |X+| = 2(p+ 1). By Lemma 6.15, each element of X+ has at most p conjugates
in G, so it follows from Lemma 3.6 that

2p(p+ 1) = p|X+| ≥
∑

H∈X+

|G : NG(H)| ≥ |X| = p3 + p2 + p+ 1.

Contradiction. �

Lemma 6.17. The intensity of G is equal to 1.

Proof. Assume by contradiction that int(G) > 1 and let α be an intense
automorphism of G of order 2. Write C = CG(G3). The group C is abelian, by
Lemma 6.12, and C = C+ ⊕ C−, by Lemma 6.13. Moreover, C+ and C− have
both cardinality p2. By Lemma 6.16, the subgroup C+ is cyclic so, by Lemma
6.14, the subgroup C− is also cyclic. Let X be the collection of cyclic subgroups
of C of order p2 and let X+ be the subset of X consisting of the A-stable ones.
Then X+ = {C+, C−} and the cardinality of X+ is 2. On the other hand, the
cardinality of X is equal to p(p + 1). By Lemma 6.15, each element of X+ has at
most p conjugates, so it follows from Lemma 3.6 that

2p ≥ p|X+| ≥ |X| = p2 + p.

Contradiction. �

We conclude Section 6.2 by giving the proof of Proposition 6.9. Let Q be a finite
p-group of class at least 4 with int(Q) > 1. Let moreover M be a normal subgroup
of Q that is contained in Q4 with index p and denote Q = Q/M . Thanks to
Lemma 3.13, the intensity of Q is greater than 1, so it follows from Theorem 5.2(2)
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that (wtQ(1),wtQ(2),wtQ(3),wtQ(4)) = (2, 1, f, 1), where f ∈ {1, 2}. Lemma 6.17
yields f = 2 and the proof of Proposition 6.9 is complete.

6.3. A bound on the width

From Section 2.3, we recall that, given a finite p-group G and a positive integer
i, the i-th width of G is defined to be wtG(i) = logp |Gi : Gi+1|. The unique purpose
of Section 6.3 is to prove the following result.

Proposition 6.18. Let p be a prime number and let G be a finite p-group.
Let c denote the class of G. Assume c ≥ 3 and int(G) > 1. Then, for each i in
{1, 2, . . . , c− 1}, one has wtG(i) wtG(i+ 1) ≤ 2.

We devote the remaining part of this section to the proof of the last proposition.
Until the end of Section 6.3 we will work thus under the assumptions of Proposition
6.18, which imply that p is odd. We define

φ : G/G2 → Hom(Gc−1/Gc, Gc)

to be the homomorphism of groups that is induced by the commutator map and
remark that, using elementary commutator calculus, one can show that Gc−1 is
abelian. We first claim that φ is surjective. In order to prove so, we let α be an
intense automorphism of G of order int(G) and write A = 〈α〉. Now, the group
Gc−1 is abelian and, thanks to the combination of Lemma 3.15 with Theorem
2.9, there exists a unique A-stable complement M of Gc in Gc−1. The group A
acts in a natural way on the set of complements of Gc in Gc−1 and, the auto-
morphism α being intense, it follows from Lemma 3.5 that all complements of Gc
in Gc−1 are conjugate to M in G. On the other hand, by Lemma 4.6, the set
of complements of Gc in Gc−1 consists of the elements {mf(m) : m ∈M} as f
varies in Hom(M,Gc). It follows that, for each f ∈ Hom(M,Gc), there exists
x ∈ G, such that {mf(m) : m ∈M} = xMx−1. Fix the pair (f, x). Then, for all
m ∈ M , there exists n ∈ M such that mf(m) = xnx−1 = [x, n]n. It follows that
n−1m = [x, n]f(m)−1 belongs to M ∩ Gc = {1}, so m = n. We have proven that
f(m) = [x,m]. Now, the groups Hom(Gc−1/Gc, Gc) and Hom(M,Gc) are isomor-
phic and, the choice of f being arbitrary, each homomorphism f : Gc−1/Gc → Gc
is of the form mGc 7→ [x,m], for some x ∈ G. This proves the claim. Now, the
groups Gc−1/Gc and Gc are vector spaces over Fp, thanks to Lemma 4.4, and so
the dimension of Hom(Gc−1/Gc, Gc) is equal to wtG(c− 1) wtG(c). It follows then
from the last claim and Theorem 5.2(2) that

wtG(c− 1) wtG(c) = dim Hom(Gc−1/Gc, Gc) ≤ wtG(1) = 2.

Without loss of generality, we can assume that c = i+ 1 and so the proof of Propo-
sition 6.18 is complete.

We remark that Theorem 6.2 is the same as Proposition 6.18. Moreover, Theo-
rem 6.1 is given by the combination of Propositions 6.9 and 6.18.





CHAPTER 7

Higher Nilpotency Classes

The aim of this chapter is to gain better control of the p-power map on finite
p-groups of intensity greater than 1. We remind the reader that, if n is a positive
integer and G is a group, then Gn is equal to the subgroup of G that is generated
by the n-th powers of the elements of G, i.e. Gn = 〈xn : x ∈ G〉. One of the most
important results we achieve in Chapter 7 is the following.

Theorem 7.1. Let p be a prime number and let G be a finite p-group. Assume
that the class of G is at least 4 and that int(G) > 1. Then Gp = G3.

We remark that, whenever p is larger than 3, Theorem 7.1 cannot be extended to
groups of class 3. There are indeed examples, for p > 3, of finite p-groups of class
3, intensity greater than 1, and exponent p. We deal extensively with the case of
3-groups in Chapter 9.

7.1. Class 4 and intensity

The main purpose of Section 7.1 is to give the proof of the following proposition.

Proposition 7.2. Let p be a prime number and let G be a finite p-group of
class at least 4. Denote by (Gi)i≥1 the lower central series of G. If int(G) > 1,
then Gp = G3.

The following assumptions will be valid until the end of Section 7.1. Let p be a
prime number. Let moreover G be a finite p-group of class 4 and denote by (Gi)i≥1

the lower central series of G. For i ∈ {1, 2, 3, 4}, we define wi to be wtG(i) =
logp |Gi : Gi+1| (see Section 2.3). The following is an elementary result whose
proof we leave to the reader. The importance of Lemma 7.3 will be clear once we
will state Lemma 7.4.

Lemma 7.3. Assume that (w1, w2, w3, w4) = (2, 1, 2, 1) and that Z(G) = G4.
Then the commutator map induces a non-degenerate map G/G2 ×G3/G4 → G4.

We add here some extra assumptions and notation that will hold until the end of
Section 7.1. Let ρ : G → G be defined by x 7→ xp. Assume that int(G) > 1. It
follows that p is odd and the group G is non-trivial (see Section 3.2). Let moreover α
denote an intense automorphism of G of order 2 and write A = 〈α〉. In concordance
with Section 2.2, set

G+ = {g ∈ G : α(g) = g} and G− = {g ∈ G : α(g) = g−1}.

We will introduce some additional notation right before stating Lemma 7.8.

Lemma 7.4. One has (w1, w2, w3, w4) = (2, 1, 2, 1) and G has order p6. More-
over, Z(G) = G4.

43
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Proof. The quadruple (w1, w2, w3, w4) is equal to (2, 1, 2, 1) by Theorem 6.1
and the order of G is equal to p6, as a consequence of Lemma 2.16. The centre of
G is equal to G4 thanks to Lemma 6.7. �

Lemma 7.5. LetM be the collection of maximal subgroups of G and let N be the
collection of normal subgroups of G that contain G4 with index p. Let f :M→N
be defined by M 7→ Z(M). Then f is a bijection with inverse f−1 : N 7→ CG(N).

Proof. We first show that f is well-defined. To this end, let M be a maximal
subgroup of G. As a consequence of Lemmas 7.4 and 7.3, the subgroup G3 ∩ Z(C)
has index p in G3. The subgroup Z(C) being normal in G, Proposition 6.3 yields
Z(C) ⊆ G3 and |G3 : Z(C)| = |Z(C) : G4| = p. We next show that g : N → M,
sending N to CG(N), is well-defined. Let indeed N be a normal subgroup of G that
contains G4 with index p. As a consequence of Proposition 6.3, the subgroup M is
contained in G3. The commutator map from Lemma 7.3 being non-degenerate, it
follows that CG(M) is maximal in G. It is now easy to conclude, showing that f
and g are inverses to each other. �

Lemma 7.6. The map ρ induces a map ρ : G/G2 → G3/G4.

Proof. For each index i ∈ Z≥1, the subset ρ(Gi) is contained in Gi+2, as a
consequence of Proposition 4.12. In particular, ρ(G2) is contained in G4. Let x be
an element of G and define C = 〈x,G2〉; denote by (Ci)i≥1 the lower central series
of C. The quotient C/G2 is cyclic, so C2 = [C,G2]. It follows that C3 is contained
in G4, and, the prime p being odd, we get that Cp2Cp is contained in G4. Let now
y ∈ G2. By the Hall-Petrescu formula, we have that ρ(xy) ≡ ρ(x)ρ(y) mod Cp2Cp,
and therefore ρ(xy) ≡ ρ(x)ρ(y) mod G4. Since ρ(y) belongs to G4, the map ρ is
well-defined. �

Lemma 7.7. Let C be a maximal subgroup of G and assume that ρ(C \G2)∩G4

is not empty. Then ρ(C \G2) = {1}.

Proof. Let H be a cyclic subgroup of C, not contained in G2, and such that
ρ(H) ⊆ G4. Without loss of generality we assume that H is A-stable (otherwise we
can take a conjugate of H that is A-stable, thanks to Lemma 3.5). As a consequence
of Proposition 5.10, the automorphism α induces scalar multiplication by −1 on
H/(H ∩ G2), so, thanks to Lemma 2.6, the restriction of α to Hp coincides with
scalar multiplication by −1. However, the subgroup Hp being contained in G4, it
follows from Proposition 5.10 that α coincides with the identity map on Hp. Lemma
2.8 yields Hp = {1}, and, the choiche of H being arbitrary, we get ρ(C \ G2) =
{1}. �

For each maximal subgroup C of G, define YC to be the collection of abelian
subgroups of G that can be written as 〈x〉⊕〈y〉, with x ∈ C \G2 and y ∈ Z(C)\G4.
We will call Y +

C the set consisting of the A-stable elements of YC .

Lemma 7.8. Let C be a maximal subgroup of G and assume that ρ(C \G2)∩G4

is not empty. Let H be an element of YC . Then H has exponent p and H∩G4 = {1}.

Proof. Let H = 〈x〉 ⊕ 〈y〉 be an element of YC , where x ∈ C \ G2 and
y ∈ Z(C)\G4. The subgroup Z(C) is normal in G and, as a consequence of Lemma
7.5, contained in G3. From Proposition 4.12, it follows that Z(C) has exponent
p, and thus yp = 1. The element xp is 1, by Lemma 7.7, and so Hp = {1}. To
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conclude, assume that xayb ∈ H ∩G4. Then xa = (xayb)y−b belongs to H ∩G3, so
a ≡ 0 mod p. Since 〈y〉 ∩G4 = {1}, we conclude that H ∩G4 = {1}. �

Lemma 7.9. Let C be a maximal subgroup of G and assume that ρ(C \G2)∩G4

is not empty. Then the cardinality of Y +
C is equal to p.

Proof. We first claim that each element of Y +
C is contained in G−. To this

end, let H = 〈x〉⊕ 〈y〉 ∈ Y +
C , where x ∈ C \G2 and y ∈ Z(C) \G4. By Lemma 7.8,

the group H has exponent p and so the order of H is p2. Since dptG(x) = 1 and
dptG(y) = 3, Lemma 2.17 yields

|H| ≥ |H ∩G−| = pwtGH(1)pwtGH(3) ≥ p2 = |H|.
It follows that H ∩ G− = H and the claim is proven. Write C− = C ∩ G− and
Z(C)− = Z(C) ∩ G−. Fix moreover a basis (x, y) for a subgroup H of G, where
x ∈ C− \G2 and y ∈ Z(C)− \G4. Thanks to Lemma 7.8, the set of equivalent bases
for H is B = {(xayb, yc) : a, c ∈ F∗p, b ∈ Fp}, and thus |B| = p(p − 1)2. Thanks to
Lemmas 2.11 and 2.17, we compute

|Y +
C | =

|C− \G2| |Z(C−) \G4|
|B|

=
(p3 − p2)(p− 1)

p(p− 1)2
= p.

�

Lemma 7.10. Let C be a maximal subgroup of G and assume that ρ(C\G2)∩G4

is not empty. Then the cardinality of YC is equal to p4.

Proof. Fix (x, y) a basis for an element H ∈ YC , such that x ∈ C \ G2 and
y ∈ Z(C)\G4. As a consequence of Lemma 7.8, the set of equivalent bases for H is
B = {(xayb, yc) : a, c ∈ F∗p, b ∈ Fp}, and so B has cardinality p(p − 1)2. It follows
from Lemma 7.5 that

|YC | =
|C \G2| |Z(C) \G4|

|B|
=

(p5 − p4)(p2 − p)
p(p− 1)2

= p4.

�

Lemma 7.11. One has ρ−1(G4) ⊆ G2.

Proof. Assume by contradiction that there exists a maximal subgroup C of G
such that ρ(C\G2)∩G4 is not empty. We claim that the normalizer of each element
H of Y +

C is equal to HG4. Assume by contradiction that there exists K ∈ Y +
C such

that NG(K) 6= KG4. Then |G : NG(K)| < p3, and thus Lemma 3.6 yields

|YC | ≤
∑
H∈Y +

C

|G : NG(H)| < |Y +
C | p

3.

By Lemma 7.9, the cardinality of Y +
C is equal to p, so we get a contradiction to

Lemma 7.10. This proves the claim. In particular, given any H ∈ Y +
C , the A-

stable subgroup NG(H) does not contain G2. As a consequence of Lemma 2.17, the
subgroup G+ is not contained in NG(H). From the combination of Lemmas 2.15
and 3.6, we get that

|YC | <
∑
H∈Y +

C

|G : NG(H)| =
∑
H∈Y +

C

|G : HG4| ≤ |Y +
C |p

3.

Contradiction to Lemmas 7.9 and 7.10. �
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Lemma 7.12. Let ρ be as in Lemma 7.6. Let moreover C be a maximal subgroup
of G. Then the following hold.

1. The map ρ is a bijection.
2. One has Z(C) = Cp.

Proof. The restriction of ρ to any cyclic subgroup of G/G2 is a homomor-
phism, in particular the restriction to C/G2. As a consequence of Lemma 7.11,
the subgroup ρ(C/G2) has size p, and so Cp is not contained in G4. The subgroup
Cp is characteristic in the normal subgroup C, and therefore Cp is normal in G.
It follows from Proposition 6.3 that Cp contains G4, and so, if x ∈ C \ G2, then
Cp = 〈xp, G4〉. By Lemma 7.3, the commutator map induces a non-degenerate
map γ : G/G2 × G3/G4 → G4 and, if x ∈ C, then γ(xG2, x

pG4) = 1. It follows
that γ(C/G2, ρ(C/G2)) = 1 and so Cp ⊆ Z(C). Since γ is non-degenerate, we get
Cp = Z(C), and thus (2) is proven. We now prove (1). Denote byM the collection
of maximal subgroups of G. As a consequence of Lemma 7.5, the quotient G3/G4

is equal to
⋃
M∈M Z(M)/G4 =

⋃
M∈M ρ(M/G2) and so ρ is surjective. By Lemma

7.4, the indices |G1 : G2| and |G3 : G4| are equal, so the map ρ is a bijection. �

We remark that Theorem 7.1 is the same as Proposition 7.2, which we now prove.
Let Q be a finite p-group of class at least 4. Assume that int(Q) > 1. As a
consequence of Lemma 3.13, the groupQ/Q5 has intensity greater than 1, so Lemma
7.12 yields Q3 = QpQ5. The subgroup Qp being normal in Q, it follows from
Proposition 6.3 that Qp = Q3. The proof of Proposition 7.2 is now complete.

7.2. Class 5 and intensity

We recall that, if G is a finite group, we denote by (Gi)i≥1 the lower central
series of G. In this section, we prove the following result.

Proposition 7.13. Let p be a prime number and let G be a finite p-group of
class at least 5. If int(G) > 1, then Gp2 = G4.

We will keep the following assumptions until the end of Section 7.2. Let p be a prime
number and let G be a finite p-group. For any positive integer i, write wi = wtG(i)
and assume that |G5| = p. Then the class of G is 5. Assume moreover that
int(G) > 1, so that, thanks to Proposition 3.7, the prime p is odd. As a consequence
of Lemmas 3.13 and 7.4, we have moreover that (w1, w2, w3, w4, w5) = (2, 1, 2, 1, 1)
and that the order of G5 is p7. The centre of G is equal to G5 by Lemma 6.7. Let
α be an intense automorphism of G of order 2 and write A = 〈α〉. In concordance
with the notation from Section 2.2, write G+ = {x ∈ G : α(x) = x}. In conclusion,
define X to be the collection of all subgroups of G whose jumps in G (see Section
2.3) are exactly 2 and 4 and denote X+ = {H ∈ X : α(H) = H}. Lemma 2.16
ensures that the elements of X have order p2.

Lemma 7.14. Assume that G2 has exponent p. Let H be a subgroup of G.
Then H ∈ X if and only if there exist x ∈ G2 \ G3 and y ∈ G4 \ G5 such that
H = 〈x〉 ⊕ 〈y〉.

Proof. If H = 〈x〉⊕〈y〉, with x ∈ G2 \G3 and y ∈ G4 \G5, then H belongs to
X, thanks to Lemma 2.16. We prove the converse. The subgroup H has order p2

and H cannot be cyclic, because G2 has exponent p. The jumps of H in G being 2
and 4, it follows from Lemma 2.16 that there exist elements x and y in H of depths
respectively 2 and 4 in G. Since [G2, G4] = {1}, we have H = 〈x〉 ⊕ 〈y〉. �
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Lemma 7.15. Assume that G2 has exponent p. Then |X| = p4.

Proof. Thanks to Lemma 7.14, all elements H of X are of the form H =
〈x〉 ⊕ 〈y〉, with x ∈ G2 \ G3 and y ∈ G4 \ G5. Let (x, y) ∈ (G2 \ G3) × (G4 \ G5)
and let H be the Fp-vector space that is spanned by x and y. The collection
of equivalent bases for H is B = {(xayb, yc) : a, c ∈ F∗p, b ∈ Fp} and so B has

cardinality p(p− 1)2. We then have

|X| = |G2 \G3| |G4 \G5|
|B|

=
(p5 − p4)(p2 − p)

p(p− 1)2
= p4.

�

Lemma 7.16. The exponent of G2 is different from p.

Proof. We work by contradiction, assuming that the exponent of G2 is p.
Write C = CG3(G2) and N = CG+. The group G+ is contained in G2, thanks to
Lemma 2.17, so N is a subgroup of NG(G+). Using basic commutator calculus, it
is not difficult to show that C is contained in G3 with index at most p. It follows
from Lemma 2.16 that the order of N is at least p4 and so |G : N | ≤ p3. Now, as
a consequence of Lemma 2.17, the set X+ has only one element, namely G+, so
Lemma 3.6 yields

|X| ≤ |G : NG(G+)| ≤ |G : N | ≤ p3.

Contradiction to Lemma 7.15. �

Lemma 7.17. One has ρ(G2) = G4.

Proof. We first claim that the restriction of ρ to G2 is an endomorphism of
G2. Indeed, since G2/G3 is cyclic, one has [G2, G2] = [G2, G3] ⊆ G5 and so the
class of G2 is at most 2. The prime p being odd, the Hall-Petrescu formula yields
the claim. In particular, ρ(G2) is a characteristic subgroup of G and, by Lemma
7.16, it is non-trivial. Now, the centre of G is equal to G5 so G5 ∩ ρ(G2) is non-
trivial and therefore ρ(G2) contains G5. Thanks to Proposition 4.12, the quotient
G2/G4 is elementary abelian and so G5 ⊆ ρ(G2) ⊆ G4. There are now only two
possibilities: either ρ(G2) = G4 or ρ(G2) = G5. In the first case we are done, so
assume by contradiction the second. Then, by Lemma 6.5, each element of G2 \G3

has order p. It follows that G2 is equal to the union of two proper subgroups,
namely ker ρ|G2

and G3. Contradiction. �

We are finally ready to prove Proposition 7.13. To this end, let Q be a finite p-group
of class at least 5 with int(Q) > 1. Let moreover M be a normal subgroup of Q
that is contained in Q5 with index p. Then the group Q/M has class 5 and, as a
consequence of Lemma 3.13, the intensity of Q/M is greater than 1. By Lemma
7.17, the subgroups (Q2/M)p and Q4/M are equal, and so Qp2M = Q4. The sub-
group Qp2 being normal in Q, it follows from Proposition 6.3 that Qp2 = Q4. This
concludes the proof of Proposition 7.13.

We remark that Proposition 7.13 can be easily derived, when p is greater than
3, from Theorem 7.1. We will show a way of doing so in Section 8.1.





CHAPTER 8

A Disparity between the Primes

The main result of Chapter 8 is Theorem 8.1. We recall that, if G is a finite
p-group and i is a positive integer, then wtG(i) = logp |Gi : Gi+1|, where (Gi)i≥1

denotes the lower central series of G.

Theorem 8.1. Let p > 3 be a prime number and let G be a finite p-group with
int(G) > 1. Let c denote the class of G and assume that c ≥ 3. If i is a positive
integer such that wtG(i) wtG(i+ 1) = 1, then i = c− 1.

An equivalent way of formulating Theorem 8.1 is that of saying that, if G satisfies
the assumptions of Theorem 8.1 and we write wi = wtG(i), then

(wi)i≥1 = (2, 1, 2, 1, . . . , 2, 1, f, 0, 0, . . .) where f ∈ {0, 1, 2}.
The restriction to primes greater than 3 in Theorem 8.1 is superfluous; it is however
not worth the effort proving the result in general, since, as we will see in the next
chapter, 3-groups of intensity greater than 1 have class at most 4 and we know from
Theorems 5.2(2) and 6.1 that Theorem 8.1 is valid when c is 3 or 4.

8.1. Regularity

In Section 8.1 we make a distinction, for the first time, among the odd primes:
namely we separate the cases p = 3 and p > 3. The main result of this section is
Proposition 8.2, which determines which p-groups of intensity greater than 1 are
regular , i.e. such that, for any two of their elements x and y, there always exists
γ ∈ [〈x, y〉, 〈x, y〉]p such that (xy)p = xpypγ. For an overview of regular p-groups,
we refer to [Hup67, Ch. III.10].

Proposition 8.2. Let p be a prime number and let G be a finite p-group.
Assume that int(G) > 1. Then the following are equivalent.

1. The group G is not regular.
2. The class of G is larger than 2 and p = 3.

We will give the proof of Proposition 8.2 at the end of Section 8.1. We will rely on
the fact that, if p is a prime number and G is a finite p-group such that

i. the class of G is at most p− 1, or
ii. one has |G : Gp| < pp

then the group G is regular (see Sätze 10.2(a) and 10.13 in [Hup67, Ch. III]).

Lemma 8.3. Let p be a prime number and let G be a finite p-group. Assume
that G is regular. Then for all k ∈ Z≥0, the following hold.

1. One has Gp
k

= ρk(G).
2. One has µpk(G) = {x ∈ G : ρk(x) = 1}.
3. One has |µpk(G)| = |G : Gp

k |.
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Proof. The lemma is a combination of Sätze 10.5 and 10.7(a) from [Hup67],
Chapter 3. �

Lemma 8.4. Let p > 3 be a prime number and let G be a finite p-group. Assume
that int(G) > 1. Then the following hold.

1. The group G is regular.
2. If the class of G is at least 4, then G3 = ρ(G).

Proof. If the class of G is at most 4, then G is regular (class ≤ p − 1). We
assume that G has class at least 4. It follows from Lemma 3.13 that int(G/G5) is
larger than 1, and so, thanks to Lemma 7.4, the index |G : G3| is equal to p3. From
Theorem 7.1, we get that Gp = G3, and therefore |G : Gp| < pp. Then G is regular
and so, by Lemma 8.3, the set ρ(G) coincides with the subgroup Gp. �

We would like to stress that, for p > 3, Proposition 8.4(2) is a stronger version of
Theorem 7.1. In fact, not only G3 = Gp = 〈ρ(G)〉 but G3 coincides with the set of
p-th powers of elements of G.

Lemma 8.5. LetG be a finite 3-group that can be generated by 2 elements. If
G is regular, then G2 is cyclic.

Proof. See Satz 10.3(b) from [Hup67], Chapter III. �

Lemma 8.6. Let G be a finite 3-group with int(G) > 1. Then G is regular if
and only if G has class at most 2.

Proof. If G has class at most 2, then G is regular (class ≤ p − 1). Assume
by contradiction that G is regular of class at least 3. As a consequence of Theorem
5.2(2), the group G is 2-generated, and so, by Lemma 8.5, the subgroup G2 is cyclic.
Proposition 4.12 yields that G3 = {1}. Contradiction. �

We now give the proof of Proposition 8.2. To this end, let p be a prime number
and let G be a finite p-group with int(G) > 1. The intensity of G being greater
than 1, it follows from Proposition 3.7 that p is odd. The implication (2)⇒ (1) is
given by Lemma 8.6. We prove (1) ⇒ (2). Assume that G is not regular. Then
Lemma 8.4 yields p = 3 and so the class of G is larger than p − 1 = 2. The proof
of Proposition 8.2 is complete.

8.2. Rank

The rank of a finite group G is the smallest integer r with the property that each
subgroup of G can be generated by r elements. We denote the rank of G by rk(G).
We will prove the following.

Proposition 8.7. Let p > 3 be a prime number and let G be a finite p-group
of class at least 4. If int(G) > 1, then rk(G) = 3.

If G is a group and n is a positive integer, we set µn(G) = 〈x ∈ G : xn = 1〉.

Lemma 8.8. Let p be an odd prime number and let G be a non-trivial finite
p-group. Then one has rk(G) ≤ logp |µp(G)|.

Proof. This is is Corollary 2 from [Laf73]. �
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We give here the proof of Proposition 8.7. In order to do this, let p > 3 be a prime
number and let G be a finite p-group of class at least 4, with int(G) > 1. We first
claim that rk(G) ≤ 3. Indeed, by Theorem 7.1, the subgroup Gp is equal to G3

so the order of µp(G) is equal to |G : Gp| = |G : G3| (see [Hup67, Ch. III, Satz
10.7]). As a consequence of Theorem 6.1, the index |G : G3| is equal to p3, and thus
Lemma 8.8 yields rk(G) ≤ logp |G : G3| = 3. This proves the claim. To conclude
the proof of Proposition 8.7, it now suffices to present a subgroup of G whose min-
imum number of generators is at least 3. The group G/G5 has class 4 and, thanks
to Lemma 3.13, it has intensity greater than 1. As a consequence of Theorem 6.1,
the index |G2 : G4| is equal to p3 and, thanks to Proposition 4.12, the quotient
G2/G4 is elementary abelian. It follows that Φ(G2) ⊆ G4 and the minimum num-
ber of generators for G2 is at least logp |G2 : G4| = 3. Proposition 8.7 is now proven.

We would like to remark that, if p = 3, then Proposition 8.7 is not valid. We
will see indeed in the next chapter that finite 3-groups of class 4 and intensity
larger than 1 have a commutator subgroup that is elementary abelian of order p4,
so the rank of such groups is at least 4.

8.3. A sharper bound on the width

The aim of Section 8.3 is to give the proof of Proposition 8.9, which is the same
as Theorem 8.1.

Proposition 8.9. Let p > 3 be a prime and let G be a finite p-group with
int(G) > 1. Let c denote the class of G and assume that that c ≥ 3. If i is a
positive integer such that wtG(i) wtG(i+ 1) = 1, then i = c− 1.

We list here a number of assumptions that will hold until the end of Section 8.3.
Let p > 3 be a prime number and let G be a finite p-group with lower central
series (Gi)i≥1. Let c denote the class of G and, for each positive integer i, write
wi = wtG(i). Assume that int(G) > 1. Then, as a consequence of Proposition 3.7,
the prime p is odd and G is non-trivial. Let α be an intense automorphism of G of
order 2 and write A = 〈α〉. It follows from the work done in the previous chapters
that, under these assumptions, the following are satisfied:

i. if i ∈ Z≥1 is such that wiwi+1 = 1, then i > 1;
ii. if w2w3 = 1, then c = 3;
iii. if c > 3 and i ∈ Z≥1 is such that wiwi+1 = 1, then i ≥ 4.

Lemma 8.10. Let i ∈ Z≥1 be minimal such that wiwi+1 = 1. If c > 3, then i
is even and wi−1 = 2.

Proof. Assume c > 3. Then i − 1 > 1 and the width wi−1 is at most 2, as
a consequence of Theorem 6.2. The index i being minimal with the property that
wiwi+1 = 1, it follows that wi−1 = 2. Another consequence of the minimality of i
is that i is even. Indeed, thanks to Theorem 6.2 and the minimality of i, whenever
j < i, the product wjwj+1 is equal to 2. Moreover, by Theorem 5.2(2), we have
that w1 = 2, so i is even. �

Lemma 8.11. Let i ∈ Z≥1 be minimal such that wiwi+1 = 1. Assume that
c > 3 and that wi+2 = 1. Then Gi−1/Gi+3 has exponent p.
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Proof. We write G = G/Gi+3 and we will use the bar notation for the sub-
groups of G. The intensity of G is larger than 1 thanks to Lemma 3.13. The
group [Gi−1, Gi−1] is contained in G2i−2 and the index i is larger than 3. It follows
that [Gi−1, Gi−1] ⊆ G2i−2 ⊆ Gi+2, and therefore Gi−1 has class at most 2 and
[Gi−1, Gi−1]p = {1}. Thanks to the Hall-Petrescu formula, the p-power map is an

endomorphism of Gi−1. By Proposition 4.12, the subgroup G
p

i−1 is contained in

Gi+1 and, from Lemmas 8.3(3) and 8.10, it follows that

|µp(Gi−1)| = |Gi−1 : G
p

i−1| ≥ |Gi−1 : Gi+1| = p3.

Also the order of Gi is equal to p3 and, as a consequence of Proposition 6.3, the
subgroup Gi is contained in µp(Gi−1). The p-power map factors thus as a ho-

momorphism Gi−1/Gi → Gi+1. By Lemma 8.10, the index i is even, and so, by
Proposition 5.10, the automorphism of Gi−1/Gi that is induced by α is equal to
the inversion map. It follows from Lemma 2.6 that α restricts to the inversion map
on G

p

i−1. Moreover, again by Proposition 5.10, the action of A on Gi+2 is trivial.

It follows from Lemma 2.8 that G
p

i−1 ∩Gi+2 = {1}. The subgroup G
p

i−1 is clearly

characteristic in G, while the subgroup Gi+2 is equal to the centre of G, by Lemma

6.7. It follows that G
p

i−1 = {1}. �

We conclude Section 8.3 with the proof of Proposition 8.9. The integer i is larger
than 1 and, if i = 2, then c = 3 = i + 1. We assume that i is greater than 2,
so c > 3, and, without loss of generality, that i is minimal with the property that
wiwi+1 = 1. In particular, the subgroup Gi+1 is non-trivial. If Gi+2 = {1}, then
the class of G is equal to i + 1, and so i = c − 1. Assume now by contradiction
that Gi+2 is non-trivial and let N be a normal subgroup of G that is contained in
Gi+2 with index p. Write G = G/N so that Lemma 3.13 yields int(G) > 1. By
Lemma 8.10, the width wtG(i − 1) = wi−1 is equal to 2 so, by Lemma 2.16, the

order of Gi−1 is equal to p5. The index i being at least 4, the subgroup [Gi−1, Gi]
is contained in Gi+3 = {1}. It follows that Gi−1 and Gi centralize each other. Let
now M be a maximal subgroup of Gi−1 that contains Gi. The index |M : Gi| is
equal to p, because wi−1 = 2, and so [M,M ] = [M,Gi] = {1}. Moreover, the order
of M is equal to p4 and M has exponent p, because of Lemma 8.11. In particular,
M is a 4-dimensional vector space over Fp. Contradiction to proposition 8.7.



CHAPTER 9

The Special Case of 3-groups

Let R = F3[ε] be of cardinality 9, with ε2 = 0. Denote by A the quaternion algebra

A = R+Ri +Rj +Rk

with defining relations i2 = j2 = ε and k = ji = −ij. Let the bar map on A be
defined by

x = a+ bi + cj + dk 7→ x = a− bi− cj− dk.

We write m = Ai +Aj, which is a 2-sided nilpotent ideal of A, and we define MC(3)
to be the subgroup of 1 +m consisting of those elements x satisfying x = x−1. The
main result of this chapter is the following.

Theorem 9.1. Let G be a finite 3-group. Then the following are equivalent.

1. The group G has class at least 4 and int(G) > 1.
2. The group G has class 4, order 729, and int(G) = 2.
3. The group G is isomorphic to MC(3).

A considerable part of the present chapter is devoted to the proof of Theorem 9.1,
which is given in Section 9.7. An essential contribution to it is given by the theory
of “κ-groups” we develop.

Definition 9.2. A κ-group is a finite 3-group G such that |G : G2| = 9 and
with the property that the cubing map on G induces a bijective map κ : G/G2 →
G3/G4.

Our interest in κ-groups arises from Lemma 7.12(1), which asserts that, if p is an
odd prime number and G is a finite p-group of class at least 4 with int(G) > 1,
then the map x 7→ xp induces a bijection ρ : G/G2 → G3/G4. As a consequence
of Theorem 5.2, each finite 3-group of class at least 4 and intensity greater than 1
is a κ-group, where κ coincides with ρ. The reason why, in this chapter, we work
exclusively with 3-groups is that they are more “difficult to deal with”: several
techniques that apply to the case in which p is a prime larger than 3 do not apply
to the case of 3-groups of higher class, as the results from Chapter 8 suggest.
For example, it is not difficult to show, using properties of regular groups, that,
whenever p > 3 and G is a finite p-group, the map ρ : G/G2 → G3/G4 from
Lemma 7.12 is an isomorphism of groups, while, if G is a κ-group, then, given any
two elements x, y ∈ G/G2, one has

κ(xy) ≡ κ(x)κ(y)[xy−1, [x, y]] mod G4,

as we show in Lemma 9.7. What plays in our favour is that a finite 3-group G is a
κ-group if and only if G/G4 is a κ-group: to detect κ-groups it is thus sufficient to
be able to detect κ-groups among the finite 3-groups of class 3. We will prove the
following result.

53
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Theorem 9.3. Let G be a finite 3-group of class 3. Then G is a κ-group if and
only if G is isomorphic to MC(3) /MC(3)4.

In Section 9.4, we prove Theorem 9.3 by building κ-groups as quotients of a free
group: we give a sketch of the proof here. Let F be the free group on 2 generators
and let (Fi)i≥1 be defined recursively by F1 = F and Fi+1 = [F, Fi]F

3
i . Then

V = F/F2 is a vector space over F3 of dimension 2. Let moreover L = F3F
3 and

set F = F/([F,L]F 3
2 ); we use the bar notation for the subgroups of F . We will show

that the cubing map on F induces a map V → L, which we denote by c, and we
will construct, in Sections 9.3 and 9.4, isomorphisms of the following Aut(F )-sets,
all having cardinality 3.

IV = {k ⊆ End(V ) subfield : |k| = 9}
↓

KV = {κ : V → V ⊗
∧2

(V ) bijective : for all x, y ∈ V, one has
κ(x+ y) = κ(x) + κ(y) + (x− y)⊗ (x ∧ y)}

↓
P = {π ∈ Hom(L,F3) : π ◦ c is bijective, π|F̄3

= idF̄3
}

↓
N3 = {N ⊆ F normal subgroup : F/N is a κ-group of class 3}.

We will then prove that the natural action of Aut(F ) on IV is transitive and so
it will follow that Aut(F ) acts transitively on N3, leading to the fact that all κ-
groups of class 3 are isomorphic to the κ-group MC(3) /MC(3)4. To extend the
investigation of κ-groups to class 4, we consider the “smallest possible case” and
look at extensions of MC(3) /MC(3)4 by a group of order 3. In Section 9.5, we
prove the following result.

Theorem 9.4. Let G be a κ-group such that G4 has order 3. Then G2 is
elementary abelian.

It would be interesting to explore the world of κ-groups more extensively, however
Theorems 9.3 and 9.4 provide us with sufficient information on the structure of
κ-groups to be able to go into the proof of Theorem 9.1. Let G be a finite 3-group
of class at least 4. We have seen that a necessary condition for int(G) to be greater
than 1 is that of being a κ-group, however we can only hope to construct an intense
automorphism of G of order 2 if

(∗) there exists an automorphism of G of order 2 that inverts all elements of G
modulo G2.

We proved in Section 5.3 that such an automorphism can always be constructed
for G/G4, so we want to understand which conditions we need to impose on the
structure of G to be able to lift such an automorphism from G/G4 to G. For this
purpose, we define

N4 = {N ⊆ F normal subgroup : F/N is a κ-group of class 4 with
wtF/N (4) = 1 and satisfying (∗)}.

Via building a bijection N4 → N3, we will be able to prove that the natural action
of Aut(F ) on N4 is transitive and so that, given M and N in N4, the quotients
F/M and F/N are isomorphic. The group MC(3) being a κ-group of class 4 with
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wtMC(3)(4) = 1 and (∗), it follows that each quotient F/N , with N ∈ N4, is iso-
morphic to MC(3). Since MC(3) has an elementary abelian commutator subgroup,
Proposition 7.13 yields that each finite 3-group of intensity greater than 1 has class
at most 4.

9.1. The cubing map

In this section we prove some structural properties about κ-groups of class 4.
We remind the reader that, if G is a finite 3-group and i is a positive integer, then
the i-th width of G is defined to be wtG(i) = log3 |Gi : Gi+1| (see Section 2.3). We
warn the reader that we will make a set of assumptions, which will hold until the
end of Section 9.1, right after Lemma 9.9.

Lemma 9.5. Let G be a group of order 81 and class 3. Then the exponent of
G is different from 3.

Proof. It follows from the assuptions that wtG(1) = 2 and that wtG(2) =
wtG(3) = 1. Let now C = CG(G2). By Lemma 5.12, the centre of G is equal to G3

and C contains G2 with index 3. Let (a, b) ∈ G×C be such that {a, b} generates G
and define c = [a, b], which is an element of G2 \G3. Let moreover d be a generator
for G3. Assume by contradiction that the exponent of G is 3. Then C is elementary
abelian and, in particular, G2 = 〈c〉 ⊕ 〈d〉. Since G2 is central modulo G3 and d
generates G3, there exists an integer k such that aca−1 = cdk and dk 6= 1. Keeping
in mind that C is abelian, we compute

1 = (ba)3 = bababa = b(cba)(cba)a = b2cacba2 =

b2c2dkaba2 = b2c2dkcba3 = b3c3dk = dk.

Contradiction. �

We recall here that, if G is a group and n is a positive integer, then Gn is defined
to be Gn = 〈xn : x ∈ G〉.

Lemma 9.6. Let G be a finite 3-group of class 3 such that |G : G2| = 9. Then
G3 = G3.

Proof. Assume by contradiction that G3 6= G3 and let M be a normal sub-
group of G such that G3 ⊆M ⊆ G3 and |G3 : M | = 3. Then the exponent of G/M
is 3. Contradiction to Lemma 9.5. �

Lemma 9.7. Let G be a group of class at most 3 and assume that G2 has
exponent dividing 3. Then, for all x, y ∈ G, one has (xy)3 = x3y3[xy−1, [x, y]].

Proof. Use the fact thatG2 has exponent 1 or 3, the fact thatG3 is central and
the bilinearity of the map G/G2×G2/G3 → G3 that is induced by the commutator
map. �

Lemma 9.8. Let G be a finite 3-group of class at least 3 and assume that
|G : G2| = 9. Then the cubing map induces a map κ : G/G2 → G3/G4.

Proof. We assume without loss of generality that G4 = {1}. As a consequence
of Lemma 9.6, the image of the cubing map is contained in G3 and, by Lemma
5.13, the commutator subgroup of G has exponent 3. We now prove that the
map κ : G/G2 → G3, given by κ(xG2) = x3, is well-defined. To this end, let
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(x, y) ∈ G × G2. Then y3 = 1 and [y, x] belongs to G3, a central subgroup. From
Lemma 9.7, we get

(xy)3 = x3y3[[y, x], xy−1] = x3y3 = x3

so every element of xG2 has the same cube x3 in G, as claimed. �

We remark that, in concordance with Definition 9.2, the real requirement for a 3-
group G satisfying |G : G2| = 9 to be a κ-group is that the map from Lemma 9.8 is
a bijection. The reason why we are interested in κ-groups is given by the following
lemma.

Lemma 9.9. Let G be a finite 3-group of class 4 with int(G) > 1. Then G is a
κ-group.

Proof. Take p = 3 in Lemma 7.12(1). �

In the remaining part of this section, we will prove some structural results about
κ-groups. Until the end of Section 9.1, let thus G be a finite 3-group of class 4.
Let (Gi)i≥1 denote the lower central series of G and, for each i ∈ Z≥1, denote
wi = wtG(i). Assume that (w1, w2, w3, w4) = (2, 1, 2, 1) and, to conclude, let κ :
G/G2 → G3/G4 be the map from Lemma 9.8. It follows from these assuptions that
Φ(G) = G2, that G2 is abelian, and that the commutator map G×G2 → G3 induces
an isomorphism G/G2⊗G2/G3 → G3/G4. We recall that, if C is a group and n is a
positive integer, then Cn and µn(C) are respectively defined as Cn = 〈xn : x ∈ C〉
and µn(C) = 〈x ∈ C : xn = 1〉.

Lemma 9.10. Let C be a maximal subgroup of G. Then G4C
3 ⊆ Z(C).

Proof. The subgroup G4 is central in G, so G4 is contained in Z(C). The
commutator map induces a homomorphism γ : G/G2 ⊗ G3/G4 → G4 and, C/G2

being cyclic, the subgroup γ(C/G2 ⊗ κ(C/G2)) is trivial. The quotient G4C
3/G4

being equal to κ(C/G2), it follows that G4C
3 ⊆ Z(C). �

Lemma 9.11. Assume that G is a κ-group. Then Z(G) = G4.

Proof. We first claim that G4 ⊆ Z(G)G3. The subgroup G4 is contained in
Z(G) and, as a consequence of Lemma 5.12, one has Z(G)/G4 ⊆ Z(G/G4) = G3/G4.
Since the class of G is 4, the claim is proven. Now, G2 is equal to Φ(G) and so, the
dimension w1 being equal to 2, the group G has precisely 4 maximal subgroups. We
claim that there exists at most one maximal subgroup C of G such that G3 ⊆ Z(C).
Let indeed C and D be maximal subgroups of G such that G3 is contained in
Z(C) ∩ Z(D). Then CD centralizes G3 and, the class of G being equal to 4, the
subgroup CD is different from G. It follows that C = D and thus the claim is
proven. As a consequence of it, there exist two distinct maximal subgroups C
and D of G such that neither Z(C) nor Z(D) contains G3. Fix such C and D.
Since κ is a bijection and w3 = 2, Lemma 9.10 yields Z(C) ∩ G3 = C3G4 and
Z(D) ∩ G3 = D3G4. Now, the subgroup Z(G) contains G4 and is contained in
Z(C) ∩ Z(D) ∩ G3 = C3G4 ∩ D3G4. The map κ being a bijection, the subgroup
C3G4 ∩D3G4 is equal to G4 and therefore Z(G) = G4. �

Lemma 9.12. Let C be a maximal subgroup of G. Assume moreover that G is
a κ-group and that G2 has exponent 3. Then [C,C] ∩ Z(C) = G4.
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Proof. The quotient C/G2 is cyclic of order 3 so [C,C] = [C,G2]. It follows
that [C,C] is contained in G3 and that the index of ([C,C]G4)/G4 in G3/G4 is
equal to |G : C| = 3. In particular, [C,C] is non-trivial. Now, [C,C] is normal in G
and thus [C,C] ∩ Z(G) 6= 1. Moreover, by Lemma 9.11, the centre of G is equal to
G4 and so [C,C] contains G4. As a result, [C,C] is equal to [C,C]G4 and it has thus
cardinality 9. In an analogous way, since G is a κ-group, the normal subgroup C3

is non-trivial and it contains G4. However, C3 is different from G4 because G is a
κ-group. We have proven that G4 is contained in [C,C]∩Z(C). We assume now by
contradiction that [C,C] ∩ Z(C) is different from G4. It follows that [C,C] ∩ Z(C)
has cardinality at least 9, which is the same as the cardinality of [C,C]. Then
[C,C] is contained in Z(C) and so it follows from the Hall-Petrescu formula that
the cubing map is an endomorphism of C. By assumption, the exponent of G2 is
3, and so |C3| = |C : µ3(C)| ≤ |C : G2| = 3. Since C3 contains G4, we get that
C3 = G4. Contradiction. �

Lemma 9.13. Assume that G is a κ-group. Then G3 has exponent 3.

Proof. The subgroup G2 is abelian and G3
2 is contained in G4, as a conse-

quence of Lemma 9.8. It follows that µ3(G2) has cardinality at least |G2 : G4| = 27.
Set N = µ3(G2) ∩G3. We denote G = G/N and use the bar notation for the sub-
groups of G. If G3 = {1}, then G3 is contained in µ3(G2) and we are done.
Assume by contradiction that G3 is non-trivial. Then G3 has cardinality at least 3
so, µ3(G2) consisting of at least 27 elements, it follows that µ3(G2) is non-trivial.

However, µ3(G2) has trivial intersection with G3, which is equal to Z(G), thanks
to Lemma 5.12. Contradiction. �

9.2. A specific example

This section is entirely devoted to understanding the structure of the group
MC(3), which is defined at the beginning of the present chapter. The name MC(3)
refers to the fact that MC(3) turns out to be an example of maximal class among
the finite 3-groups of intensity greater than 1. Moreover, as stated in Theorem 9.1,
given any finite 3-group G of class at least 4, either int(G) = 1 or G is isomorphic
to MC(3). We recall the definition of MC(3).

Let R = F3[ε] be of cardinality 9, with ε2 = 0, and let A denote the quaternion
algebra

(
ε,ε
R

)
. In other words, A is given by

A = R+Ri +Rj +Rk

with defining relations i2 = j2 = ε and k = ji = −ij. The ring A has a unique
(left/right/2-sided) maximal ideal m = Ai + Aj and the residue field k = A/m is
equal to F3. The algebra A is also equipped with a natural anti-automorphism of
order 2, which is defined by

x = s+ ti + uj + vk 7→ x = s− ti− uj− vk.

We define MC(3) to be the subgroup of 1+m consisting of those elements x satisfying
x = x−1. We denote by (MC(3)i)i≥1 the lower central series of MC(3) and, for
each i ∈ Z≥1, we define moreover Mi = (1 + mi) ∩ G. One easily shows that
(Mi)i≥1 is central and that, for each i ≥ 1, the commutator map induces a map
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M1/M2 ×Mi/Mi+1 → Mi+1/Mi+2 whose image generates Mi+1/Mi+2. For each
i ≥ 1, it follows that Mi+1 = [M1,Mi] and, since M1 = G, we have that

MC(3)i = MC(3)∩(1 + mi).

The rest of the present section is devoted to the proof of some technical Lemmas
that we will use in the proof of Theorem 9.1.

Lemma 9.14. The group MC(3) has class 4 and order 729.

Proof. We start by proving that MC(3) has order 729. The cardinality of R
is equal to 9 and therefore the cardinality of A is 94. Since A/m is isomorphic to F3,
the cardinality of m is equal to (94/3) = 37 and therefore also 1 +m has cardinality
37. Now, asking for an element x ∈ 1 + m to satisfy xx = 1 lowers our freedom in
the choice of coordinates of x by 1 and therefore G has cardinality 36 = 729. To
conclude the proof, we note that MC(3)5 is trivial, because m5 = {0}, while 1 + εk
is a non-trivial element of MC(3)4. It follows that MC(3) has class 4. �

Lemma 9.15. Set G = MC(3) and, for each i ∈ Z≥1, denote wi = wtG(i).
Then the following hold.

1. One has (w1, w2, w3, w4) = (2, 1, 2, 1).
2. There exist generators a and b of G such that a3 ≡ [b, [a, b]]−1 mod G4

and b3 ≡ [a, [a, b]] mod G4.

Proof. (1) Let i ∈ {1, 2, 3, 4}. Then the function G → m that is defined by
x 7→ x − 1 induces an injective homomorphism di : Gi/Gi+1 → mi/mi+1, which
commutes with the bar map of A. Now, for each element x ∈ Gi, one has that
x− 1 + (x− 1) belongs to mi+1 and therefore the image of di is contained in Di =
{y + mi+1 : y ∈ mi, y + y ∈ mi+1}. With an easy computation, one shows that Di

coincides with the image of di and, consequently, that (w1, w2, w3, w4) = (2, 1, 2, 1).
To prove (2), define

a = 1− ε+ i and b = 1− ε+ j

and note that a and b belong to G. Since w1 = 2 and a and b are linearly indepen-
dent modulo G2 = G ∩ (1 + m2), the group G is generated by a and b. Using the
defining properties of A, we compute a3 = 1 + εi and b3 = 1 + εj. Define c = [a, b],
d = [a, c], and e = [b, c]. Then, working modulo G3, we get

c = abab ≡ 1− k mod G3.

Moreover, one has d ≡ [a, 1 + k] mod G4 and e ≡ [b, 1 + k] mod G4 and it is now
easy to compute d ≡ 1 + εj mod G4 and e ≡ 1 − εi mod G4. It follows that both
ea3 and d−1b3 belong to G4 and so the proof is complete. �

We remind the reader that, in concordance with Definition 9.2, a κ-group is a finite
3-group G such that |G : G2| = 9 and such that the cubing map on G induces a
bijection G/G2 → G3/G4.

Lemma 9.16. The group MC(3) is a κ-group.

Proof. Write G = MC(3) and, for each i ∈ Z≥1, denote wi = wtG(i). By
Lemma 9.14, the group G has class 4 and, by Lemma 9.15(1), one has w1 = w3 = 2
and w2 = w4 = 1. Let κ : G/G2 → G3/G4 be as in Lemma 9.8; we want to show
that κ is a bijection. Let a and b be as in Lemma 9.15(2) and define d = [a, [a, b]]
and e = [b, [a, b]]. Then κ(a) ≡ e−1 mod G4 and κ(b) ≡ d mod G4. Moreover, since
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w2 = 1, the elements d and e generate G3 modulo G4. We claim that κ is surjective.
Let r, s be integers and let y = dser. If r = 0 or s = 0, then κ(bs) ≡ y mod G4

or κ(a−r) ≡ er mod G4. The quotient G3/G4 being elementary abelian, we may
now assume that r and s are both non-zero modulo 3 and they satisfy therefore
r2 ≡ s2 ≡ 1 mod 3. Define x = arb−s. Working modulo G4, we get from Lemma
9.7 that

κ(x) ≡ a3rb−3s[arbs, [ar, b−s]] ≡ e−rd−s[a, [a, b]]−r
2s[b, [a, b]]−rs

2

≡ e−r−rs
2

d−s−r
2s

≡ e−2rd−2s ≡ y mod G4.

The widths w1 and w3 being the same, it follows that κ is a bijection. �

Lemma 9.17. Define α : MC(3)→ MC(3) by

x = s+ ti + uj + vk 7→ α(x) = s− ti− uj + vk.

Then α is an automorphism of order 2 of MC(3) that induces the inversion map
on MC(3) /MC(3)2.

Proof. Set G = MC(3). It is easy to check that α is an automorphism of order
2 of G, so we prove that α induces the inversion map on G/G2. The subgroup G2 is
equal to G∩ (1+m2) and, thanks to Lemma 9.15(1), the group G/G2 is elementary
abelian of order 9. We define a = 1 − ε + i and b = 1 − ε + j. Then a and b span
G modulo G2 and α(a) = ā = a−1 and α(b) = b̄ = b−1. The quotient G/G2 being
commutative, the map G/G2 → G/G2 that is induced by α is x 7→ x−1. �

We conclude Section 9.2 by remarking that another characterization of MC(3) has
been provided by Derek Holt and Frieder Ladisch; this characterization was found
using computer algebra systems. The group MC(3) turns out to be isomorphic
to a Sylow 3-subgroup of the Schur cover 3.J3 of the simple Janko-3 group J3. If
S is a Sylow 3-subgroup of 3.J3 and N denotes the normalizer of S in 3.J3, then
conjugation under any element of order 2 of N restricts to an automorphism of order
2 of S that induces the inversion map on the abelianization. The isomorphism class
of MC(3) is denoted by [729, 57] in the GAP system.

9.3. Structures on vector spaces

Until the end of Section 9.3, the following notation will be adopted. Let V
be a 2-dimensional vector space over F3. A κ-structure on V is a bijective map
κ : V → V ⊗

∧2
V such that, for each x, y ∈ V , one has

(A1) κ(x+ y) = κ(x) + κ(y) + (x− y)⊗ (x ∧ y).

We denote by KV the collection of κ-structures of V and by IV the collection of
subfields of End(V ) of cardinality 9. We remark that, for each element k of IV ,
there exists i ∈ End(V ) such that i2 = −1 and k = F3[i]. Moreover, V is naturally
a vector space of dimension 1 over each of the elements of IV . The rest of Section
9.3 will be devoted to the proof of the following result. Until the end of Section
9.3, all tensor and wedge products will be defined over F3.

Proposition 9.18. Let V be a 2-dimensional vector space over F3 and let the
map sV : IV −→ KV be defined by

k = F3[i] 7→ (x 7→ ix⊗ (ix ∧ x)).

Then sV is a bijection. Moreover, the cardinality of KV is equal to 3.
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As the goal of this section is to prove Proposition 9.18, we will respect the notation
of the very same proposition until the end of Section 9.3.

We put a field structure on V , via an F3-linear isomorphism with F9. We de-
fine then Λ to be the collection of bijective maps λ : V → V such that, for all
x, y ∈ V , one has

(A2) λ(x+ y) = λ(x) + λ(y) + (x− y)(xy3 − x3y).

We let moreover σV : IV → ΛV be defined by

k = F3[i] 7→ (x 7→ ix((ix)x3 − (ix)3x)).

Lemma 9.19. The map V → V , defined by x 7→ x5, is an element of Λ.

Proof. The group of units of V has order 8 and, since 8 and 5 are coprime,
the map x 7→ x5 is a bijection V ∗ → V ∗ which extends to a bijection V → V . Let
now x and y be elements of V . Keeping in mind that V has characteristic 3, one
computes

(x+ y)5 =
5∑
k=0

(
5

k

)
xky5−k = x5 + y5 + (x− y)(xy3 − x3y)

and therefore x 7→ x5 satisfies (A2). �

Lemma 9.20. The map σV is well-defined.

Proof. Let k = F3[i] be an element of IV . The group k∗ is cyclic of order 8
and there are therefore exactly two square roots of −1 in k, namely i and −i. Now,
for each element x of V , we have

ix((ix)x3 − (ix)3x)) = −ix((−ix)x3 − (−ix)3x))

and thus k gives a map V → V . Let now k → V denote an isomorphism of fields
and identify i with its image in V . Then, for each x ∈ V , we have

ix((ix)x3 − (ix)3x) = x(ix)2(x2 − (ix)2) = −x3(x2 + x2) = x5

and so, as a consequence of Lemma 9.19, the map σV is well-defined. �

Lemma 9.21. Let PV denote the collection of 1-dimensional subspaces of V .
Then the natural homomorphism Aut(V ) → Sym(PV ) induces an isomorphism
Aut(V )/F∗3 → Sym(PV ).

Proof. The natural map Aut(V ) → Sym(PV ) factors as an injective ho-
momorphism Aut(V )/F∗3 → Sym(PV ), which is in fact also surjective, because
|Aut(V ) : F∗3| = 24 = |S4 | = |Sym(PV )|. �

Lemma 9.22. The set IV has cardinality 3. Moreover, the action by conjugation
of Aut(V ) on IV is transitive.

Proof. Let f : IV → Aut(V )/F∗3 be defined by k = F3[i] 7→ iF∗3 and observe
that, since F3[i] = F3[−i], the map f is well-defined. Moreover, since each element
of IV is uniquely determined, modulo F∗3, by a square root of −1, the map f is
injective. Let PV denote the collection of 1-dimensional subspaces of V and let ε :
Aut(V )/F∗3 → S4 be the composition of the isomorphism Aut(V )/F∗3 → Sym(PV )
from Lemma 9.21 with a given isomorphism Sym(PV ) → S4. Then (ε ◦ f)(IV )
consists of elements of order 2. Now, each element k of IV can be written as
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k = F3[i], with i2 = −1, and this suffices to show that (ε◦f)(IV ) is in fact contained
in the Klein subgroup V4 of S4. The set V4 \ {1} forms a unique conjugacy class in
S4 and thus the elements of IV form a unique orbit under the action by conjugation
of Aut(V ). Since the set V4 \ {1} has cardinality 3, the cardinality of IV is also
equal to 3. �

Lemma 9.23. Write V = F3[i], with i2 = −1. Then the map
∧2

V → F3i
defined by x ∧ y 7→ xy3 − x3y is an isomorphism of vector spaces.

Proof. Let φ : V × V → V be defined by (x, y) 7→ xy3 − x3y. It is easy to
show that φ is alternating and that φ(V × V ) is contained in F3i, the eigenspace
of the Frobenius homomorphism that is associated to −1. Moreover, the map φ is
non-zero. It follows that φ induces a linear homomorphism φ′ :

∧2
V → F3i that is

non-trivial. Since both
∧2

V and F3i have dimension 1 over F3, the map φ′ is an
isomorphism. �

Write V = F3[i] with i2 = −1. Define θ : V ⊗
∧2

V → V ⊗ F3i by

θ(a⊗ (x ∧ y)) = a⊗ (xy3 − x3y)

and note that θ is an isomorphism of vector spaces, as a consequence of Lemma
9.23. Let moreover µ : V ⊗ F3i → V be the isomorphism of vector spaces that is
defined by x⊗ y 7→ xy. We keep this notation until the end of Section 9.3.

Lemma 9.24. The map lV : KV → Λ that is defined by κ 7→ µ◦θ◦κ is bijective.

Proof. Let κ be an element of KV . Then lV (κ) is bijective, because it is the
composition of bijective maps, and, for each x, y ∈ V , one has

lV (κ)(x+ y) = µ ◦ θ ◦ κ(x+ y) = lV (κ)(x) + lV (κ)(y) + (x− y)(xy3 − x3y).

We have proven that lV (κ) belongs to Λ and so lV is well-defined. Moreover, lV is
bijective, because µ and θ are bijective. �

Lemma 9.25. Let lV be as in Lemma 9.24. Then σV = lV ◦ sV and sV is
well-defined.

Proof. Let k = F3[i] be an element of IV . Let moreover κ and λ respectively
denote sV (k) and σV (k). Then one has lV (κ)(x) = µ◦θ(ix⊗ ix∧x) = λ(x) and so,
the choices of k and x being arbitrary, σV = lV ◦ sV . As a consequence, the map
sV is well-defined. �

Lemma 9.26. The map sV is injective.

Proof. Let k and k′ be elements of IV and let i, j ∈ End(V ) be such that
k = F3[i], k′ = F3[j], and i2 = j2 = −1. Assume moreover that sV (k) = sV (k′).
For each x ∈ V , we have F3x+ F3ix = V = F3x+ F3jx and therefore there exists
ωx ∈ {±1} such that ix ≡ ωxjx mod F3x. For each x ∈ V , it then follows that

jx⊗ (jx ∧ x) = ix⊗ (ix ∧ x) = ix⊗ ((ωxjx) ∧ x) = ωxix⊗ (jx ∧ x)

and, µ◦θ being bijective, jx and ωxix are the same. The choice of x being arbitrary,
we get

V = {x ∈ V : ix = jx} ∪ {x ∈ V : ix = −jx}
and so, V being equal to the union of two subgroups, either i = j or i = −j. In
either case, i and j are linearly dependent over F3 and so k = k′. �
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Lemma 9.27. Let φ be an F3-linear endomorphism of V . Then there exist
unique a, b ∈ V such that, for each x ∈ V , one has φ(x) = ax3 + bx.

Proof. The characteristic of V being 3, for each pair (a, b) in V 2, the map
x 7→ ax3 + bx is an F3-linear endomorphism of V . The order of End(V ) being
equal to the order of V 2, it follows that each element ψ of End(V ) is of the form
x 7→ ax3 + bx, where a, b ∈ V are uniquely determined by ψ. In particular, this
holds for φ. �

Lemma 9.28. Let λ ∈ Λ. Then there exist a, b ∈ V such that, for each x ∈ V ,
one has λ(x) = x5 + ax3 + bx.

Proof. Because of (A2), the difference of any two elements of Λ belongs to
End(V ), so, thanks to Lemma 9.19, we have λ ∈ (x 7→ x5) + End(V ). It now
follows from Lemma 9.27 that there exist a, b ∈ V such that, for each x ∈ V , we
have λ(x) = x5 + ax3 + bx. �

Lemma 9.29. Let m be a positive integer and let q be a prime power. Then∑
x∈Fq

xm =

{
−1 when (q − 1)|m
0 otherwise

Proof. This is Lemma 2.5.1 from [Coh07]. �

Lemma 9.30. Let λ ∈ Λ. Then there exists b ∈ V such that, for each x ∈ V ,
one has λ(x) = x5 + bx.

Proof. Let a, b ∈ V be as in Lemma 9.28. By definition of Λ, the map λ is
bijective so each element of V belongs to the image of λ. With x replaced by λ(x),
Lemma 9.29 yields

0 =
∑
x∈V

λ(x)2 =
∑
x∈V

(x5 + ax3 + bx)2 =
∑
x∈V

2ax8 = −2a.

It follows that a = 0 and therefore, for each x ∈ V , one has λ(x) = x5 + bx. �

Lemma 9.31. The cardinality of Λ is at most 3.

Proof. Let λ ∈ Λ and let b ∈ V be as in Lemma 9.30. The map λ is bijective
and so, with x replaced by λ(x), Lemma 9.29 gives

0 =
∑
x∈V

λ(x)4 =
∑
x∈V

(x5 + bx)4 =
∑
x∈V

(bx16 + b3x8) = −b(1 + b2).

It follows that there are at most 3 choices for b in V and thus Λ has cardinality at
most 3. �

We conclude Section 9.3 by giving the proof of Proposition 9.18. The function
sV : IV → KV is injective by Lemma 9.26 and, by Lemma 9.22, the cardinality of
IV is equal to 3. It follows that KV has at least 3 elements. Now, as a consequence of
Lemma 9.24, the set Λ has the same cardinality as KV and thus, as a consequence
of Lemma 9.31, the cardinality of KV is equal to 3. From its injectivity, it now
follows that sV is bijective. The proof of Proposition 9.18 is complete.
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9.4. Structures and free groups

We recall that a κ-group is a finite 3-group G such that |G : G2| = 9 and such
that the cubing map on G induces a bijection G/G2 → G3/G4. In particular, each
κ-group is 2-generated. In the present section, we consider κ-groups of class 3 and
we prove the following main result.

Proposition 9.32. Let G be a finite 3-group of class 3. Then G is a κ-group
if and only if G is isomorphic to MC(3) /MC(3)4.

Our strategy, for proving Proposition 9.32, will be that of constructing all κ-groups
of class 3 as quotients of a free group. To this end, the following assumptions will
be valid until the end of Section 9.4. Let F be the free group on two generators
and let (Fi)i≥1 denote the lower 3-series of F , which we recall from Section 5.3 to
be defined by

F1 = F and Fi+1 = [F, Fi]F
3
i .

We remark that the notation we use for the lower 3-series is not concordant with
our usual notation (see Exceptions in List of Symbols). We denote

V = F/F2, L = F3F
3, and E = [F,L]F 3

2 .

The group V is a vector space of dimension 2 over F3, so we let KV be defined as
in Section 9.3. We write moreover F = F/E and we use the bar notation for the
subsets of F . We define additionally N3 to be the collection of normal subgroups
N of F with the property that F/N is a κ-group of class 3.

Lemma 9.33. The map c3 : F → L/F3, defined by x 7→ x3F3, is surjective.
Moreover, c3 induces an isomorphism V → L/F3 and |L : F3| = 9.

Proof. As a consequence of the Hall-Petrescu formula, the map c3 is a sur-
jective homomorphism, which, F 3

2 being contained in F3, factors as a surjective
homomorphism c2 : V → L/F3. Since V has order 9, the order of L/F3 is at most
9. Let now A = Z/9Z × Z/9Z and let ψ : F → A be a surjective homomorphism.
Then F3 is contained in kerψ and, since L = F 3F3, the group ψ(L) is equal to
3Z/9Z × 3Z/9Z, which has order 9. As a consequence, |L : F3| = 9 and c2 is an
isomorphism. �

Lemma 9.34. The commutator map F × F2 → F3 induces an isomorphism
δ : F/F2 ⊗ F2/L→ F3. Moreover, |F3 : E| = 9.

Proof. The subgroup F3 is central in F and so the commutator map F×F2 →
F3 is bilinear. Moreover, thanks to Lemma 5.27, the quotient F2/L is cyclic of
order 3 and so [F2, F2] = [F2, L]. The commutator map induces thus a surjective
homomorphism δ : F/F2 ⊗ F2/L → F3 and therefore |F3 : E| ≤ 9. We now claim
that |F3 : E| ≥ 9. Thanks to Lemma 9.15, the abelianization of MC(3) has order 9
and thus MC(3) is 2-generated. Let φ : F → MC(3) be a surjective homomorphism
and denote by π the natural projection MC(3) → MC(3) /MC(3)4. Lemma 5.27
yields L = (π◦φ)−1(MC(3)3 /MC(3)4) and thus, as a consequence, we have φ(L) =

MC(3)3. Moreover, thanks to Lemma 5.13, the subgroup MC(3)
3
2 is contained in

MC(3)4 and therefore φ(F 3
2 ) ⊆ MC(3)4. It follows that φ(F3) = MC(3)3 and also

that φ(E) = MC(3)4. Lemma 9.15(1) yields |F3 : E| ≥ |MC(3)3 : MC(3)4 | = 9.
This proves the claim and therefore |F3 : E| = 9 and δ is an isomorphism. �
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Z/9Z× Z/9Z

9

Foo

9

// MC(3)

9

3Z/9Z× 3Z/9Z

9

F2

3

// MC(3)2

3

0 L = F3F
3

gg

9

// MC(3)3

9

F3

__

9

66

MC(3)4

E = [F,L]F 3
2

::

Lemma 9.35. The group L is an F3-vector space of dimension 4.

Proof. The group L is central in F and so it is abelian. Moreover L3 is
contained in E. It follows that L is naturally a vector space over F3, which has
dimension 4, thanks to Lemmas 9.33 and 9.34. �

Lemma 9.36. The commutator map F × F2 → F3 induces an isomorphism
γ : V ⊗

∧2
V → F3.

Proof. The subgroup F2 is central modulo L so the commutator map F ×
F → F2/L is bilinear. Since [F, F2] is contained in L, we get a bilinear map
V × V → F2/L, which is also alternating. By the universal property of wedge

products, the last map factors as a homomorphism θ :
∧2

V → F2/L mapping x∧y
to [x, y]. By Lemma 5.27, the cardinality of F2/L is equal to 3, which is the same

as the cardinality of
∧2

V and so, being non-trivial, θ is an isomorphism of groups.
We conclude by defining γ = δ ◦ (1⊗ θ), where δ is as in Lemma 9.34. �

Lemma 9.37. Let γ be as in Lemma 9.36 and use the additive notation for the
vector spaces V and L. Then the cubing map on F induces a map c : V → L such
that, for each x, y ∈ V , one has

c(x+ y) = c(x) + c(y) + γ((x− y)⊗ (x ∧ y)).

Proof. The group F has class at most 3 and [F , F ] has exponent dividing 3.
By Lemma 9.7, given any two elements x, y of F , one has (xy)3 = x3y3[xy−1, [x, y]].
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Since both F 3
2 and [F, [F, F2]] are contained in E, cubing on F induces a map

c : V → L. Using the additive notation for V and L, it follows that, for each
x, y ∈ V , one has c(x+ y) = c(x) + c(y) + γ((x− y)⊗ (x ∧ y)). �

Lemma 9.38. Let 0 → A
ι→ B

σ→ C → 0 be a short exact sequence of abelian
groups. Let moreover s : C → B be a function such that σ ◦ s = idC . Write
R = {f ∈ Hom(B,A) : f ◦ ι = idA} and let H be the collection of maps g : C → A
such that, for all u, v ∈ C, one has

ι(g(u+ v)− g(u)− g(v)) = s(u+ v)− s(u)− s(v).

Then the function R → H that is defined by f 7→ f ◦ s is bijective.

Proof. Let ν : R → H be defined by f 7→ f ◦ s. We first prove that ν is
well-defined. To this end, let f ∈ R and let u, v ∈ C. Since σ ◦s = idC , the element
s(u + v) − s(u) − s(v) belongs to kerσ = ι(A). Since f ◦ ι = idA, we get that
ι ◦ f|ι(A) = id|ι(A) and therefore

ι((f ◦ s)(u+ v)− (f ◦ s)(u)− (f ◦ s)(v)) = s(u+ v)− s(u)− s(v).

We have proven that ν is well-defined. We now prove that ν is injective. Let
f, h ∈ R be such that ν(f) = ν(h). Since f ◦ ι = h ◦ ι = idA, the group ι(A) is
contained in ker(f − h) and thus f − h induces a homomorphism B/ι(A) → A.
Now, B/ι(A) = {s(c) + ι(A) : c ∈ C} and, the maps f ◦ s and h ◦ s being the same,
we get f − h = 0. The maps f and g are the same and ν is injective. To conclude,
we prove that ν is surjective. Let g ∈ H. Since each element x of B can be written
uniquely as x = ι(a) + s(u), with a ∈ A and u ∈ C, we define f : B → A by

x = ι(a) + s(u) 7→ f(x) = a+ g(u).

For each u ∈ C, we have then f ◦ s(u) = g(u). Relying on the facts that g ∈ H
and that g(C) is contained in A, one shows that f is a homomorphism and so ν is
surjective. �

Proposition 9.39. Let c be as in Lemma 9.37 and let γ be as in Lemma 9.36.
Set

P = {π ∈ Hom(L,F3) : π|F̄3
= idF̄3

, π ◦ c bijective}
and let tV : P → KV be defined by π 7→ γ−1 ◦ π ◦ c. Then tV is a bijection and P
has cardinality 3.

Proof. Let c2 : V → L/F3 be the isomorphism from Lemma 9.33. Composing
the canonical projection L → L/F3 with c−1

2 , we get the short exact sequence of

abelian groups 0 → F3 → L → V → 0. With A = F3, B = L, C = V , and s = c,
Lemma 9.38 applies. Let thus R = {π ∈ Hom(L,F3) : π|F̄3

= idF̄3
} and let H be

the collection of maps g : V → F3 such that, for all x, y ∈ V , one has

g(x+ y)− g(x)− g(y) = c(x+ y)− c(x)− c(y).

Then, thanks to Lemma 9.38, each element of H is of the form π ◦ c, where π
belongs to R. In particular, the subset P of R is sent bijectively to the subset Hbij

of bijective elements of H. Now, by Lemma 9.37, given any two elements x, y ∈ V ,
we have c(x + y) − c(x) − c(y) = γ((x − y) ⊗ (x ∧ y)) and therefore each element
κ = γ−1 ◦ π ◦ c, with π ∈ P, belongs to KV . The map γ being an isomorphism,
tV is injective. Moreover, since γ is bijective, Lemma 9.37 yields a well-defined
injection KV → Hbij, given by κ 7→ γ ◦ κ. It follows that |P| ≤ |KV | ≤ |Hbij| = |P|
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and therefore tV is a bijection. Thanks to Proposition 9.18, the cardinality of P is
3. �

We remind the reader that N3 has been defined to be the collection of normal
subgroups N of F such that F/N is a κ-group of class 3.

Lemma 9.40. Let P be as in Proposition 9.39 and denote, for each π ∈ P, by
Kπ the unique normal subgroup of F containing E such that Kπ = kerπ. Then
the map r : P → N3 that is defined by π 7→ Kπ is a bijection. Moreover, for each
N ∈ N3, one has |L : N | = 9.

Proof. We first show that r is well-defined. To this end, let π be an element
of P and set G = F/Kπ. Then G2 is equal to F2/Kπ. Moreover, L decomposes as
kerπ⊕F3 = Kπ⊕F3. In particular, L/Kπ and F3 are naturally isomorphic and so,
as a consequence of Lemma 9.34, the subgroup G3 coincides with L/Kπ. It follows
that G has class 3. Now, the map π ◦ c being bijective, the cubing map induces a
bijection F/F2 → F3 and so, via the natural isomorphism F3 → L/Kπ, the cubing
map induces a bijection G/G2 → G3. As a result, |L : Kπ| = |G3| = |G : G2| =
|F : F2| = 9 and G is a κ-group. The choice of π being arbitrary, r is well-defined.
It is now easy to show that r is bijective. From the surjectivity of r one deduces
that, for all N ∈ N3, the index |L : N | is equal to 9. �

Proposition 9.41. The set N3 has cardinality 3 and the natural action of
Aut(F ) on N3 is transitive.

Proof. Let IV be defined as in Section 9.3. Define moreover ψ : IV → N3

to be ψ = r ◦ t−1
V ◦ sV , where sV , tV , and r are as in Propositions 9.18 and 9.39

and Lemma 9.40. The combination of the just-mentioned results yields that ψ is
a bijection and, from its definition, it is easy to check that it respects the action
of Aut(F ). Now, by Lemma 9.22, the set IV has cardinality 3 and so N3 has
cardinality 3. Again by Lemma 9.22, the action of Aut(V ) on IV is transitive and
so the action of Aut(F ) on IV is transitive. Being ψ an isomorphism of Aut(F )-sets,
Aut(F ) acts transitively on N3. �

We are finally ready to give the proof of Proposition 9.32, which is the same as
Theorem 9.3. To this end, let G be a finite 3-group of class 3. The group MC(3)
has class 4, by Lemma 9.14, and it is a κ-group, by Lemma 9.16. There exists thus
a normal subgroup M of F such that F/M is isomorphic to MC(3) /MC(3)4. Fix
such M . The group G is a κ-group if and only if there exists N ∈ N3 such that
F/N is isomorphic to G. Proposition 9.41 yields that G is a κ-group if and only if
it is isomorphic to MC(3) /MC(3)4. The choice of G being arbitrary, Proposition
9.32, and thus Theorem 9.3, is proven.

9.5. Extensions

We recall here that a κ-group is a finite 3-group G such that |G : G2| = 9 and such
that cubing in G induces a bijection G/G2 → G3/G4. We remind the reader that
we investigate κ-groups because we aim at classifying 3-groups of class at least 4
and intensity greater than 1: those groups are all κ-groups, as a consequence of
Lemma 9.9. The main purpose of the present section is that of proving the following
proposition, which is the same as Theorem 9.4.
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Proposition 9.42. Let G be a κ-group such that G4 has order 3. Then G2 is
elementary abelian.

Until the end of Section 9.5, we will work under the assumptions of Proposition
9.42. Then G2 is abelian and, if for each i ∈ Z≥1 we set wi = wtG(i), then
(w1, w2, w3, w4) = (2, 1, 2, 1). Moreover, the group G/G4 being a κ-group of class
3, Theorem 9.3 yields that G/G4 is isomorphic to MC(3) /MC(3)4. It follows from
Lemma 9.15(2) that there exist generators a, b of G such that, if we define

c = [a, b], d = [a, c], e = [b, c], and f = [a, d]

then the following are satified:

i. one has a3 ≡ [b, [a, b]]−1 mod G4 and b3 ≡ [a, [a, b]] mod G4; and
ii. the elements d and e generate G3 modulo G4; and
iii. one has a3 ≡ e−1 mod G4 and b3 ≡ d mod G4.

Lemma 9.43. One has G4 = 〈f〉 = 〈[b, e]〉.

Proof. By Lemma 9.11, the centre of G is equal to G4 and, by Lemma 7.3,
the commutator map G/G2×G3/G4 → G4 is non-degenerate. The elements d and
e generate G3 modulo G4 and we also have a3 ≡ e−1 mod G4 and b3 ≡ d mod G4.
From the non-degeneracy of the commutator map, it follows that both f and [b, e]
are non-trivial elements of G4, which, being cyclic of order 3, then satisfies G4 =
〈f〉 = 〈[b, e]〉. �

Lemma 9.44. There exists a pair (u, t) in {±1} × Z such that [b, e] = fu and
c3 = f t. Moreover, there exist r, s ∈ Z such that a3 = e−1fr and b3 = dfs.

Proof. By assumption, the order of G4 is 3 and, by Lemma 9.43, both ele-
ments f and [b, e] generate G4. There exists thus u ∈ {±1} such that [b, e] = fu.
Moreover, since a3 ≡ e−1 mod G4 and b3 ≡ d mod G4, there exist integers r and
s such that a3 = e−1fr and b3 = dfs. To conclude, thanks to Lemma 5.13, the
subgroup G3

2 is contained in G4 so there exists t ∈ Z such that c3 = f t. �

We are now ready to give the proof of Proposition 9.42. To this end, let u, t, r, s be
as in Lemma 9.44. The subgroup G2 is abelian and, by Lemma 9.13, the exponent
of G3 is equal to 3. It follows that ab3 = fu+tb3a, from which we derive fdafs =
fu+tdfsa. The subgroup G4 is central, thanks to Lemma 9.11, and so one gets

fda = fu+tda.

Since the exponent of G3 is equal to 3, we have u+ t ≡ 1 mod 3 and so

(u, t) ≡ (1, 0) mod 3 or (u, t) ≡ (−1,−1) mod 3.

If (u, t) ≡ (1, 0) mod 3, then we are done. We assume by contradiction that (u, t) ≡
(−1,−1) mod 3. Then c3 = f−1, from which it follows that a3b = ba3 and so a3

centralizes b in G. Call C = 〈{b} ∪G2〉. Then a3 belongs to Z(C), which then,
thanks to Lemma 9.10, contains {a3, b3} ∪ G4. The group G being a κ-group, it
follows that Z(C) contains G3, and so [b, e] = 1. Contradiction to Lemma 9.43.
The proof of Proposition 9.42, and thus that of Theorem 9.4, is now complete.

The subgroup MC(3)2 of MC(3) is elementary abelian.

Proof. The group MC(3) is a κ-group by Lemma 9.16 and, thanks to Lemma
9.15(1), the subgroup MC(3)4 has order 3. It follows from Proposition 9.42 that
MC(3)2 is elementary abelian. �
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Let Q be a finite 3-group with int(Q) > 1. Then Q has nilpotency class at
most 4.

Proof. Assume that Q has class at least 4. Thanks to Lemma 3.13, the
intensity of Q/Q5 is greater than 1, and , thanks to Lemma 9.9, the group Q/Q5

is a κ-group. Moreover, thanks to Theorem 6.1, the quotient Q4/Q5 has order 3
and thus Proposition 9.42 yields that Q3

2 is contained in Q5. However, because of
Proposition 7.13, each finite 3-group H of class at least 5 with int(H) > 1 satisfies
H3

2 = H4 and so it follows that Q has class at most 4. �

9.6. Constructing automorphisms

In this section we aim at understanding the structure of finite 3-groups of class
4 and intensity greater than 1. We recall that a κ-group is a finite 3-group G such
that |G : G2| = 9 and the cubing map on G induces a bijection G/G2 → G3/G4

(see Section 9.1 for a closer look at κ-groups). The reason why κ-groups are so
special for us is Lemma 9.9, which asserts that any finite 3-group of class 4 and
intensity greater than 1 is a κ-group. Moreover, we know from Proposition 5.10,
that if we hope to construct a 3-group G of large class and intensity greater than
1, then we need as well to construct an automorphism of order 2 of G that induces
the inversion map on the abelianization of G. We will devote the present section
to the proof of the following result.

Proposition 9.45. Let G be a κ-group such that G4 has order 3. Assume that
G possesses an automorphism of order 2 that induces the inversion map on G/G2.
Then G is isomorphic to MC(3).

We will prove Proposition 9.45 at the end of the present section and so the following
assumptions will hold until the end of Section 9.6. Let G be a κ-group such that
G4 has order 3. Then the group G has class 4 and (wtG(i))4

i=1 = (2, 1, 2, 1). Let F
be the free group on the set S = {a, b} and let ι : S → G be such that G = 〈ι(S)〉.
By the universal property of free groups, there exists a unique homomorphism
φ : F → G such that φ(a) = ι(a) and φ(b) = ι(b). As a consequence of its
definition, the map φ is surjective. Let (Fi)i≥1 denote the lower 3-series of F ,
which is defined recursively as

F1 = F and Fi+1 = [F, Fi]F
3
i .

and, in addition, let

L = F 3F3 and E = [F,L]F 3
2 .

All Fi’s, L, and E are stabilized by any endomorphism of F . For a visualization
of such groups we refer to the end of Section 5.3 or to the diagram appearing later
in this section. Let β be the endomorphism of F sending a to a−1 and b to b−1.
Since β2 = idF , the map β is an automorphism of F . We remind the reader that
we have already worked with such an automorphism β in Section 5.3 and we will
thus, in this section, often apply results achieved in Section 5.3. We conclude by
defining two specific sets, consisting of normal subgroups of F . Let N3 denote the
collection of normal subgroups N of F such that F/N is a κ-group of class 3, as
defined in Section 9.4. For each element N of N3, we set

DN = [F,N ]F 3
2 [F2, F2].
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It is not difficult to show that each such DN is contained in E. We define moreover
N4 to be the collection of normal subgroups M of F such that F/M is a κ-group of
class 4 with wtF/M (4) = 1 and such that F/M possesses an automorphism of order
2 that induces the inversion map on the abelianization (F/M)/(F/M)2 of F/M .
We will keep this notation until the end of Section 9.6.

Lemma 9.46. For each k ∈ Z≥5, one has φ(Fk) = {1}.

Proof. Let k ∈ Z≥5 and recall that Fk = [F, Fk−1]F 3
k−1. By definition of

E, one has that φ([F, Fk−1]) is contained in [φ(F ), φ(E)] and so, as a consequence
of Lemma 5.28, we get φ([F, Fk−1]) = {1}. It follows that φ(Fk) = φ(F 3

k−1) ⊆
φ(F 3

2 ) ⊆ G3
2 and so Proposition 9.42 yields φ(Fk) = {1}. �

Lemma 9.47. Let α be an automorphism of order 2 of G that induces the
inversion map on G/G2. Then there exist generators x and y of G such that
α(x) = x−1 and α(y) = y−1.

Proof. Write G− = {g ∈ G : α(g) = g−1}. Since (wtG(i))4
i=1 = (2, 1, 2, 1),

Lemma 2.17 yields that the map G− → G/G2, defined by g 7→ gG2, is surjective.
Since G2 = Φ(G), there exist two elements x and y of G− that generate G. �

Proposition 9.48. Let α be an automorphism of order 2 of G that induces the
inversion map on G/G2. Let moreover k ∈ Z≥5 and let φk : F/Fk → G be the map
induced by φ. Then there exists ε ∈ Aut(F/Fk) of order 2 such that αφk = φkε.

Proof. For each k ∈ Z≥5, the map φk : F/Fk → G is well-defined, thanks to
Lemma 9.46. Let now x and y be as in Lemma 9.47 and let c and d be elements of
F such that φ(c) = x and φ(d) = y. As a consequence of Lemma 5.26, the map φ
induces an isomorphism F/F2 → G/G2 and therefore c and d generate F modulo
F2. Let now ψ : F → F be the endomorphism of F sending a 7→ c and b 7→ d.
Fix k ∈ Z≥5. The subgroup Fk being being stabilized by any endomorphism of F ,

the map ψ induces an endomorphism ψ of the 3-group F = F/Fk. However, since
Φ(F ) = F2, the map ψ induces an automorphism of F/Φ(F ) and so ψ is in fact
an automorphism of F . Let β be the automorphism of F that is induced by β and
define ε = ψβψ−1. By construction, the following diagram is commutative.

F/Fk

ε

��

φk // G

α

��
F/Fk

φk // G

Moreover, ε has order 2, because it is conjugate in Aut(F ) to β. �

Lemma 9.49. Let M be an element of N4. Then N = ME belongs to N3 and
DN ⊆M .

Proof. Let H = F/M and let π : F → H be the canonical projection. Then
π(N) = π(ME) = π(E) and so, as a consequence of Lemma 5.28, we have π(N) ⊆
H4. The order of H4 being 3, either π(N) = H4 or N ⊆ M . Assume first that
π(N) = H4. Then we have M ⊆ N ⊆ π−1(H4) and M 6= N . Further, we also
know |π−1(H4) : M | = |H4| = 3 and therefore N = π−1(H4). As a result, F/N
is isomorphic to H/H4 and so N belongs to N3. From the combination of Lemma
5.26 and Proposition 9.42, we now derive π(DN ) = {1} and so DN is contained in
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M . We conclude by proving that π(N) = H4. Indeed, if by contradiction we had
N ⊆M , the subgroup E would be contained in M making F/E of class at least 4.
This would however contradict the fact that [F, [F, [F, F ]]] ⊆ E. �

Lemma 9.50. Let N ∈ N3 and write H = MC(3). Then there exists a sur-
jective homomorphism ϕ : F → G such that N = ϕ−1(G4). Moreover, ϕ induces
isomorphisms ϕ1 : F/F2 → H/H2 and ϕ3 : L/N → H3/H4 and a surjective homo-
morphism ϕ4 : E/DN → H4.

Proof. Let ψ : F → H be a surjective homomorphism and K = ψ−1(H4).
Then K belongs to N3 and so, thanks to Proposition 9.41, there exists an auto-
morphism r of F such that r(N) = K. Define ϕ = ψ ◦ r. Then ϕ is a surjective
homomorphism F → H such that ϕ−1(H4) = N . Moreover, ϕ induces isomor-
phisms ϕ1 : F/F2 → H/H2 and ϕ3 : L/N → H3/H4 as a consequence of Lemmas
5.26 and 5.27. We conclude by showing that ϕ induces a surjective homomorphism
E/DN → H4. Thanks to Lemma 9.49, the subgroup DN is contained in the kernel
of ϕ. Moreover, since ϕ(F2) = H2 and ϕ(L) = H3, we get ϕ(E) = H4H

3
2 . Now, the

group H is a κ-group and hence H3
2 ⊆ H4. It follows that ϕ(E) = H4 and therefore

ϕ induces a surjective homomorphism E/DN → H4. �

Lemma 9.51. Let N ∈ N3. Then the commutator map F × L → E induces a
non-degenerate bilinear map F/F2×L/N → E/DN whose image generates E/DN .
In addition, one has E 6= DN .

Proof. Write F = F/DN and use the bar notation for the subgroups of F .
From the definition of E, one sees that E = [F ,L]. Moreover, by Lemma 5.28, the
subgroup E is contained in N and so [F,E] ⊆ DN . In particular, E is central in
F and so the commutator map F ×L→ E is bilinear. Since [F2, L] and [F,N ] are
both contained in DN , the last map factors as a bilinear map γ : F/F2×L/N → E
whose image generates E. Set H = MC(3). As a consequence of Lemmas 9.16 and
9.11, the centre of H is equal to H4 and thus Lemma 7.3 yields that the commutator
map induces a non-degenerate map ν : H/H2 ×H3/H4 → H4. With the notation
from Lemma 9.50, the following diagram is commutative.

F/F2 × L/N

ϕ1

��
ϕ3

��

γ // E/DN

ϕ4

��
H/H2 ×H3/H4

ν // H4

Since the map ν is non-degenerate and both ϕ1 and ϕ3 are isomorphisms, the map
γ is non-degenerate. It follows in particular that E 6= DN . �

Lemma 9.52. Let V and W be 2-dimensional vector spaces over F3 and let
η : V → W be a bijective map such that, for each λ ∈ F3 and v ∈ V , one has
η(λv) = λη(v). Define K = 〈v ⊗ η(v) : v ∈ V 〉. Then the quotient (V ⊗W )/K has
dimension 1 as a vector space over F3.

Proof. Without loss of generality we assume that V = W . Assume first
that η is an automorphism of V and define the automorphism σ of V ⊗ V by
x⊗y 7→ x⊗η(y). Then the subspace ∆ = 〈v ⊗ v : v ∈ V 〉 is mapped isomorphically

to K via σ and so (V ⊗ V )/K has the same dimension as (V ⊗ V )/∆ =
∧2

V .
In particular, (V ⊗ V )/K has dimension 1. Let now η be any map satisfying the



9.6. CONSTRUCTING AUTOMORPHISMS 71

hypotheses of Lemma 9.52. Then η induces a bijective map η : PV → PV , where
PV denotes the collection of 1-dimensional subspaces of V . As a consequence of
Lemma 9.21, there exists an automorphism τ of V such that τ = η and, for each
v ∈ V , one has F3τ(v) = F3η(v). As a consequence, we get K = 〈v ⊗ τ(v) : v ∈ V 〉
and therefore (V ⊗ V )/K has dimension 1 over F3. �

Lemma 9.53. Let N ∈ N3. Then |E : DN | = 3.

Proof. The quotient F/F2 is a 2-dimensional vector space over F3, while
L/E is a 4-dimensional vector space over F3, thanks to Lemma 9.35. Moreover,
by Lemma 5.28, the subgroup N contains E and, as a consequence of Lemma
9.40, the quotient L/N is a vector space of dimension 2 over F3. Let γ : F/F2 ⊗
L/N → E/DN be the surjective homomorphism induced from the non-degenerate
map of Lemma 9.51. Let moreover c : F/F2 → L/E be the map from Lemma
9.37 and let π denote the canonical projection L/E → L/N . Denote cN = π ◦ c
and note that, as a consequence of Lemma 9.40, the map cN : F/F2 → L/N is a
bijection between vector spaces of dimension 2 over F3. From Lemma 9.37, it is
clear that c commutes with scalar multiplication by elements of F3. Define now
K = 〈x⊗ cN (x) : x ∈ F/F2〉. As a consequence of the definition of c, each element
x⊗ cN (x), with x ∈ F/F2, belongs to the kernel of γ, and therefore K is contained
in ker γ. It follows from Lemma 9.52 that (F/F2 ⊗ L/N)/K has dimension 1 and
therefore E/DN has dimension at most 1 as a vector space over F3. Lemma 9.51
yields that E/DN has cardinality 3. �

Lemma 9.54. Let T be a group and let S be a central subgroup of T . Let
moreover ∆ denote the subgroup of Aut(T ) consisting of all those elements δ such
that δ(S) = S and such that δ induces the identity on both S and T/S. Then the
map ∆→ Hom(T/S, S) that is defined by δ 7→ (xS 7→ δ(x)x−1) is bijective.

Proof. Let φ : ∆ → Hom(T/S, S) denote the map δ 7→ (xS 7→ δ(x)x−1),
which is well-defined because S is central in T . The map φ is clearly injective and
it is surjective because, given each homomorphism f ∈ Hom(T, S) with S ⊆ ker(f),
the map x 7→ xf(x) belongs to ∆. �

Lemma 9.55. Let p be a prime number and let P be an extraspecial p-group.
Let ∆ denote the subgroup of Aut(P ) consisting of those automorphisms of P that
induce the identity on the abelianization P/P2. Then ∆ = Inn(P ).

Proof. The subgroups Z(P ) and P2 being equal, the commutator map in-
duces a bilinear non-degenerate map P/P2×P/P2 → P2 and so the homomorphism
P/P2 → Hom(P/P2, P2) that is defined by t 7→ (x 7→ [t, x]) is injective. The quo-
tient P/P2 being elementary abelian, P/P2 → Hom(P/P2, P2) is an isomorphism.
Now, by Lemma 2.5, each element δ of ∆ restricts to the identity on P2 and so
we derive from Lemma 9.54 that, for each element δ ∈ ∆, there exists t ∈ P such
that, for all x ∈ P , one has δ(x) = [t, x]x = txt−1. In particular, ∆ is contained in
Inn(P ). The inclusion Inn(P ) ⊆ ∆ is clear and so the proof is complete. �

Lemma 9.56. Let η be an automorphism of F/L of order 2 that induces the
inversion map on F/F2. Then there exists ϕL ∈ Inn(F/L) such that, for each
x ∈ F , one has β(x) ≡ (ϕLηϕ

−1
L )(x) mod L.

Proof. Write H = F/L. As a consequence of Lemma 5.27, the group H is
extraspecial of order 27 and exponent 3. Let now βL be the automorphism of H
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that is induced by β. Then η−1βL induces the identity on H/H2 and so, thanks
to Lemma 9.55, one gets η−1βL ∈ Inn(H). The group Inn(H) being a normal
3-subgroup of Aut(H), the Schur-Zassenhaus theorem applies to Inn(H)〈η〉 and
ensures that there exists ϕL ∈ Inn(H) with the property that βL = ϕLηϕ

−1
L . �

Lemma 9.57. Let η be an automorphism of F/E of order 2 that induces the
inversion map on F/F2. Assume that β coincides with η modulo L. Then, for all
x ∈ F , one has β(x) ≡ η(x) mod E.

Proof. Let ∆ denote the subgroup of Aut(F/E) consisting of all those auto-
morphisms of F/E inducing the identity on both F/L and L/E. Let βE be the
automorphism that is induced on F/E by β. As a consequence of Lemma 5.32,
the element ψ = η−1βE belongs to ∆ and so, thanks to Lemma 9.54, there exists
a homomorphism h : F/L → L/E such that, for all x ∈ F/E, one has ψ(x) =
h(x)x. The quotient L/E being elementary abelian, the groups Hom(F/L,L/E)
and Hom(F/F2, L/E) are naturally isomorphic and so h factors as a homomor-
phism F/F2 → L/E. Now η coincides with β on F/F2 and so, thanks to Lemma
5.32, it induces the inversion map on L/E. For each x ∈ F/F2, it follows that
(ηhη−1)(x) = h(x). However, the automorphisms η and βE having order 2, one
also has η2 = 1 = β2

E = ηψηψ and therefore ηψη−1 = ψ−1. For all x ∈ F/E, it
follows then that ψ(x)x−1 = ψ−1(x)x−1 and therefore ψ(x)2 = 1. The group F/E
being a 3-group, the map ψ is trivial and therefore η and βE are equal. �

Lemma 9.58. Let N = φ−1(G4) and let ∆ denote the subgroup of Aut(F/DN )
consisting of all those maps inducing the identity on both F/E and E/DN . Then
∆ is contained in Inn(F/DN ).

Proof. The group N belongs to N3, because G/G4 is a κ-group of class 3. As
a consequence of Lemma 9.51, the commutator map induces an injective homomor-
phism ϕ : L/N → Hom(F/F2, E/DN ). Combining Lemmas 9.40 and 9.53, we get
that the orders of Hom(F/F2, E/DN ) and L/N are the same and therefore ϕ is also
surjective. It follows that, for each element f of Hom(F/F2, E/DN ), there exists
l ∈ L such that f equals xF2 7→ [l, x]DN . Set F = F/DN and use the bar notation
for the subgroups of F . We now prove that ∆ is contained in Inn(F ). Let δ ∈ ∆.
Then, as a consequence of Lemma 9.54, there exists a homomorphism f : F → E
whose kernel contains E and such that, for each x ∈ F , one has δ(x) = f(x)x. Fix
such f . The group E being elementary abelian, the kernel of f contains F2 and
therefore f factors as a homomorphism F/F2 → E. As a result, there exists l ∈ L
such that, for each x ∈ F , one has f(x) = [l, x] and thus δ(x) = [l, x]x = lxl−1. In
particular, δ is an inner automorphism of F and, the choice of δ being arbitrary, ∆
is contained in Inn(F ). �

Lemma 9.59. Let N = φ−1(G4). Let η ∈ Aut(F/DN ) be of order 2 and assume
that η induces the inversion map on F/F2. Assume moreover that β and η induce
the same automorphism of F/E. Then there exists ψN ∈ Inn(F/DN ) such that, for
all x ∈ F , one has β(x) ≡ (ψNηψ

−1
N )(x) mod DN .

Proof. Set F = F/DN and use the bar notation for the subgroups of F . As
a consequence of Lemma 5.32, the group N is 〈β〉-stable and therefore so is DN :
it follows that the map β induces an automorphism of F , which we denote by β.
Let ∆ denote the subgroup of Aut(F ) consisting of all those elements δ such that δ
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induces the identity on both E and F/E. Then, as a consequence of Lemmas 9.51
and 2.4, the automorphism η−1β belongs to ∆ and thus, thanks to Lemma 9.58, we
have η−1β ∈ Inn(F ). Applying the Schur-Zassenhaus theorem to Inn(F )〈η〉, we get

that there exists ψ ∈ Inn(F ) such that β = ψηψ
−1

. This concludes the proof. �

Proposition 9.60. Let α be an automorphism of order 2 of G that induces the
inversion map on G/G2. Then there exists γ ∈ Inn(F ) such that αφ = φ(γβγ−1).

Proof. Thanks to proposition 9.48, there exists an automorphism ε of F/F5

of order 2 such that αφ5 = φ5ε. As a consequence, the map ε induces the inversion
map on F/F2. Let now M = kerφ and let N = ME. Thanks to Lemma 9.49, the
group N belongs to N3 and DN ⊆ M . One easily shows that F5 is contained in
DN . It follows that ε induces an automorphism η of order 2 of F/DN . Let ηL be
the automorphism that η induces on F/L. Then, via the choice of a representative,
Lemma 9.56 ensures that there exists an inner automorphism ϕN of F/DN such
that β and ϕNηϕ

−1
N induce the same automorphism of F/L. Fix such ϕN and

define η1 = ϕNηϕ
−1
N . Since η has order 2, the order of η1 is equal to 2. Lemma

9.57 yields that in fact η1 and β are the same modulo E. At last, let ψN be as
in Lemma 9.59 and define η2 = ψNη1ψ

−1
N . As a consequence of Lemma 9.59, the

maps η2 and β induce the same map on F/DN . Via the choice of a representative,
the inner automorphism ψNϕN of F/DN lifts to an inner automorphism γ of F
with the property that η and γβγ−1 induce the same automorphism on F/DN . To
conclude, let φN : F/DN → G be the map induced by φ. Since αφ5 = φ5ε, one
gets αφN = φNη and therefore αφ = φ(γβγ−1). �

Lemma 9.61. For each M ∈ N4, one has β(M) = M .

Proof. Let M ∈ N4. Without loss of generality G = F/M and so M = kerφ.
Let moreover α be an automorphism of G of order 2 that induces the inversion
map on G/G2. Then, thanks to Proposition 9.60, there exists γ ∈ Inn(F ) such that
αφ = φ(γβγ−1). It follows that {1} = α(φ(M)) = φβ(M) and therefore β(M) is
contained in kerφ = M . Since β induces an automorphism of each quotient F/Fk
and since, for large enough k one has Fk ⊆M , we have in fact that β(M) = M . �

Lemma 9.62. Let N be an element of N3 and write F = F/DN . Set moreover
N = N/DN and E = E/DN . Define β to be the map that is induced by β on F
and set

N
+

= {x ∈ N : β(x) = x} and N
−

= {x ∈ N : β(x) = x−1}.

Then N
+

= E and N
−

is the unique 〈β〉-stable complement of E in N .

Proof. As a consequence of Lemma 5.32, the group N is 〈β〉-stable and, being
central in F , it is also abelian. Write now B = 〈β〉 and let σ : B → {±1} be
the isomorphism mapping β to −1. By Lemma 5.29, the group B acts on F/F2

through σ and, by Lemma 5.32, the induced action of B on L/E is through σ. As
a consequence, the induced action of B on both L/N and N/E is through σ. It
follows from Lemmas 9.51 and 2.4 that β induces the identity map on E and so,
thanks to Theorem 2.9, the subgroup E has a unique 〈β〉-stable complement in N ,

which coincides with N
−

. �
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F

−

// G

−

F2

+

// G2

+

L

−
−

// G3

−

F3

−

N
− +

// G4

+

E
+

M

−

// 1

DN

Lemma 9.63. The map N4 → N3 that is defined by M 7→ ME is an injection
respecting the natural actions of Aut(F ).

Proof. The map N4 → N3 is well-defined, thanks to Lemma 9.49, and it is
clear that it respects the action of Aut(F ). We prove injectivity. To this end, let
M1 and M2 be elements of N4 such that M1E = M2E and set N = M1E = M2E.
Since M1 and M2 belong to N4, Lemma 9.61 yields β(M1) = M1 and β(M2) = M2.
It follows then from Lemma 9.62 that both M1 and M2 are the unique 〈β〉-stable
complement of E and so M1 = M2. �

Lemma 9.64. The map N4 → N3 that is defined by M 7→ ME is a bijection
respecting the natural actions of Aut(F ).

Proof. The map N4 → N3 is well-defined, injective, and respects the action
of Aut(F ) thanks to Lemma 9.63. We prove surjectivity. To this end, let N be an
element of N3. Write F = F/DN and use the bar notation for the subgroups of F .

Let moreover N
−

be as in Lemma 9.62. As a consequence of the definition of DN ,

the subgroup N is central in F and so N
−

is normal in F . Let M be the unique

normal subgroup of F containing DN such that M = N
−

. Then, as a consequence
of Lemma 9.62, one has N = ME. Write H = F/M and denote by π the canonical
projection F → H. We will prove that M ∈ N4. Thanks to the isomorphism
theorems, the groups π(N) and E are naturally isomorphic and, by Lemma 9.53,
the group E has order 3. It follows that |N : M | = 3. Moreover, the group N
being an element of N3, the quotient F/N has class 3 and so M ⊆ π−1(H4) ⊆ N .
Only two cases can occur: either N = π−1(H4) or M = π−1(H4). Assume by
contradiction that M = π−1(H4) and so that H has class 3. Since H/π(N) is
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isomorphic to F/N , Lemma 5.27 yields that π(L) = H3π(N) and, since N is central
modulo DN , the subgroup π(N) is central in H. It follows that π([F,L]) = {1} and
therefore [F,L] is contained in M . As a consequence, E is also contained in M and
thus N = ME = M , which is a contradiction. We have proven that N = π−1(H4),
from which it follows in particular that |H4| = |N : M | = 3 and so H has class 4.
Moreover, H is a κ-group, because F/N is. To prove that M belongs to N4, we are
left with proving that H has an automorphism of order 2 that induces the inversion
map on H/H2 and in fact such an automorphism can be gotten, for example, by
inducing β to H. We have proven that M ∈ N4 and so, the choice of N being
arbitrary, the map N3 → N4 is surjective. �

The set N4 has 3 elements and the action of Aut(F ) on N4 is transitive.

Proof. Combine Proposition 9.41 and Lemma 9.64. �

We are now ready to prove Proposition 9.45. The group MC(3) is a κ-group, by
Lemma 9.16, and MC(3)4 has cardinality 3, thanks to Lemma 9.15(1). By Lemma
9.14, the class of MC(3) is 4 and moreover, thanks to Lemma 9.17, the group
MC(3) possesses an automorphism that induces the inversion map on the quotient
MC(3) /MC(3)2. It follows that there exists an element M of N4 with the property
that F/M is isomorphic to MC(3). Corollary 9.6 now yields that G and MC(3) are
isomorphic. The proof of Proposition 9.45 is complete.

9.7. Intensity

In Section 9.5 we have proven Corollary 9.5, which asserts that finite 3-groups of
intensity larger than 1 have class at most 4. We will prove in this section that
the bound is best possible by showing that the group MC(3), introduced at the
beginning of this chapter and whose structure we investigated in Section 9.2, has
intensity 2. Thanks to results coming from the previous sections, we will, at the
end of the current section, finally be able to give the proof of Theorem 9.1.

Proposition 9.65. The group MC(3) has intensity 2.

We will devote a big part of the present section to the proof of Proposition 9.65.
To this end, let the following assumptions hold until the end of Section 9.7. Set
G = MC(3) and denote by (Gi)i≥1 its lower central series. For all i ∈ Z≥1, write
wtG(i) = wi. By Lemma 9.14, the group G has class 4 and order 729. More-
over, thanks to Lemmas 9.15(1) and 9.16, the group G is a κ-group satisfying
(w1, w2, w3, w4) = (2, 1, 2, 1). Let α be as in Lemma 9.17 and set A = 〈α〉. In con-
cordance with the notation from Section 2.2, we define G+ = {x ∈ G : α(x) = x}
and G− = {x ∈ G : α(x) = x−1}. Moreover, for each subgroup H of G, we denote
H+ = H ∩G+ and H− = H ∩G−.

Lemma 9.66. Let H be a subgroup of G2 and let g be an element of G. Then
the following hold.

1. The group G2 normalizes H.
2. If both H and gHg−1 are A-stable, then gHg−1 = H.

Proof. The group G2 is abelian so G2 normalizes each of its subgroups. As
a consequence of Lemma 2.17(1), the subgroup G+ is contained in G2 and we
conclude combining (1) with Lemma 2.15. �
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Lemma 9.67. Let H be a subgroup of G that contains G4. Then there exists
g ∈ G such that gHg−1 is A-stable.

Proof. We denote by α4 the automorphism of G/G4 that is induced by α. By
Proposition 5.11, the automorphism α4 is intense so, by Lemma 3.5, there exists
g ∈ G such that gHg−1/G4 is 〈α4〉-stable. It follows from the definition of α4 that
gHg−1 is A-stable. �

We recall that a positive integer j is a jump of a subgroup H of G if and only if
H ∩Gj 6= H ∩Gj+1. For the theory of jumps we refer to Section 2.3.

Lemma 9.68. Let H be a subgroup of G such that H ∩ G4 = {1}. Assume
moreover that H is not contained in G2. Then there exists x ∈ G \ G2 such that
H = 〈x〉.

Proof. The subgroup H is different from G and it is therefore contained in
a maximal subgroup C of G. Moreover, H not being contained in G2, we have
wtGH(1) = 1. We first show that H is abelian. The subgroup [H,H] is contained
in [C,C] = [C,G2], and so [H,H] is contained in G3. By Lemma 9.11, the centre
of G is equal to G4 and so, by Lemma 7.3, the map γ : G/G2 × G3/G4 → G4

that is induced from the commutator map is non-degenerate. Since C = HG2, we
get [C, [H,H]] = [H, [H,H]] ⊆ H ∩ G4 and so, since H ∩ G4 = {1}, the subgroup
[H,H] is contained in Z(C). It follows that [H,H] is contained in Z(C)∩ [C,C]∩H
and so, thanks to Corollary 9.5 and Lemma 9.12, the commutator subgroup of H
is trivial. The group H being abelian, it follows, from the non-degeneracy of γ,
that wtGH(3) ≤ 1. Moreover, since the commutator map induces an isomorphism
G/G2⊗G2/G3 → G3/G4, we also know that wtGH(2) = 0. Let now x be an element
of H \ G2. Then 1 is a jump of 〈x〉 in G and, the group G being a κ-group, it
follows that x3 ∈ G3 \G4. As a consequence of Lemma 2.16, we get

|〈x〉| ≥ 3wtG〈x〉(1)3wtG〈x〉(3) ≥ 9 ≥ 3wtGH(1)3wtGH(3) =

4∏
i=1

3wtGH(i) = |H|

and therefore H is cyclic generated by x. �

Lemma 9.69. Let H be a subgroup of G such that H ∩G4 = {1}. Assume that
H is not contained in G2. Then H and α(H) are conjugate in G.

Proof. By Lemma 9.68, the group H is cyclic. We define T = H ⊕ G4 so,
by Lemma 9.67, there exists g ∈ G such that gTg−1 is A-stable. We fix such g
and denote T ′ = gTg−1 and H ′ = gHg−1. The subgroup G4 being characteristic,
it follows that H ′ ⊕ G4 = T ′ = α(H ′) ⊕ G4. Let C denote the collection of com-
plements of G4 in T ′. By Lemma 4.6, the elements of C are in bijection with the
elements of Hom(H ′, G4), which is naturally isomorphic to Hom(H ′/Φ(H ′), G4).
The group G being a κ-group, one has Φ(H ′) = H ′ ∩ G2 and thus the restriction
map Hom(G/G2, G4) → Hom(H ′G2/G2, G4) is surjective. Moreover, by Lemma
9.11, the subgroup G4 coincides with Z(G) so, as a consequence of Lemma 7.3, the
map G3/G4 → Hom(G/G2, G4), defined by xG4 7→ (tG2 7→ [x, t]), is an isomor-
phism. It follows from Lemma 4.6 that, for each K ∈ C, there exists x ∈ G such
that K = {[x, t]t = xtx−1 | t ∈ H ′}. As a consequence, there is x ∈ G such that
α(H ′) = xH ′x−1 and so, since H ′ = gHg−1, also α(H) and H are conjugate in
G. �
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Lemma 9.70. Let H be a subgroup of G3 with H ∩ G4 = {1}. Then H and
α(H) are conjugate in G.

Proof. Let T = HG4. The group G3 is elementary abelian, as a conse-
quence of Corollary 9.5, and therefore so is T = H ⊕ G4. Let g ∈ G be such that
gTg−1 is A-stable, as in Lemma 9.67, and set T ′ = gTg−1 and H ′ = gHg−1. Let
moreover C be the set of complements of G4 in T ′ and note that both H ′ and
α(H ′) belong to C. Thanks to Lemma 4.6, the elements of C are in bijection with
the elements of Hom(H ′, G4). Moreover, the restriction map induces a surjection
Hom(G3/G4, G4) → Hom(H ′, G4). By Lemma 9.11, the subgroup G4 coincides
with Z(G) so, as a consequence of Lemma 7.3, the map G/G2 → Hom(G3/G4, G4),
defined by xG4 7→ (tG2 7→ [x, t]) is an isomorphism. It follows from Lemma 4.6
that each element of C is of the form {[x, t]t = xtx−1 | t ∈ H ′} = xH ′x−1, for some
x ∈ G. In particular, α(H ′) and H ′ are conjugate in G and thus so are H and
α(H). �

Lemma 9.71. Let H be a subgroup of G with H ⊕ G4 = G2. Then H has an
A-stable conjugate in G.

Proof. We define X to be the collection of all subgroups K of G for which
G2 = K ⊕ G4. The group G2 is elementary abelian, by Corollary 9.5, so the
set X is non-empty. Moreover, as a consequence of Lemma 4.6, the cardinality
of X is equal to the cardinality of Hom(H,G4), which is 27. We define X+ =
{K ∈ X : α(K) = K} and we will show, with a counting argument, that H is
conjugate to an element of X+. Let K ∈ X+. Thanks to Corollary 2.2, we can
write K = K+ ⊕K− and, as a consequence of Lemma 2.17, the subgroup K− is
equal to G−2 . Again by Lemma 2.17, the subgroup G+

2 has order 9 and it contains
G4. It follows that |X+| is equal to the number of 1-dimensional subspaces of
G+

2 that are different from G4, i.e. |X+| = 3. By Lemma 9.66(1), the group G2

normalizes K, but in fact G2 = NG(K), as a consequence of Lemma 7.3. It follows
that the orbit of K in X has size |G : G2| = 9 so, thanks to Lemma 9.66(2), the
element K is the only element of X+ belonging to its orbit under G/G2. The
number |X|/|X+| being equal to 9, it follows that each orbit of the action of G/G2

on X has a representative in X+. The same holds for the orbit of H. �

Lemma 9.72. Let H be a subgroup of G with H ⊕ G3 = G2. Then H has an
A-stable conjugate in G.

Proof. Let X be the collection of all complements of G3 in G2. The group
G2 is elementary abelian, by Corollary 9.5, and so, by Lemma 4.6, the cardinality
of X is equal to |Hom(H,G3)| = 27. We define X+ = {K ∈ X : α(K) = K}.
As a consequence of Lemma 2.17, if K is an element of X+, then K = K+. The
elements of X+ are thus exactly the one-dimensional subspaces of G+

2 that are
different from G4 and so |X+| = 3. Fix K ∈ X+. Then the commutator map
induces an isomorphism G/G2 ⊗K → G3/G4. It follows that NG(K) is contained
in G2 so, thanks to Lemma 9.66(1), one has NG(K) = G2. Lemma 9.66(2) yields
that K is the only element of X+ belonging to its orbit under the action of G/G2 on
X. The number |X|/|X+| being equal to 9, it follows that each orbit of the action
of G/G2 on X has a representative in X+ so, in particular, H has an A-stable
conjugate in G. �
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Lemma 9.73. Let x ∈ G \G2 and let a ∈ G+
2 \G3. Then [x, a] does not belong

to G−.

Proof. Let C = CG([x, a]) and D = 〈x,G2〉. Then [x, a] belongs to G3 \ G4

so, as a consequence of Lemmas 9.11 and 7.3, the index of C in G is equal to 3.
In particular, both C and D are maximal subgroups of G. Assume now by contra-
diction that [x, a] ∈ G−. Since x belongs to G \G2, there exists γ ∈ G2 such that
α(x) = x−1γ and so we have [x, a]−1 = α([x, a]) = [x−1γ, a]. The group G2 is ele-
mentary abelian, by Corollary 9.5, and so, with the help of multiplication formulas,
one gets [x, a]−1 = [x−1, [x, a]−1][x, a]−1. As a result, the element [x−1, [x, a]−1]
is trivial, and so x ∈ C. Then C = D, and thus [x, a] belongs to [C,C] ∩ Z(C).
Lemma 9.12 yields [x, a] ∈ G4. Contradiction. �

Lemma 9.74. Let x ∈ G2 \ G3 and y ∈ G3 \ G4. Define H = 〈x, y〉. Then H
has an A-stable conjugate in G.

Proof. The group G2 is elementary abelian, by Corollary 9.5, and therefore
H = 〈x〉 ⊕ 〈y〉. Let X be the set consisting of all subgroups of G2 of the form
〈u〉 ⊕ 〈v〉, where u ∈ G2 \G3 and v ∈ G3 \G4. The cardinality of X is then equal
to 108. We define X+ = {K ∈ X : α(K) = K} and we fix K ∈ X+. By Corollary
2.2, the subgroup K decomposes as K = K+⊕K− and, as a consequence of Lemma
2.17, there exists a ∈ G+

2 such that K = 〈a〉 ⊕K−. Fix such a. Again thanks to
Lemma 2.17, we get that |X+| = 12. We want to count the conjugates of K. By
Lemma 9.66(1), the subgroup G2 is contained in NG(K) and, if x ∈ NG(K), then
[x, a] ∈ K∩G3. The intersection K∩G3 being equal to K−, it follows from Lemma
9.73 that NG(K) = G2. As a consequence of Lemma 9.66(2), the element K is
the only element of X+ belonging to its orbit under G/G2 so, from the equality
|X|/|X+| = 9, we can deduce that each orbit in X has a representative in X+. The
same holds for the orbit of H. �

Lemma 9.75. The automorphism α is intense. Moreover, the intensity of G is
equal to 2.

Proof. Let H be a subgroup of G. If H contains G4, then, by Lemma 9.67,
there exists a conjugate of H that is A-stable. Assume that H ∩G4 = {1}. If H is
not contained in G2, then H is conjugate to α(H), thanks to Lemma 9.69. Assume
that H is contained in G2. If 2 is not a jump of H in G, then, by Lemma 9.70, the
subgroups H and α(H) are conjugate in G. We suppose that 2 is a jump of H in
G. By Corollary 9.5, the group G2 is elementary abelian and so H is a subspace of
G2, not contained in G3, that trivially intersects G4. The combination of Lemmas
9.71, 9.72, and 9.74 guarantees that H has an A-stable conjugate in G. The choice
of H being arbitrary, it follows from Lemma 3.5 that α is intense. The intensity of
G is at least 2, because α has order 2, but in fact int(G) = 2, as a consequence of
Theorem 5.2(1). �

We remark that, thanks to Lemma 9.75, the proof of Proposition 9.65 is complete.
Moreover, we are now also able to prove Theorem 9.1. The implication (2) ⇒ (1)
is clear and the implication (3) ⇒ (2) is given by the combination of Proposition
9.65 and Lemma 9.14. We now prove (1) ⇒ (2). To this end, let Q be a finite
3-group of class at least 4 with int(Q) > 1. Because of Corollary 9.5, the class of Q
is equal to 4 so, as a consequence of Theorem 6.1, the order of Q is equal to 729.
The intensity of Q is equal to 2, thanks to Theorem 5.2(1). We have concluded
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the proof of (1) ⇒ (2) and, to finish the proof of Theorem 9.1, we will next prove
(2) ⇒ (3). Let Q be a finite 3-group of class 4 and intensity 2. Then, by Lemma
9.9, the group Q is a κ-group and, as a consequence of Proposition 5.10, it possesses
an automorphism of order 2 that induces the inversion map on Q/Q2. By Theorem
6.1, the order of Q4 is 3. Proposition 9.45 yields that Q is isomorphic to MC(3).
The proof of Theorem 9.1 is now complete.





CHAPTER 10

Obelisks

Let p > 3 be a prime number. A p-obelisk is a finite p-group G for which the
following hold.

1. The group G is not abelian.
2. One has |G : G3| = p3 and G3 = Gp.

The following proposition will immediately clarify our interest in p-obelisks.

Proposition 10.1. Let p > 3 be a prime number and let G be a finite p-group
of class at least 4. If int(G) > 1, then G is a p-obelisk.

Proof. Combine Theorems 6.1 and 7.1. �

Chapter 10 will be entirely devoted to understanding the structure of p-obelisks
and that of their subgroups. Some of the results, especially coming from Section
10.4, are rather technical and their relevance will become evident in Chapter 11.

10.1. Some properties

We remind the reader that, if p is a prime and G is a finite p-group, then wtG(i) =
logp |Gi : Gi+1| where (Gi)i≥1 denotes the lower central series of G. The following
lemma collects some straightforward properties of p-belisks. Concerning regularity,
we refer to Section 8.1.

Lemma 10.2. Let p > 3 be a prime number and let G be a p-obelisk. Let (Gi)i≥1

denote the lower central series of G. Then the following hold.

1. One has wtG(1) = 2 and wtG(2) = 1.
2. The group G/G3 is extraspecial of exponent p.
3. The group G is regular.

Proposition 10.3. Let p > 3 be a prime number and let G be a p-obelisk. Let
(Gi)i≥1 be the lower central series of G and let c denote the class of G. Then the
following hold.

1. For all i ∈ Z≥1, one has wtG(i) wtG(i+ 1) ≤ 2.
2. If wtG(i) wtG(i+ 1) = 1, then i = c− 1.
3. For all positive integers k and l, not both even, one has [Gk, Gl] = Gk+l.

Proof. Proposition 10.3 is a simplified version of Theorem 4.3 from [Bla61],
which can also be found in Chapter 3 of [Hup67] as Satz 17.9. �

We remark that the term p-obelisk does not appear in [Bla61] or [Hup67] and
is of our own invention. Moreover, originally Proposition 10.3(1-2) was phrased in
the following way: if G is a p-obelisk, then

(wtG(i))i≥1 = (2, 1, 2, 1, . . . , 2, 1, f, 0, 0, . . .) where f ∈ {0, 1, 2}.

81
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The following lemma follows in a straightforward way from Lemma 10.2 and Propo-
sition 10.3.

Lemma 10.4. Let p > 3 be a prime number and let G be a p-obelisk. Let c
denote the class of G and let i ∈ {1, . . . , c− 1}. Then the following hold.

1. The index i is odd if and only if wtG(i) = 2.
2. The index i is even if and only if wtG(i) = 1.
3. If wtG(c) = 2, then c is odd.
4. If c is even, then wtG(c) = 1.

We recall that, if G is a p-group, then ρ denotes the map x 7→ xp on G.

Lemma 10.5. Let p > 3 be a prime number and let G be a p-obelisk. Then, for
all i, k ∈ Z>0, one has ρk(Gi) = G2k+i.

In his original proof of Proposition 10.3, Blackburn also proves Lemma 10.5. Black-
burn’s proof strongly relies on the fact that p-obelisks are regular and it makes use
of some technical lemmas that can be found in [Hup67, Ch. III]. The following,
for example, is Satz 10.8(a) from [Hup67, Ch. III].

Lemma 10.6. Let p be a prime number and let G be a finite regular p-group.
Let M,N be normal subgroups of G and let r, s be non-negative integers. Then
[ρr(M), ρs(N)] = ρr+s([M,N ]).

Proposition 10.7. Let p > 3 be a prime number and let G be a p-obelisk. Let
(Gi)i≥1 be the lower central series of G and let c denote its nilpotency class. Then
Z(G) = Gc.

Proof. We work by induction on c. If c = 2, then, by Lemma 10.2(2), the
group G is extraspecial so G2 = Z(G). Assume now that c > 2. The subgroup Gc
is central and, by the induction hypothesis, Z(G/Gc) = Gc−1/Gc. It follows that
Gc ⊆ Z(G) ⊆ Gc−1 and Z(G) 6= Gc−1. Moreover, by Proposition 10.3(1), the width
wtG(c − 1) is either 1 or 2. If wtG(c − 1) = 1, then Z(G) = Gc; we assume thus
that wtG(c− 1) = 2. By Lemma 10.4(1), there exists a positive integer k such that
c − 1 = 2k + 1 so, from Lemma 10.5, we get Gc−1 = ρk(G) and Gc = ρk(G2). As
a consequence of Proposition 10.3(1), the subgroup Gc has order p. Let us assume
by contradiction that Z(G) 6= Gc, in other words |Gc−1 : Z(G)| = |Z(G) : Gc| = p.
Let N = CG(Gc−1). The commutator map G/G2 ×Gc−1/Gc → Gc is bilinear and
it factors as a surjective non-degenerate map G/N ×Gc−1/Z(G)→ Gc. It follows
that G/N is cyclic of order p so G2 = [N,G]. Lemma 10.6 yields ρk([N,G]) =
[N, ρk(G)] = [N,Gc−1] = {1} and so Gc = ρk(G2) = {1}. Contradiction. �

Lemma 10.8. Let p > 3 be a prime number and let G be a p-obelisk. Then each
non-abelian quotient of G is a p-obelisk.

Proof. Let N be a normal subgroup of G such that G/N is not abelian.
We claim that N is contained in G3. Denote first H = G/N . Then we have
p2 ≤ |H : H2| ≤ |G : G2| and therefore, from Lemma 10.2(1), it follows that
N ⊆ G2. If N ∩ G3 = N , then N is contained in G3 and we are done. Assume
by contradiction that N ∩ G3 6= N . As a consequence of Lemma 10.2(1), the
subgroup N does not contain G3. Let now M be a normal subgroup of G such
that N ∩ G3 ⊆ M ⊆ G3 and |G3 : M | = p. Then G = G/M has class 3 and
N 6= {1}. However, by Lemma 5.12, the centre of G is equal to G3 so, G3 having
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order p, we get G3 ⊆ N . In particular, G3 is contained in MN . It follows that
G3 = G3 ∩ (MN) = (G3 ∩N)M = M , which gives a contradiction. Then N ⊆ G3,
as claimed, and thus we have |H : H3| = |G : G3|. It is moreover clear that
Hp = H3, and so H is a p-obelisk. �

Lemma 10.9. Let p > 3 be a prime number and let G be a p-obelisk. Then the
following hold.

1. If i ∈ Z≥1 and H is a quotient of G of class i, then Z(H) = Hi.
2. Let N be a subgroup of G. Then N is normal in G if and only if there

exists i ∈ Z>0 such that Gi+1 ⊆ N ⊆ Gi.
Proof. (1) Let c denote the class of G. Let moreover i ∈ {1, . . . , c} and let

H be a quotient of G of class i. If i = 1, the group H is abelian and Z(H) = H.
Assume now that i > 1. Then H is a non-abelian quotient of a p-obelisk so, by
Lemma 10.8, it is a p-obelisk itself. To conclude, apply Proposition 10.7. For the
proof of (2), we combine (1) with Lemma 6.8. �

10.2. Power maps and commutators

Throughout Section 10.2 we will faithfully follow the notation from the List of
Symbols. In particular, if p is a prime number and G is a finite p-group, then ρ will
denote the map G→ G that is defined by x 7→ xp. We remind the reader that ρ is
in general not a homomorphism.

Lemma 10.10. Let p > 3 be a prime number and let G be a p-obelisk. Then the
following hold.

1. For all i, k ∈ Z>0 the map ρk : Gi → Gi induces a surjective homomor-
phism

ρki : Gi/Gi+1 → G2k+i/G2k+i+1.

2. For all h, k ∈ Z>0 not both even, the commutator map induces a bilinear
map

γh,k : Gh/Gh+1 ×Gk/Gk+1 → Gh+k/Gh+k+1

whose image generates Gh+k/Gh+k+1.

Proof. (1) Let i and k be positive integers and, without loss of generality,
assume that G2k+i+1 = {1}. We work by induction on k and we start by taking
k = 1. Since [Gi, Gi] is contained in G2i, Lemma 10.5 yields that [Gi, Gi]

p is
contained in G2i+2. The index i being positive, G2i+2 is contained in Gi+3 = {1}.
Now, the prime p is larger than 3 so Gip is also contained in Gi+3 = {1}. Moreover,
(Gi)p is contained in Gip, and so, as a consequence of the Hall-Petrescu formula,
the map ρ : Gi → Gi is a homomorphism. The function ρ factors as a surjective
homomorphism ρ1

i : Gi/Gi+1 → Gi+2, thanks to Lemma 10.5. This finishes the
proof for k = 1. Assume now that k > 1 and define

ρki = ρ1
2k+i−1 ◦ ρ1

2k+i−3 ◦ . . . ◦ ρ1
i+2 ◦ ρ1

i .

As a consequence of the base case, ρki is a surjective homomorphism ρki : Gi/Gi+1 →
G2k+i/G2k+i+1 and, by its definition, it is induced by ρk. This proves (1). Point
(2) follows from Proposition 10.3(3). �

Let p > 3 be a prime number and let G be a p-obelisk. Let c be the class of G.
Let moreover i and j be integers of the same parity such that 1 ≤ i ≤ j ≤ c and
one of the following holds.
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1. The number j is even.
2. One has wtG(j) = 2.

Define m = j−i
2 . Then the map ρm : Gi → Gi induces an isomorphism ρmi :

Gi/Gi+1 → Gj/Gj+1.

Proof. Let ρmi : Gi/Gi+1 → Gj/Gj+1 be the surjective homomorphism from
Lemma 10.10(1). Since i and j have the same parity, it follows from Lemma 10.4
that wtG(i) = wtG(j) and ρmi is a bijection. �

Lemma 10.11. Let p > 3 be a prime number and let G be a p-obelisk. Denote
by c the class of G. Let moreover h and k be positive integers, not both even, such
that h + k ≤ c. Assume additionally that, if h + k is odd, then wtG(h + k) = 2.
Then the map γh,k from Lemma 10.10 is non-degenerate.

Proof. Without loss of generality, assume that c = h+k and soGh+k+1 = {1}.
We prove non-degeneracy of γh,k by looking at the parity of h+k. Assume first that
h+k is odd and, without loss of generality, h is odd and k is even. From Lemma 10.4,
it follows that wtG(h) = 2 and wtG(k) = 1. Moreover, by assumption, wtG(h+k) =
2. Since the image of γh,k generates Gh+k, the map γh,k is non-degenerate. Let
now h+k be even. The numbers h and k are both odd so wtG(h) = wtG(k) = 2, by
Lemma 10.4(2). Assume without loss of generality that h ≤ k. Then, by Lemma

10.5, the set ρ
k−h

2 (Gh) coincides with the subgroup Gk. Let now C = CGh
(Gk)

and D = CGk
(Gh). Since γh,k 6= 1, we have that Gh+1 ⊆ CGh and Gk+1 ⊆

DGk. The commutator map induces a non-degenerate map Gh/C×Gk/D → Gh+k

so, wtG(h + k) being equal to 1, one derives |Gh : C| = |Gk : D|. Now, by
Lemma 10.2(3), the group G is regular, and therefore so is C. Thanks to Lemma

8.3(1), the set ρ
k−h

2 (C) is a subgroup of C and so, thanks to Lemma 10.6, one

has [ρ
k−h

2 (C), Gh] = [C, ρ
k−h

2 (Gh)] = [C,Gk] = {1}. In particular, ρ
k−h

2 (C) ⊆ D.
Since |Gh : C| = |Gk : D| and wtG(h) = wtG(k) = 2, we derive from Corollary 10.2

that ρ
k−h

2 (C) = D. Assume now by contradiction that there exists x ∈ Gh such

that Gh = 〈x,C〉. Then Gk = 〈ρ k−h
2 (x), D〉 and therefore, the commutator map

being alternating, one has Gh+k = [Gk, Gh] = 〈[x, ρ k−h
2 (x)]〉 = {1}. Contradiction

to the class of G being h + k. It follows that the quotient Gh/C is not cyclic and
so C = Gh+1 and D = Gk+1. In particular, γh,k is non-degenerate. �

Let p > 3 be a prime number and let G be a p-obelisk. Denote by c the class
of G. Let moreover l ∈ {1, . . . , c− 1} be such that c − l is odd. Then the map
Gc−l/Gc−l+1 → Hom(Gl/Gl+1, Gc) that is defined by tGc−l+1 7→ (xGl+1 7→ [t, x])
is a surjective homomorphism of groups.

Proof. As a consequence of Lemma 10.5, the groups Gl/Gl+1, Gc−l/Gc−l+1,
and Gc are elementary abelian and the map γc−l,l from Lemma 10.10 is thus a
bilinear map of Fp-vector spaces. We define δ : Gc−l/Gc−l+1 → Hom(Gl/Gl+1, Gc)
to be the map sending each element v ∈ Gc−l/Gc−l+1 to the map x 7→ γc−l,l(v, x).
In other words, if v = tGc−l+1, then δ(v) : Gl/Gl+1 → Gc is defined by xGl+1 7→
[t, x]. As a consequence of Lemma 10.10(2), the function δ is a homomorphism of
groups and δ differs from the zero map. Let us now, for all i ∈ {1, . . . , c}, denote
wi = wtG(i). It follows that the dimension of Hom(Gl/Gl+1, Gc) is equal to wlwc
and, if wlwc = 1, then δ is surjective. We assume that wlwc 6= 1. The index c − l
being odd, it follows that either l or c is even. Proposition 10.3 yields wc−l = wlwc
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and, if l is even, then wc = 2. As a consequence of Lemma 10.11, the map δ is
injective and so δ is also surjective. �

10.3. Framed obelisks

Let p > 3 be a prime number and let G be a p-obelisk. If (Gi)i≥1 denotes the
lower central series of G, then G is framed if, for each maximal subgroup M of G,
one has Φ(M) = G3. The following is an elementary result, whose proof is mostly
computational and therefore omitted.

Proposition 10.12. Let p > 3 be a prime number and let G be a p-obelisk.
Let moreover h, k ∈ Z>0, with h odd and k even, and let m,n ∈ Z≥0. Then the
following diagram is commutative.

Gh/Gh+1 ×Gk/Gk+1

(ρmh , ρnk )

��

γh,k // Gh+k/Gh+k+1

ρm+n
h+k

��
Gh+2m/Gh+2m+1 ×Gk+2n/Gk+2n+1

γh+2m,k+2n// Gh+k+2(m+n)/Gh+k+2(m+n)+1

Lemma 10.13. Let p > 3 be a prime number and let G be a p-obelisk of class
at least 3. Let moreover M be a maximal subgroup of G. Then [M,M ] = [M,G2]
and, whenever wtG(3) = 2, the following are equivalent.

1. One has Φ(M) 6= G3.
2. One has [M,M ] = Mp = Φ(M).

Proof. The subgroups Mp and [M,M ] are both normal in G. By Lemma
10.2(1), the quotient G/G2 has order p2 and so |G : M | = |M : G2| = p. It follows
that [M,M ] = [M,G2] and so, as a consequence of Corollary 10.2 and Lemma 10.11,
the least jumps of [M,M ] and Mp in G are both equal to 3 and of width 1. In
particular, Φ(M) is contained in G3 and Lemma 10.9(2) yields G4 ⊆Mp ∩ [M,M ].
If the third width of G is equal to 2, then it follows that Φ(M) 6= G3 if and only if
[M,M ] = Φ(M) = Mp. �

We remark that, as a consequence of Lemma 10.5, quotients of consecutive elements
of the lower central series of a p-obelisk are vector spaces over Fp and therefore, in
(2) and (3) from Proposition 10.14, it makes sense, for each positive integer i, to
talk about subspaces of Gi/Gi+1.

Proposition 10.14. Let p > 3 be a prime number and let G be a p-obelisk.
Then the following conditions are equivalent.

1. The p-obelisk G is framed.
2. For each 1-dimensional subspace ` of G/G2, the quotient G3/G4 is gen-

erated by ρ1
1(`) and γ1,2({`} ×G2/G3).

3. For each h, k ∈ Z>0, with h odd and k even, and for each 1-dimensional

subspace ` in Gh/Gh+1, the spaces ρ
k/2
h (`) and γh,k({`}×Gk/Gk+1) gen-

erate Gh+k/Gh+k+1.

Proof. (1) ⇔ (2) Let π : G → G/G2 denote the natural projection. Then,
through π, there is a bijection between the maximal subgroups of G and the 1-
dimensional subspaces of G/G2. For any maximal subgroup M of G, we know that
[M,G2] = [M,M ] and so Lemma 10.13 ensures that (2) holds if and only if, given
any maximal subgroup M of G, one has Φ(M)G4 = G3. Lemma 10.9(2) yields that
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(2) is satisfied if and only if, for any maximal subgroup M of G, one has Φ(M) = G3.
We now deal with (2) ⇔ (3). The implication ⇐ is proven by taking h = 1 and
k = 2, so we will prove that (2) implies (3). Let ` be a 1-dimensional subspace
of Gh/Gh+1. Define moreover m = h−1

2 , n = k−2
2 , and S = m + n = h+k−3

2 .
Thanks to Lemma 10.10(1), there exists a 1-dimensional subspace `′ of G/G2 such
that ρm1 (`′) = ` and, moreover, ρn2 (G2/G3) = Gk/Gk+1. By assumption G3/G4 is
generated by ρ1

1(`′) and γ1,2({`′}×G2/G3), so it follows from Lemma 10.10(1) that
ρS3 (ρ1

1(`′)) and ρS3 (γ1,2({`′} ×G2/G3)) together span Gh+k/Gh+k+1. We now have

ρS3 (ρ1
1(`′)) = ρS+1

1 (`′) = ρ
k/2
h (`) and, thanks to Proposition 10.12, we also have

ρS3 (γ1,2({`′} ×G2/G3)) = γh,k(ρm1 (`′)× ρn2 (G2/G3)) = γh,k({`} ×Gk/Gk+1).

This completes the proof. �

10.4. Subgroups of obelisks

The major goal of this section is to link structural properties of subgroups of a p-
obelisk to the parities and widths of their jumps (see Section 2.3). The importance
of Section 10.4 will become clear in Chapter 13.

Proposition 10.15. Let p > 3 be a prime number and let G be a p-obelisk.
Let H be a subgroup of G that is itself a p-obelisk. Then H = G.

Proof. The subgroup H is non-abelian and so non-trivial. Let l denote the
least jump of H in G. Then H2 = [H,H] is contained in G2l and moreover, since
H is a p-obelisk, Hp is contained in H2. It follows from Corollary 10.2 that the
minimum jump of H2 is at most l + 2: we get that 2l ≤ l + 2 and therefore
l ≤ 2. We will show that HG2 = G. Assume by contradiction that G 6= HG2.
Then, as a consequence of Lemma 10.2(1), the width wtGH(l) is equal to 1 and so
H2 = [H,H ∩ Gl+1]. Then H2 is contained in G2l+1 and therefore 2l + 1 ≤ l + 2.
It follows that l = 1 and that H2 is contained in G3. Define now G = G/G4 and
use the bar notation for the subgroups of G. The groups H and H/(H ∩ G4) are
isomorphic and so, as a consequence of Lemma 10.8, the group H is abelian or a
p-obelisk. The minimum jump of Hp in G being equal to 3, we have that 3 is a
jump of H2 in G and so H is a p-obelisk. Now, the group G3 is central in G and so,
the group H2 being non-trivial, the quotient H/(H ∩ G3) is not cyclic. It follows
that 2 is a jump of H in G and, from the combination of Lemmas 10.4 and 10.10(2),

that H2 has order p. Since H2 contains H
p
, we get H2 = H

p
= H3. Contradiction

to H being non-abelian. We have proven that G = HG2 = HΦ(G), from which it
follows that H = G. �

Lemma 10.16. Let p > 3 be a prime number and let G be a p-obelisk. Let H be
a cyclic subgroup of G. Then all jumps of H in G have the same parity and width
1.

Proof. Let H be a cyclic subgroup of G. Then, for all i ∈ Z>0, there exists

k ∈ Z≥0 such that H ∩ Gi = Hpk . Moreover, i ∈ Z>0 is a jump of H in G if

and only if there exists k ∈ {0, 1, . . . , logp |H| − 1} such that H ∩ Gi = Hpk and

H ∩Gi+1 = Hpk+1

. We conclude thanks to Lemma 10.10(1). �

Lemma 10.17. Let p > 3 be a prime number and let G be a p-obelisk. Let c
denote the nilpotency class of G and assume that one of the following holds.
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1. The number c is even.
2. One has wtG(c) = 2.

If H is a subgroup such that all of its jumps in G have the same parity and width
1, then H is cyclic.

Proof. Without loss of generality we assume that H is non-trivial and we
take l to be the least jump of H in G. Let moreover J (H) denote the collection
of jumps of H in G and define the set J = {l + 2k : k ∈ Z≥0, k ≤ (c− l)/2}. Let
x be an element of H such that dptG(x) = l; the existence of x is guaranteed by
Lemma 2.16. Write K = 〈x〉 and let J (K) be the collection of jumps of K in G.
By assumption J contains J (H) and, as a consequence of Corollary 10.2, the set
J is contained in J (K). Keeping in mind that each jump of H in G has width 1,
one derives

|K| =
∏

j∈J (K)

pwtGK(j) ≥
∏
j∈J

pwtGK(j) ≥
∏
j∈J

pwtGH(j) ≥
∏

j∈J (H)

pwtGH(j) = |H|.

It follows that K = H and H is cyclic. �

Lemma 10.18. Let p > 3 be a prime number and let G be a p-obelisk. Let c
denote the nilpotency class of G and let H be a subgroup of G such that H ∩Gc =
{1}. If all jumps of H in G have the same parity and width 1, then H is cyclic.

Proof. We denote G = G/Gc and we will use the bar notation for the sub-
groups of G. As a consequence of Lemma 10.8, the group G is abelian or it is
a p-obelisk. If G is abelian, then c = 2 and so, by Lemma 10.17, the subgroup
H is cyclic. Assume now that G is non-abelian and thus a p-obelisk. The group
G has class c − 1 and, as a consequence of Corollary 10.4, either c − 1 is even or
wtG(c− 1) = 2. It follows from Lemma 10.17 that H is cyclic and, the intersection
H ∩Gc being trivial, so is H. �

Lemma 10.19. Let p > 3 be a prime number and let G be a p-obelisk. Let c
denote the nilpotency class of G and let H be a non-trivial subgroup of G such that
H ∩Gc = {1}. Let l be the least jump of H in G and assume that all jumps of H
in G have the same parity and the same width. Then the following hold.

1. The group H is abelian.
2. One has Φ(H) = H ∩Gl+1.

Proof. Let J (H) denote the collection of jumps of H in G. We first assume
wtGH(l) = 1. By Lemma 10.18, the subgroup H is cyclic and Φ(H) has index p in
H. It follows that Φ(H) = H ∩Gl+1. Assume now that wtGH(l) = 2. Then, thanks
to Lemma 10.4(3), the jump l is odd. The subgroup [H,H] is contained in G2l

and therefore, 2l being even, Lemma 10.10(2) yields 2l > c. In particular, one has
[H,H] = {1} so Φ(H) = Hp. Moreover, as a consequence of Lemma 10.10(1), the
set of jumps of Hp in G is equal to J (H) \ {l} and each jump of Hp has width 2.
It follows that Hp = H ∩ Gl+1. Thanks to Proposition 10.3 the width wtGH(l) is
either 1 or 2 and the proof is thus complete. �

Lemma 10.20. Let p > 3 be a prime number and let G be a p-obelisk. Let c be
the class of G and let H be a non-trivial subgroup of G such that H ∩ Gc = {1}.
Denote by l the least jump of H and assume that H ∩ Gl+1 = Φ(H). Finally,
assume that c− l is odd. Then, for each complement K of Gc in HGc, there exists
t ∈ Gc−l such that K = tHt−1.
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Proof. The subgroup Gc is central in G and so, by Lemma 4.6, all com-
plements of Gc in T = HGc are of the form {f(h)h : h ∈ H} as f varies in
Hom(H,Gc). By Lemma 10.5, the subgroup Gc is elementary abelian and there-
fore the group Hom(H,Gc) is naturally isomorphic to Hom(H/(H ∩ Gl+1), Gc).
By assumption, c − l is odd so, thanks to Corollary 10.2, the homomorphism
Gc−l/Gc−l+1 → Hom(Gl/Gl+1, Gc), defined by tGc−l 7→ (xGl+1 7→ [t, x]), is sur-
jective. By Lemma 10.5, the quotient Gl/Gl+1 is elementary abelian and therefore
the restriction map Hom(Gl/Gl+1, Gc)→ Hom(HGl+1/Gl+1, Gc) is surjective. The
quotients HGl+1/Gl+1 and H/(H ∩Gl+1) being isomorphic, every homomorphism
H → Gc is of the form x 7→ [t, x], for some t ∈ Gc−l, and thus, for each com-
plement K of Gc in T , there exists t ∈ Gc−l such that K = {[t, x]x : x ∈ H} =
{txt−1 : x ∈ H} = tHt−1. �



CHAPTER 11

The Most Intense Chapter

Let p > 3 be a prime number. We recall that a p-obelisk is a finite p-group G of
class at least 2 that satisfies G3 = Gp and |G : G3| = p3. A p-obelisk G is framed
if, for each maximal subgroup M of G, one has Φ(M) = G3. Some theory about
p-obelisks is developed in Chapter 10.

The main results of this chapter are summarized in Theorems 11.1 and 11.2, which
are proven in Section 11.4.

Theorem 11.1. Let p > 3 be a prime number and let G be a finite p-group of
class 4. Let α be an automorphism of order 2 of G. Then the following conditions
are equivalent.

1. The group G is a p-obelisk and the automorphism G/G2 → G/G2 that is
induced by α is equal to the inversion map x 7→ x−1.

2. The automorphism α is intense.

An analogue of Theorem 11.1 for higher nilpotency classes is proven in Chapter 12:
the next theorem gives an essential contribution to its proof.

Theorem 11.2. Let p > 3 be a prime number and let G be a framed p-obelisk.
Let α be an automorphism of order 2 of G and assume that the automorphism
G/G2 → G/G2 that is induced by α is equal to the inversion map x 7→ x−1. Then
α is intense.

We remark that the structure of Chapter 11 is quite rigid and is meant to ease the
understanding of the strategy behind the proof of Theorem 11.2. We will prove
Theorem 11.2 by induction on the nilpotency class c of the group G and we will
separate the cases according to the parity of c. Propositions 11.3, 11.12, and 11.22
will be the building blocks of the whole theory and will be verified respectively
in Sections 11.1, 11.2, and 11.3. We will use several results from Section 10.4
to understand the structure of the subgroups of G, according to the size of their
intersection with Gc. Moreover, the arguments that we will apply will heavily
depend on the knowledge of the jumps of each subgroup in G. For more detailed
information about jumps, we refer to Section 2.3.

11.1. The even case

The next proposition is proven for any p-obelisk, where p is a prime number greater
than 3. We want to stress that, on the contrary, in Propositions 11.12 and 11.22
we ask for the p-obelisk to be framed.

Proposition 11.3. Let p > 3 be a prime number and let G be a p-obelisk of
class c. Assume that c is even. Let moreover α be an automorphism of G of order

89
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2 and assume that the map αc : G/Gc → G/Gc that is induced by α is intense.
Then α is intense.

We will prove Proposition 11.3 at the end of the present section. To this end, let
G, c, and α be as in Proposition 11.3: then, Lemma 10.4(4) yields that Gc has
order p. Set moreover A = 〈α〉 and let H be a subgroup of G: we will show that H
has an A-stable conjugate. Since the case in which H contains Gc follows directly
from the intensity of αc and Lemma 3.5, we assume, wihout loss of generality, that
H ∩Gc = {1} and that H is non-trivial. Then, as a consequence of Corollary 10.2,
all jumps of H in G are odd. We will work under these assumptions until the end
of Section 11.1.

Lemma 11.4. Define T = HGc and assume that α(T ) = T . Then, for each
subgroup K of T , one has α(KGc) = KGc. Moreover, for each x ∈ H, there exists
γ ∈ Gc such that α(x) = x−1γ and α(γ) = γ.

Proof. The 〈αc〉-stable subgroup T/Gc having only odd jumps, Lemma 2.17
yields that each element of T/Gc is inverted by αc. In particular, every subgroup
of T/Gc is 〈αc〉-stable and thus KGc is A-stable. Every element of G \ G2 being
inverted by α modulo Gc, it follows from Lemma 2.5 that α restricts to the identity
map on Gc. �

Lemma 11.5. Let l be the least jump of H and assume that all jumps of H in
G have the same width. Assume moreover that α(HGc) = HGc. Then there exists
g ∈ Gc−l such that gHg−1 is A-stable.

Proof. Define T = HGc. All jumps of H in G are odd and H is abelian, by
Lemma 10.19(1). Then, the subgroup Gc being central, one has T = H ⊕ Gc. As
a consequence, T = α(T ) = α(H) ⊕ Gc and α(H) is a complement of Gc in T .
By Lemma 10.19(2), the Frattini subgroup of H is equal to H ∩Gl+1 so it follows
from Lemma 10.20 that there exists t ∈ Gc−l such that α(H) = tHt−1. Thanks to
Lemma 3.5, there exists g ∈ Gc−l such that gHg−1 is A-stable. �

Lemma 11.6. Assume that all jumps of H in G have the same width. Then
there exists g ∈ G such that gHg−1 is A-stable.

Proof. Denote T = HGc. Then there exists a ∈ G such that aTa−1 is A-
stable. Write T ′ = aTa−1 and H ′ = aHa−1. Then T ′ = H ′Gc and, thanks to
Lemma 11.5, there exists b ∈ G such that bH ′b−1 is A-stable. To conclude, define
g = ba. �

Lemma 11.7. There exists g ∈ G such that gHg−1 is A-stable.

We devote the remaining part of this section to the proof of Lemma 11.7. To this
end, write T = HGc. In view of Lemma 11.6, we assume without loss of generality
that the jumps of H in G do not all have the same width. As a consequence of
Proposition 10.3(1), each jump of H in G will have width 1 or 2, so we denote by
l and j respectively the least jump of width 1 and the least jump of width 2 of H
in G. It follows from our assumptions that the following are satisfied.

i. If i, h ∈ Z>0 are such that wtGH(i) = 1 and that wtGH(h) = 2, then i < h.
ii. One has l < j and j + l > c.
iii. The subgroup H is abelian.



11.1. THE EVEN CASE 91

Lemma 11.8. There exist cyclic subgroups J and L of H such that H = J ⊕L
and j and l are respectively the least jump of J and the least jump of L in G.

Proof. The smallest jump of H in G is l so, thanks to Lemma 2.16, there is
an element z in H with dptG(z) = l. Define L = 〈z〉. Then L is a subgroup of H
and l is the least jump of L in G. Moreover, thanks to Lemma 10.16, all jumps of
L are odd and of width 1 in G and, since l < j, Corollary 10.2 ensures that j is a
jump of L in G. However, j is a jump of width 2 of H, and thus there exists an
element x in H \ L such that dptG(x) = j. Define J = 〈x〉. The group H being
abelian, Corollary 10.2 yields L ∩ J = {1}. Now, every jump l ≤ i < j of L in G is
also a jump of H and it has width 1. Moreover, each jump j ≤ i < c of J ⊕ L is a
jump of width 2 of H. Corollary 10.2 guarantees that all odd integers l ≤ i < c are
jumps of H in G, so Lemma 2.16 yields

|J ⊕ L| =
c−1∏
i=l

pdimG
J⊕L(i) =

c−1∏
i=l

pdimG
H(i) = |H|.

�

Lemma 11.9. Let J and L be as in Lemma 11.8. Assume that α(T ) = T . Then
there exists g ∈ Gc−l such that the following hold.

1. The group gLg−1 is A-stable.
2. One has gTg−1 = T and gJg−1 = J .

Proof. We define R = LGc. By Lemma 11.4, the group R is A-stable. The
subgroup L is cyclic so, by Lemma 10.16, all its jumps in G are odd and of width
1. With L in the role of H, it follows from Lemma 11.5 that there exists g ∈ Gc−l
such that gLg−1 is A-stable. We fix such an element g and prove that g normalizes
both J and T . The least jump of J being j, one has that [g, J ] = {[g, x] : x ∈ J}
is contained in [Gc−l, Gj ]. Moreover, [g, L] is contained in Gc−l+j ⊆ Gc+1 = {1}
and so g centralizes J . To conclude, since T is contained in Gl, the set [g, T ] is
contained in [Gc−l, Gl] ⊆ Gc and hence g normalizes T . �

Lemma 11.10. Let J and L be as in Lemma 11.8. Assume that α(T ) = T and
α(L) = L. Then there exists g ∈ Gc−j such that gHg−1 is A-stable.

Proof. We will construct g. Let x, z ∈ H be such that J = 〈x〉 and L = 〈z〉:
then, by Lemma 11.8, one has dptG(x) = j and dptG(z) = l. Let moreover γ ∈ Gc
be such that α(x) = x−1γ and α(γ) = γ, as given by Lemma 11.4. Define m =
(j+l−c)/2. By Lemma 10.5, there exists a of depth c−j in G such that ρm(a) = z.
We fix a and remark that a belongs to CG(L). Since wtG(j) = 2, it follows from

Lemma 10.11 that there exists s ∈ Z such that [as, x] = γ
p−1
2 . We define g = as

and claim that gHg−1 is A-stable. We recall that γ belongs to the central subgroup
Gc and that the exponent of Gc is p: it follows that α(gxg−1) = (gxg−1)−1 and so
gJg−1 is A-stable. Moreover, g centralizes L and therefore gHg−1 = gJg−1 ⊕ L.
As a consequence, gHg−1 is itself A-stable. �

Lemma 11.11. Let J and L be as in Lemma 11.8. Assume that α(T ) = T .
Then there exists g ∈ Gc−j such that gHg−1 is A-stable.

Proof. As a consequence of Lemma 11.9, there exists a ∈ Gc−l such that
aLa−1 is A-stable, aTa−1 = T , and aHa−1 = J ⊕ aLa−1. We fix such a and we
take h ∈ Gc−j making h(aHa−1)h−1 stable under the action of A. With H replaced
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by aHa−1, Lemma 11.10 guarantees the existence of h. We conclude by defining
g = ha, which belongs to Gc−jGc−l = Gc−j . �

To conclude the proof of Lemma 11.7, let b ∈ G be such that bTb−1 is A-stable
and note that such element b exists because T contains Gc. Lemma 11.11, with H
replaced by bHb−1, provides an element a ∈ G such that a(bHb−1)a−1 is A-stable.
To conclude the proof of Lemma 11.7, we define g = ab. Now that Lemma 11.7 is
proven, Lemma 3.5 yields that α is intense and, the choice of H being arbitrary,
the proof of Proposition 11.3 is complete.

11.2. The odd case, part I

In Proposition 11.12 an additional assumption compared to Proposition 11.3 is
made: that G be a framed p-obelisk. We recall that, if p is a prime number, then a
p-obelisk G is framed if, for each maximal subgroup M of G, one has Φ(M) = G3.
We refer to Section 10.3 for useful facts related to framed p-obelisks.

Proposition 11.12. Let p > 3 be a prime number and let G be a framed p-
obelisk of class c. Assume that c is odd and that Gc has order p. Let α be an
automorphism of G of order 2 and assume that the map αc : G/Gc → G/Gc that
is induced by α is intense. Then α is intense.

The goal of this section is to give the proof of Proposition 11.12 so we will keep
the following assumptions until the end of Section 11.2. Let p > 3 be a prime
number and let G be a p-obelisk of class c. Assume that c is odd and that
Gc has order p. Let moreover α be an automorphism of G of order 2 and as-
sume that the map αc : G/Gc → G/Gc that is induced by α is intense. Set
A = 〈α〉 and, in concordance with Section 2.2, write G+ = {x ∈ G : α(x) = x}
andG− = {x ∈ G : α(x) = x−1}. For a subgroupH ofG, we denoteH+ = H∩G+

and H− = H ∩G− and we use the same “plus-minus” notation for any subgroup of
G/Gc with respect to αc. We have intentionally not yet asked for G to be framed:
we will make such assumption right after stating Lemma 11.16.

Let H be a subgroup of G: we will show that H has an A-stable conjugate. If
H contains Gc, then Lemma 3.5 guarantees the existence of g ∈ G such that
(gHg−1)/Gc is 〈αc〉-stable: then gHg−1 is A-stable. We assume thus, without loss
of generality, that H ∩Gc = {1} and that H is non-trivial.

Lemma 11.13. All jumps of H in G have width 1.

Proof. As a consequence of Proposition 10.3(1), every jump of H in G has
width at most 2. Assume by contradiction that l is a jump of H in G of width 2.
The jump l is odd, thanks to Lemma 10.4(1), and Gl/Gl+1 = (H ∩Gl)Gl+1/Gl+1.

Looking at ρ
(c−l)/2
l : Gl/Gl+1 → Gc, it follows from Lemma 10.10(1) that H∩Gc 6=

{1}. Contradiction. �

Lemma 11.14. Assume that all jumps of H in G are even. Then there exists
g ∈ G such that gHg−1 is A-stable.

Proof. All jumps of H in G are even so, by Lemma 11.13, they also all have
width 1. Let now l be the least jump of H in G. Then, by Lemma 10.18, the
subgroup H is cyclic and, by Lemma 10.19, the subgroups Φ(H) and H ∩Gl+1 are
the same. Let T = H ⊕ Gc. Assume first that α(T ) = T . Then T = α(H) ⊕ Gc
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and, by Lemma 10.20, there exists t ∈ G such that α(H) = tHt−1. Thanks to
Lemma 3.5, there exists thus t ∈ G such that tHt−1 is A-stable. In general, since T
contains Gc, there exists a ∈ G such that aTa−1 is A-stable and so we are done. �

Lemma 11.15. Assume that all jumps of H in G are odd. Then there exists
g ∈ G such that gHg−1 is A-stable.

Proof. Let T = HGc. The class of G being odd, it follows that all jumps of
T in G are odd. Moreover, since T contains Gc, there exists g ∈ G such that gTg−1

is A-stable. By Lemma 2.16, the subgroups gTg−1 and T have the same jumps in
G so Lemma 2.17 yields gTg−1 = (gTg−1)−. In particular, gHg−1 = (gHg−1)−

and gHg−1 is A-stable. �

Lemma 11.16. Assume that G is framed. Then there exists g ∈ G such that
gHg−1 is A-stable.

The remaining part of Section 11.2 will be entirely dedicated to the proof of Lemma
11.16. For this purpose, all assumptions that we now make will hold until the end
of the very same section.

Assume that G is a framed p-obelisk. Moreover, in view of Lemmas 11.14 and
11.15, assume that H has jumps of each parity and define i and j respectively to
be the least odd jump and the least even jump of H in G. Write T = HGc.

Lemma 11.17. The following hold.

1. One has i+ j > c.
2. The subgroups H and T are abelian.

Proof. The numbers i and j having different parities, their sum m = i + j
is odd. Let k = max{i, j}. Then, as a consequence of Lemma 11.13, all jumps of
H in G that are smaller than k have width 1 and so, by Lemma 10.17, the group
H/(H ∩ Gk) is cyclic. Then [H,H] = [H,H ∩ Gk] and so [H,H] is contained in
Gm. If m > c, then Gm ⊆ Gc+1 = {1}, and thus (1) and (2) are proven. Assume
by contradiction that m ≤ c and let y and x be elements of H respectively of depth
i and j in G. Then the image of 〈y〉 under the natural projection G → G/Gi+1 is
a 1-dimensional subspace of Gi/Gi+1. Thanks to Proposition 10.14(3), with h = i

and k = j, the elements yp
j/2

and [y, x] of H span Gm/Gm+1. It follows from
Lemma 11.13 that m is a jump of H of width 1 in G so, from Lemma 10.4(1), we
derive m = c. Contradiction to H trivially intersecting Gc. �

Lemma 11.18. Let π : G → G/Gc denote the natural projection. Assume that
α(T ) = T . Then π(H) is 〈αc〉-stable and π(H) = π(H)+⊕ π(H)−. Moreover, both
π(H)+ and π(H)− are cyclic.

Proof. To lighten the notation, we will denote G = π(G) and we will use
the bar notation for the subgroups of G. By assumption, α(T ) = T and thus
αc(T ) = T . Moreover, H is equal to T , so H is itself 〈αc〉-stable. As a consequence
of Lemma 11.17(2), the group H is abelian so, by Corollary 2.2, it decomposes as

H = H
+ ⊕H −. It follows from Lemma 2.17 that H

+
and H

−
have respectively

only even jumps and only odd jumps in G. Moreover, thanks to Lemma 11.13, all
jumps of H, and thus of its subgroups, in G have width 1. Lemma 10.17 yields

that both H
+

and H
−

are cyclic. �
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Lemma 11.19. Assume that α(T ) = T . Then there exist cyclic subgroups I and
J of H, with least jumps in G respectively equal to i and j, such that the following
hold.

1. One has H = I ⊕ J .
2. The group I is A-stable and I = I−.
3. The group S = J ⊕Gc is A-stable and S = S+ ⊕Gc.

Proof. We denote G = G/Gc and we will use the bar notation for the sub-
groups of G. By Lemma 11.18, the subgroup H is 〈αc〉-stable and it decomposes

as H = H
+⊕H −, where both H

+
and H

−
are cyclic. Let R and S be subgroups

of G, containing Gc, such that S = H
+

and R = H
−

. Because of their definitions,
both R and S are A-stable. The subgroup Gc is contained in G− as a consequence
of Lemma 2.5, so it follows from Lemma 2.12 that R = R−. Moreover, by Corol-

lary 2.2, one has S = S+ ⊕ S−. However, as S = S
+

, the subgroups S− and Gc
are equal, and hence S = S+ ⊕ Gc. We define I = H ∩ R and J = H ∩ S. The
subgroup I, being contained in R = R−, is itself A-stable and I = I−. Moreover,
one has JGc = (H ∩ S)Gc = S ∩ (HGc) = S and so, since H ∩ Gc = {1}, we get
S = J ⊕ Gc. In the same way, we have R = I ⊕ Gc. It follows that J and I are

respectively isomorphic to H
+

and H
−

, and therefore they are cyclic. We conclude
by observing that

I ⊕ J = I ⊕ J = R⊕ S = H
+ ⊕H− = H,

and therefore H = I ⊕ J . �

Lemma 11.20. Let γ ∈ Gc and let x, y be elements of G be such that dptG(x) =
j and dptG(y) = i. Then there exist n ∈ Z and d ∈ CG(y) ∩ Gc−j such that
γ = yn[d, x].

Proof. By Lemma 11.17 the sum i+j is larger than c and so i > c−j. Define

r =
i− (c− j)

2
and s =

j

2
− r.

Let now a ∈ Gc−j \Gc−j+1 be such that ρr(a) = y; the existence of a is granted by
Lemma 10.5. As a consequence of Proposition 10.14, the subgroup Gc is generated

by ρ
j
2 (a) and [a, x]. There exist thus A,B ∈ Z such that

γ = ρ
j
2 (a)A[a, x]B .

We recall that, for any k ∈ Z≥0, the map ρk is given by z 7→ zp
k

, hence

ρ
j
2 (a) = ρs+r(a) = ρs(ρr(a)) = ρs(y) = yp

s

.

The commutator map Gc−j × Gj → Gc being bilinear, we have moreover that
[a, x]B = [aB , x]. We define

n = Aps and d = aB

and get γ = yn[d, x]. The element d belongs to CG(y), because d and y belong to
〈a〉. �

Lemma 11.21. Assume that α(T ) = T . Let I and J be as in Lemma 11.19.
Then there exists g ∈ CG(I) such that α(gJg−1) ⊆ gHg−1.



11.3. THE ODD CASE, PART II 95

Proof. Let y be a generator of I and let x be a generator of J : then dptG(y) =
i and dptG(x) = j. Let moreover γ ∈ Gc be such that α(x) = xγ, as given by
Lemma 11.19(3), and let n ∈ Z and d ∈ CG(y) ∩ Gc−j be such that γ = yn[d, x],

as in Lemma 11.20. We define g = d
p+1
2 and we claim that α(gxg−1) belongs to

gHg−1. We will use some properties of Gc that we list here. The group Gc is
central and annihilated by p, by hypothesis. Moreover, as a consequence of Lemma
2.5, the restriction of α to Gc coincides with the map z 7→ z−1. The commutator
map Gc−j ×Gj → Gc being bilinear, we compute

α(gxg−1) = α([g, x]x) = α([g, x])α(x) = [g, x]−1xγ = [g−1, x]xγ =

[g−1, x]xyn[d, x] = [g−1, x][d, x]xyn = [g−1d, x]xyn = [d
p−1
2 d, x]xyn =

[d
p+1
2 , x]xyn = [g, x]xyn = (gxg−1)yn.

The element g centralizes y, because d does, so α(gxg−1) = g(xyn)g−1 belongs to
gHg−1. In particular, α(gJg−1) ⊆ gHg−1. �

We conclude the proof of Lemma 11.16. Since T contains Gc, there exists a ∈ G
such that aTa−1 is A-stable. We fix a and write aHa−1 = I ⊕ J , with I and
J as in Lemma 11.19 and H replaced by aHa−1. By Lemma 11.21, there exists
an element b ∈ G such that bIb−1 = I and α(bJb−1) is contained in baHa−1b−1.
We select such an element b and define g = ba. Then I is contained in gHg−1

and α(gHg−1) = I ⊕ α(bJb−1) ⊆ gHg−1. It follows that α(gHg−1) = gHg−1 and
gHg−1 is itself A-stable. The proof of Lemma 11.16 is now complete and thus, as
a consequence of Lemma 3.5, Proposition 11.12 is also proven.

11.3. The odd case, part II

The present section is entirely dedicated to the proof of Proposition 11.22.

Proposition 11.22. Let p > 3 be a prime number and let G be a framed p-
obelisk of class c. Assume that c is odd and that Gc has order p2. Let α be an
automorphism of G of order 2 and assume that the map αc : G/Gc → G/Gc that
is induced by α is intense. Then α is intense.

Until the end of Section 11.3, we will work under the following assumptions. Let
p > 3 be a prime number and let G, c, and α be as in Proposition 11.22. Denote
A = 〈α〉. Let moreover H be a subgroup of G: we will show that H is stable under
the action of A.

If the subgroup H contains Gc, then the intensity of α and Lemma 3.5 yield the ex-
istence of g ∈ G such that gHg−1 is A-stable. We assume without loss of generality
that H does not contain Gc.

Lemma 11.23. Assume that H ∩Gc 6= {1}. Then there exists g ∈ G such that
gHg−1 is A-stable.

Proof. Let N = H ∩ Gc. The group N being non-trivial, it follows from
Proposition 10.3(1) that Gc and N have orders respectively p2 and p. Moreover,
the group Gc being central, N is normal in G. It follows from Lemma 3.2(2) that
the action of A on G induces an action of A on G = G/N . Moreover, G has
class c and the subgroup H = H/N has trivial intersection with Gc = Gc/N . By

Lemma 11.16, there exists g ∈ G such that gHg−1 is A-stable, and so gHg−1 is
A-stable. �
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Lemma 11.24. Assume that H ∩ Gc = {1}. Let T = HGc and assume that
α(T ) = T . Then there exists g ∈ G such that gHg−1 is A-stable.

Proof. Let l denote the least jump of H in G. As a consequence of Corollary
10.2, all jumps of H in G are even so, as a consequence of Lemma 10.4(2), all
jumps of H have width 1. It follows from Lemma 10.19 that H is abelian and
Φ(H) = H ∩Gl+1. The subgroup Gc being central, we get T = H ⊕Gc. Now, by
Lemma 2.17, the subgroup T+ = {t ∈ T : α(t) = t} has the same jumps as H, and
it is therefore a complement of Gc in T . Thanks to Lemma 10.20, the subgroups
H and T+ are conjugate in G. In particular, H has an A-stable conjugate. �

Lemma 11.25. Assume that H ∩Gc = {1}. Then there exists g ∈ G such that
gHg−1 is A-stable.

Proof. Define S = HGc so that there exists a ∈ G such that aSa−1 is A-
stable. Let now T = aSa−1. Then α(T ) = T and T = a(HGc)a

−1 = aHa−1Gc.
Moreover, the intersection aHa−1 ∩ Gc is trivial. Thanks to Lemma 11.24 (with
aHa−1 in the place of H), there exists b ∈ G such that b(aHa−1)b−1 is A-stable.
To conclude, we define g = ba. �

We conclude here the proof of Proposition 11.22. If H trivially intersects Gc, then,
by Lemma 11.25, there exists g ∈ G such that gHg−1 is A-stable. If, on the
contrary, H ∩Gc 6= {1}, then, by Lemma 11.23, there exists a conjugate of H in G
that is A-stable. We have proven that, in any case, H has an A-stable conjugate
and, by Lemma 3.5, the subgroups H and α(H) are conjugate in G. The choice of
H being arbitrary, the automorphism α is intense and we have proven Proposition
11.22.

11.4. Proving the main theorems

In Sections 11.4.1 and 11.4.2 we finally prove the two main results of this Chapter,
which were stated at the beginning of it.

11.4.1. The proof of Theorem 11.1. We work under the assumptions of
Theorem 11.1. The implication (2) ⇒ (1) follows from the combination of Propo-
sitions 10.1 and 5.10. We now prove (1) ⇒ (2). To this end, denote by G the
quotient G/G4 and by α4 the automorphism of G that is induced by α. The map α
induces the inversion map on G/G2 and thus so does α4 on G/G2. It follows from
Proposition 5.11 that α4 is intense and consequently, from Proposition 11.3, that
α is intense too. The proof of Theorem 11.1 is complete.

11.4.2. The proof of Theorem 11.2. Under the hypotheses of Theorem
11.2, we will work by induction on the class c of G. As a consequence of Lemma
10.2(2), the group G has class at least 2 and G/G3 is extraspecial of exponent p. If
c = 2, then Lemma 4.10 yields that α is intense. We assume that c > 2 and denote
by G the quotient G/Gc. We denote moreover by αc the automorphism of G that
is induced by α and assume that αc is intense. The group G is a framed obelisk,
because c > 2, and αc induces the inversion map on G/G2, because α does. If c is
even, then, by Proposition 11.3, the map α is intense. Suppose that c is odd. From
Proposition 10.3(1) it follows that the cardinality of Gc is p or p2. In the first case
we apply Proposition 11.12, in the second Proposition 11.22. Theorem 11.2 is now
proven.



CHAPTER 12

High Class Intensity

Let p > 3 be a prime number and let G be a finite p-group. We recall that, for each
positive integer i, the i-th width of G is wtG(i) = logp |Gi : Gi+1|. The group G is

a p-obelisk if it is non-abelian, satisfying G3 = Gp and |G : G3| = p3. A p-obelisk
G is framed if, for each maximal subgroup M of G, one has Φ(M) = G3. For more
information about p-obelisks, we refer to Chapter 10.

In this chapter we prove the following two results: the first will be proven in Section
12.2, while the second is proven at the end of Chapter 12.

Theorem 12.1. Let p be a prime number and let G be a finite p-group with
wtG(5) = 1. In addition, write C = CG(G4). Then the following are equivalent.

1. One has int(G) > 1.
2. One has p > 3, the group G is a p-obelisk of class 5, and Φ(C) = G3.

Moreover, there exists an automorphism α of G of order 2 that induces
the inversion map on G/G2.

Theorem 12.2. Let p be a prime number and let G be a finite p-group with
wtG(5) = 2. Then the following are equivalent.

1. One has int(G) > 1.
2. One has p > 3, the group G is a framed p-obelisk, and there exists an

automorphism α of G of order 2 that induces the inversion map on G/G2.

We would like to stress that, from the combination of Theorem 12.1 with Theorem
12.2, it follows that each finite p-group G of class at least 6 with int(G) > 1 is a
framed p-obelisk.

12.1. A special case

The main result of this section is the following.

Proposition 12.3. Let p > 3 be a prime number and let G be a p-obelisk such
that wtG(5) = 1 and int(G) > 1. Set C = CG(G4). Then one has Φ(C) = G3.

The goal of Section 12.1 is proving Proposition 12.3, so all assumption that we will
make throughout the text (right now and right after Lemma 12.4) will hold until
the end of Section 12.1.

Let p > 3 be a prime number and let G be a p-obelisk. Let (Gi)i≥1 denote the lower
central series of G. Assume that wtG(5) = 1 so, thanks to Proposition 10.3(2), the
class of G is equal to 5. Write C = CG(G4).

Lemma 12.4. The subgroup C is maximal in G and Cp is contained in Z(C).

97
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Proof. To show that C is maximal in G is an easy exercise, so we prove
that Cp is central in C. Corollary 10.2 ensures that 3 is a 1-dimensional jump
of Cp in G and so, the subgroup Cp being normal in G, Lemma 10.9(2) yields
G4 ⊆ Cp ⊆ G3. Thanks to Lemma 10.4(2), we get |G3 : Cp| = |Cp : G4| = p.
Now, each p-obelisk is regular, by Lemma 10.2, so, as a consequence of Lemma
10.6, one has [Cp, G2] = [C,Gp2], which is equal to [C,G4] = {1}, by Lemma
10.5. It follows that the commutator map C × Cp → G4 factors as a bilinear map
γ : C/G2 × Cp/G4 → G4. Moreover, thanks to Corollary 10.2, if C = 〈{x} ∪G2〉
then Cp = 〈{xp} ∪G4〉. The map γ being alternating, it follows that γ is the trivial
map and so Cp centralizes C. �

Let now α be an intense automorphism of G of order 2 and write A = 〈α〉. In
concordance with the notation from Section 2.2, set G+ = {x ∈ G : α(x) = x} and
G− = {x ∈ G : α(x) = x−1} and, for each subgroup H of G, denote H+ = H∩G+

and H− = H ∩ G−. Let X be the collection of subgroups H of C of the form
H = 〈x, y〉, where x ∈ C \G2 and y ∈ G4 \G5, and let X+ be the collection of fixed
points of X under the action of A. We will prove Proposition 12.3 by contradiction
and, to this end, we assume that Φ(C) 6= G3.

Lemma 12.5. Let H ∈ X. Then H is abelian of exponent p2 and H∩G5 = {1}.
Moreover, if x and y are elements of H satisfying dptG(x) = 1 and dptG(y) = 4,
then H = 〈x〉 ⊕ 〈y〉.

Proof. We first claim that the exponent of C divides p2. By Lemma 10.13,
we have [C,C] = Cp so it follows from Lemma 10.6 that (Cp)p = [C,C]p = [C,Cp].

As a consequence of Lemma 12.4, the subgroup [C,Cp] is trivial, and thus Cp
2 ⊆

(Cp)p = {1}. This proves the claim. Let now (x, y) ∈ (C \G2)× (G4 \G5) be such
that H = 〈x, y〉. Then y ∈ Z(C) and the group H is commutative. Moreover, as a
consequence of Lemma 6.5, the subgroups 〈x〉 and 〈y〉 have respectively only odd
and only even jumps. In particular, 〈x〉∩〈y〉 = {1} and H = 〈x〉⊕〈y〉. In addition,

it follows from Lemma 10.10(1) that 5 is a jump of H in G if and only if xp
2 6= 1.

We have thus H ∩G5 = {1} and, as a consequence of Corollary 10.2, the exponent
of H is p2. �

Lemma 12.6. Let H ∈ X and, for each i ∈ Z≥1, denote ui = wtGH(i). Then H
has order p3 and (u1, u2, u3, u4, u5) = (1, 0, 1, 1, 0).

Proof. For each i ∈ Z≥1, write wi = wtG(i). Thanks to Lemma 10.4, we have
(w1, w2, w3, w4, w5) = (2, 1, 2, 1, 1). Let x, y be as in Lemma 12.5: then u1, u4 ≥ 1
and u5 = 0. Since, for each i ≥ 1, one has ui ≤ wi, we get u4 = 1. Moreover,
Lemma 10.10(1) ensures that u3 ≥ 1. Let now N = 〈y〉G5, which is a normal
subgroup of G thanks to Lemma 10.9. Then N ∩H = 〈y〉 and, the quotient H/〈y〉
being cyclic, so is HN/N . Thanks to Lemma 10.16, all jumps of HN/N have the
same dimension and width 1 in G/N . As a result, 2 is not a jump of HN/N in
G/N and, since 〈y〉 is contained in G4, we have u2 = 0 and u1 = u3 = 1. The
group H has order p3, by Lemma 2.16. �

Lemma 12.7. The cardinality of X is p4.

Proof. Thanks to Lemma 12.5, the set X consists of subgroups of the form
〈x〉⊕ 〈y〉, with x ∈ C \G2 and y ∈ G4 \G5. The cardinality of X will be thus equal
to the quotient n

m , where n is the cardinality of (C \G2)× (G4 \G5) and m denotes
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the number of elements of (C \G2)× (G4 \G5) that generate the same subgroup.
Let H be in X and let x and y be generators of H, as described before. Then, as
a consequence of Lemmas 12.5 and 12.6, the orders of x and y are respectively p2

and p. It follows that m = (p3 − p2)(p − 1) so, in view of Lemmas 12.6 and 10.2,
we get

|X| = n

m
=

(p6 − p5)(p2 − p)
(p3 − p2)(p− 1)

= p4.

�

Lemma 12.8. Let H ∈ X. Then the following are equivalent.

1. The subgroup H is A-stable.
2. There exists x ∈ C− \G2 such that H = 〈x〉 ⊕G+

4 .

Proof. To prove that (2) implies (1) is an easy exercise; we prove the other
implication. Assume (1). The group H is abelian, by Lemma 12.5, and it is A-
stable. By Corollary 2.2, it decomposes as H = H+ ⊕ H−. In view of Lemmas
12.6 and 2.17(1), we have that H+ = G+

4 and that H ∩G4 = G+
4 . It follows from

Lemma 12.5 that there exists a cyclic subgroup Q of H such that H = Q(H ∩G4),
and thus H− is cyclic. The proof is now complete. �

Lemma 12.9. The cardinality of X+ is p2.

Proof. Let C denote the collection of subgroups 〈x〉 of C, where x is an
element of C− \G2. Thanks to Lemma 12.8, one can define the map C → X+, by
Q 7→ Q⊕G+

4 , which is easily shown to be a bijection. In particular, the cardinality
of X+ is equal to that of C. Now, the group C is normal in G, as a consequence of
Lemma 12.4, and therefore it is A-stable. Thanks to Lemma 12.5, each element of
C− \G2 has order p2 and, as a consequence of Proposition 5.10, the set C− \G2 is
equal to C− \G−3 . It follows from Lemma 2.17 that

|X+| = |C
−| − |G−3 |
p2 − p

=
p4 − p3

p2 − p
= p2.

�

Lemma 12.10. Let H ∈ X+. Then G3 ⊆ NG(H).

Proof. By Lemma 12.8, the subgroup H is of the form 〈x〉 ⊕ G+
4 , for some

element x ∈ C−\G2. Moreover, Since [G3, G
+
4 ] ⊆ G7 = {1}, we have that [G3, H] =

[G3, 〈x〉]. Now, the commutator map 〈x〉 × G3 → G4 is bilinear and, since x
belongs to C, it factors as 〈x〉 × G3/G4 → G4. Thanks to Proposition 5.10, the
map α induces the inversion map on G3/G4 and so, thanks to Lemma 2.4, we get
[〈x〉, G3] = [〈x〉, G3]+. In particular, [G3, 〈x〉] is contained in G+

4 , a subgroup of H,
and so G3 normalizes H. �

We will now prove Proposition 12.3 by building a contradiction. We remind the
reader that we have assumed that Φ(C) 6= G3.

Let H be an element of X+ with the property that |G : NG(H)| is maximal. Let
moreover J denote the collection of jumps of NG(H) in G. As a consequence
of Lemma 12.10, the normalizer of H contains HG3. It follows from Lemma
12.6 that {1, 3, 4, 5} is contained in J and, thanks also to Lemma 10.2(2), that
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|G : NG(H)| ≤ |G : HG3| = p2. Now, by Lemmas 12.7 and 12.9, the cardinalities
of X and X+ are respectively p4 and p2, so it follows from Lemma 3.6 that

p4 = |X| ≤
∑

K∈X+

|G : NG(K)| ≤ |X+||G : NG(H)| ≤ p4,

and therefore |G : NG(H)| = p2. In particular, we get NG(H) = HG3 and J =
{1, 3, 4, 5}. Moreover, again by Lemma 3.6, no two elements of X+ are conjugate
in G. As a consequence of Lemma 2.15, the subgroup G+ is contained in NG(H) =
HG3 and so, thanks to Lemma 2.17(1), the number 2 is a jump of NG(H) in G.
Contradiction.

12.2. The last exotic case

The aim of Section 12.2 is that of exploring the last exotic case for what concerns
the structure of finite p-groups of intensity greater than 1. As a consequence of
Theorem 12.2, the finite p-groups of “high class” and intensity greater than 1 all
need to be framed obelisks. Proposition 12.11, which coincides with Theorem 12.1,
is the last result we present that still allows some “structural freedom” to p-obelisks
of intensity greater than 1.

Proposition 12.11. Let p be a prime number and let G be a finite p-group
with wtG(5) = 1. Write C = CG(G4). Then the following are equivalent.

1. One has int(G) > 1.
2. One has p > 3, the group G is a p-obelisk of class 5, and Φ(C) = G3.

Moreover, there exists an automorphism α of G of order 2 that induces
the inversion map on G/G2.

The remaining part of Section 12.2 will be devoted to the proof of Proposition 12.11
and we will thus work under its hypotheses.

Assume first (1). As a consequence of Proposition 3.7 and Corollary 9.5, the prime
p is larger than 3 and so, thanks to Proposition 10.1, the group G is a p-obelisk
which has class 5, as a consequence of Proposition 10.3. Thanks to Theorem 5.2(1),
there exists an intense automorphism α of order 2 of G, which induces the inversion
map on G/G2 by Proposition 5.10. Proposition 12.3 yields Φ(C) = G3.

Assume now that p > 3, that G is a p-obelisk with wtG(5) = 1, and that Φ(C) = G3.
Let moreover α be an automorphism of order 2 of G that induces the inversion map
onG/G2. We will prove (1). Set A = 〈α〉 and, for each i ∈ Z≥1, denote wi = wtG(i).
Thanks to Lemma 10.4, we have (w1, w2, w3, w4, w5) = (2, 1, 2, 1, 1) and so, thanks
to Proposition 10.3(2), the class of G is equal to 5. We remind the reader that, for

each k ∈ Z≥0, the map G→ G sending x to xp
k

is denoted by ρk. Furthermore, by
Lemma 10.2, the group G is regular and so, given any subgroup K of G, Lemma

8.3 yields that ρk(K) = Kpk .

Lemma 12.12. One has ρ2(C) = G5.

Proof. The group C is maximal in G, by Lemma 12.4, and so, as a conse-
quence of Lemma 10.2(2), the quotient C/G2 is cyclic. Then [C,C] = [C,G2] and
so, since Φ(C) = G3, Lemmas 10.6 and 10.10(1) yield G5 = ρ(G3) = ρ(Φ(C)) =
ρ([C,C]Cp) = [C,G2]pρ2(C) = [C,G4]ρ2(C) = ρ2(C). �
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Let H be a subgroup of G and, for each i ∈ Z≥1, write ui = wtGH(i). We will show
that H has an A-stable conjugate in G. We assume, without loss of generality,
that H is non-trivial. As a consequence of Theorem 11.1, the automorphism that
α induces on G/G5 is intense and so, if G5 is contained in H, then there exists
g ∈ G such that gHg−1 is A-stable. Since G5 has order p, we now assume that
H ∩G5 = {1}. By Lemma 11.13, all jumps of H in G have dimension 1 and, if they
all have the same parity, Lemmas 11.14 and 11.15 yield that H has an A-stable
conjugate. We assume now that H has jumps of both parities and we denote by i
and j respectively the least odd and the least even jump of H in G. It then follows
from Corollary 10.2 that u4 = 1.

Lemma 12.13. One has i = 3.

Proof. Since u5 = 0, the index i is different from 5 and so i ∈ {1, 3}. Assume
by contradiction that i = 1. Since G4 = (H∩G4)G5 and G5 is central, we then have
that G5 = [G,H ∩G4]. Moreover, the group [G2, G4] is trivial ans so it follows that
[HG2, G4] = [H,G4] = [H,H ∩G4] ⊆ H ∩G5 = {1}. In particular, H is contained
in C and so, as a consequence of Lemma 10.10(1), we get ρ2(H) = ρ2(C). It follows
from Lemma 12.12 that H contains G5. Contradiction to H ∩G5 = {1}. �

Let D be a maximal subgroup of G with the property that (H ∩ G3)G4 = DpG4

and note that, thanks to Corollary 10.2, the subgroup D is uniquely determined by
H. Since Dp is normal in G, Lemma 10.9 yields Dp = DpG4 and therefore, from
Corollary 10.2, one gets |Dp : G4| = p.

Lemma 12.14. One has C 6= D and [D,G4] = [G2, D
p] = G5. In addition, one

has ρ2(D) = {1}.

Proof. Thanks to Lemma 10.10(1), one has ρ2(D) = ρ(Dp) = ρ(H ∩ G3)
and so, as a consequence of Lemma 10.5, the subgroup ρ(H ∩ G3) is contained in
H ∩ G5 = {1}. It follows that ρ2(D) = {1}. Moreover, the subgroups D and C
are both maximal in G and so, as a consequence of Lemmas 12.12 and 12.14, they
are distinct. Now, the class of G being 5, the subgroup [D,G4] is non-trivial and,
since w5 = 1, we get [D,G4] = G5. The subgroups [G2, D

p] and [Gp2, D] are equal,
by Lemma 10.6, and so, from Lemma 10.5, we derive [G2, D

p] = G5. �

Lemma 12.15. The subgroup H is abelian and (i, j) = (3, 4).

Proof. We first show that H is abelian. As a consequence of Lemma 12.13,
the subgroup H is contained in G2 and, since w2 = 1, the quotient H/(H ∩G3) is
cyclic. It follows that [H,H] = [H,H ∩ G3] ⊆ H ∩ G5 = {1} and so H is abelian.
We now show that (i, j) = (3, 4). By Lemma 12.13, the jump i is equal to 3 and,
by definition of D, we have Dp = (H ∩G3)G4. Moreover, since G has class 5, the
jump j belongs to {2, 4}. Assume by contradiction that j = 2. Then u2 = w2 = 1
and so G2 = HG3. By Lemma 12.14, the subgroups [G2, D

p] and G5 coincide and
so, the group G5 being central, the commutator map G2×Dp → G5 is bilinear and
non-trivial. It follows that the induced map G2/G3 ×Dp/G4 → G5 is non-trivial
and so [H,H ∩G3] 6= 1. Contradiction. �

Lemma 12.16. Let x and y be elements of H, respectively belonging to Dp \G4

and G4 \G5. Then H = 〈x〉 ⊕ 〈y〉 and (u1, u2, u3, u4, u5) = (0, 0, 1, 1, 0).
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Proof. Thanks to Lemma 12.15 and Corollary 10.2, we have u1 = u2 = u5 = 0
and u3 = u4 = 1. The subgroup H is thus contained in G3 and so, by Lemma
10.5, one has Hp ⊆ G5 ∩ H = {1}. It follows from Lemma 12.15 that H is
elementary abelian. Given any two elements x and y of H, satisfying x ∈ Dp \G4

and y ∈ G4 \G5, Lemma 2.16 now yields H = 〈x〉 ⊕ 〈y〉. �

We define X to be the collection of all subgroups of G of the form 〈x〉 ⊕ 〈y〉, where
(x, y) belongs to (Dp \G4)× (G4 \G5). Thanks to Lemmas 12.14 and 12.15, each
such subgroup is elementary abelian and thus X is well defined. We remark that,
the group Dp being normal in G, the group G acts naturally on X by conjugation.
Write X+ = {K ∈ X : α(K) = K}.

Lemma 12.17. The cardinality of X is p2.

Proof. Let K be an element of X. Then there exist elements x and y of order
p, respectively of depth 3 and 4 in G, such that x ∈ Dp and K = 〈x〉 ⊕ 〈y〉. Since
|Dp : G4| = p and (w4, w5) = (1, 1), we get

|X| = (p3 − p2)(p2 − p)
(p− 1)p(p− 1)

= p2.

�

Lemma 12.18. One has NG(H) ∩D = NG(H) ∩G2 = G3.

Proof. We first claim that NG(H) ∩D = NG(H) ∩ G2. We work by contra-
diction, assuming that NG(H) ∩ D 6= NG(H) ∩ G2. Since (H ∩ G4)G5 = G4 and
G5 is central, we then have that [D,G4] = [D,H ∩G4] is contained in H and thus,
thanks to Lemma 12.14, the subgroup G5 is contained in H. This contradicts the
hypotheses on H and so the claim is proven. We now prove that NG(H)∩G2 = G3.
As a consequence of Lemma 12.15, the subgroup H is contained in G3 and so, since
G3 is abelian, G3 normalizes H. Assume now by contradiction that 2 is a jump
of NG(H) in G. Since G2 centralizes G4 and (H ∩ G3)G4 = Dp, we have that
[G2, D

p] = [G2, H ∩ G3] and therefore the subgroup [G2, D
p] is contained in H.

Lemma 12.14 yields G5 ⊆ H. Contradiction. �

We claim that the action of G on X is transitive. As a consequence of Lemma
12.17, we have that p2 = |X| ≥ |G : NG(H)| and therefore, applying Lemma 12.18,
we get

p2 ≥ |G : NG(H)| ≥ |D : G2||G2 : G3| = |D : G3|.
By Lemma 10.2(2), the index |D : G3| is equal to p2 and therefore the number of
conjugates of H in G is equal to p2. This proves the claim. To conclude, we remark
that α(H) is an element of X and therefore α(H) and H are conjugate. The choice
of H being arbitrary, Lemma 3.5 yields that α is intense and so int(G) > 1. The
proof of Proposition 12.11 is now complete.

12.3. Proving the main theorem

In this section we prove Proposition 12.19 and Theorem 12.2. We remind the
reader that a p-obelisk G is framed if, for each maximal subgroup M of G, one has
Φ(M) = G3.
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Proposition 12.19. Let p > 3 be a prime number and let G be a finite p-group
of class at least 5. Assume that int(G) > 1. Then G is a p-obelisk and one of the
following holds.

1. One has wtG(5) = 1 and G has class 5.
2. One has wtG(5) = 2 and G is framed.

Proof. By Proposition 10.1, the group G is a p-obelisk so, thanks to Propo-
sition 10.3(1), the width wtG(5) is either 1 or 2. If wtG(5) = 1, then Theorem 12.1
yields that G has class 5. Assume now that wtG(5) = 2. We will show that, for each
maximal subgroup M of G, one has Φ(M) = G3. To this end, let M be a maximal
subgroup of G. By Lemma 10.4, the widths wtG(1) and wtG(4) are respectively 2
and 1 so, the index |G : M | being p, it follows from Lemma 10.11, that 5 is a jump
of [M,G4] of width 1 in G. Moreover, 5 is the smallest jump of [M,G4] in G, and so
Lemma 10.9 yields G6 ⊆ [M,G4]. We denote G = G/[M,G4] and use the bar no-
tation for the subgroups and the elements of G. We remark that, by construction,
we have M ⊆ CG(G4) and wtG(5) = 1. The class of G being 5, we have in fact that

M = CG(G4) and so Proposition 12.3 yields Φ(M) = G3. The subgroup Φ(M) be-

ing normal in G, it follows from Lemma 10.9 that Φ(M) = {x ∈ G : x ∈ Φ(M)} and
therefore Φ(M) = G3. The choice of M being arbitrary, the proof is complete. �

We are finally ready to prove Theorem 12.2. Let p be a prime number and let
G be a finite p-group with wtG(5) = 2. The implication (2) ⇒ (1) is given by
Theorem 11.2. Assume now (1). Since wtG(5) 6= 1, the class of G is at least 5.
Moreover, thanks to Proposition 3.7 and Corollary 9.5, the prime p is larger than 3.
Proposition 12.19 yields that G is a framed p-obelisk. As a consequence of Theorem
5.2, the intensity of G is equal to 2 and so, thanks to the Schur-Zassenhaus theorem,
G has an intense automorphism of order 2 that, by Proposition 5.10, induces the
inversion map on G/G2. The proof of Theorem 12.2 is complete.





CHAPTER 13

Intense Automorphisms of Profinite Groups

Let G be a profinite group and let α be an automorphism of G. Then α is
topologically intense if, for every closed subgroup H of G, there exists x ∈ G such
that α(H) = xHx−1. Topologically intense automorphisms are automatically con-
tinuous, because they stabilize each open normal subgroup of the group on which
they are defined. We denote by Intc(G) the group of topologically intense auto-
morphisms of a profinite group G.

Topologically intense automorphisms are a generalization of intense automorphisms
to profinite groups. In Section 13.2, we will show that, the group of topologically
intense automorphisms of a profinite group is itself profinite and moreover, if p is
a prime number and G is a pro-p-group, then Intc(G) is isomorphic to SC, where
S is a pro-p-subgroup of Intc(G) and C is a subgroup of F∗p. The intensity of
a pro-p-group G is then defined to be the cardinality of C and it is denoted by
int(G). The question we ask is: What are the infinite pro-p-groups that have inten-
sity greater than 1? We answer this question with Theorem 13.1, which we state
after fixing some notation. Let p be an odd prime number and take t ∈ Zp to
be a quadratic non-residue modulo p. We define ∆p to be the quaternion algebra
Zp ⊕ Zpi ⊕ Zpj ⊕ Zpk with defining relations i2 = t, j2 = p, and k = ij = −ji and
we denote by S(∆p) the pro-p-subgroup of the multiplicative group (1 + j∆p) that
consists of all elements x = a+ bi + cj + dk satisfying a2 − tb2 − pc2 + tpd2 = 1.

Theorem 13.1. Let p be a prime number and let G be an infinite pro-p-group.
Then int(G) > 1 if and only if exactly one of the following holds.

1. One has p > 2 and G is abelian.
2. One has p > 3 and G is topologically isomorphic to S(∆p).

Moreover, one has int(S(∆p)) = 2 and, if G is abelian, then int(G) = p− 1.

Let p be a prime number and let G be a pro-p-group. We will show, in Section
13.2, that

int(G) = gcd{int(G/N) : N normal open in G, N 6= G}
and, thanks to this last characterization, we will derive the following theorem as a
corollary of Theorem 13.1.

Theorem 13.2. Let p > 3 be a prime number. Then, for any positive integer
c, there exists a finite p-group of class c and intensity greater than 1.

The pace of Chapter 13 will be slightly faster, compared to the previous ones, in the
sense that we will assume the reader is familiar with some basic facts about profinite
groups (which can however all be found in Chapters 0 and 1 from [DdSMS91]).
We will give some extra background in Section 13.1. In Section 13.2, we will prove

105
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several properties of topologically intense automorphisms and give an analogue of
Theorem 3.1 for pro-p-groups. In the subsequent sections we will pave the way to
proving Theorem 13.1. In Section 13.3, we will give some limitations, for p > 3,
to the structure of infinite non-abelian pro-p-groups of intensity greater than 1. In
Section 13.5, we will discover that, if such groups exist, they can be continuously
embedded in one of two infinite pro-p-groups (one of them being S(∆p)). We will
study the structure of those two groups in Section 13.4 and, in Section 13.5, we
will prove that, if p > 3 is a prime number and G is an infinite non-abelian pro-p-
group with int(G) > 1, then G is topologically isomorphic to S(∆p). The results
from Section 13.4.2 will ensure that int(S(∆p)) > 1. We will conclude the proof
of Theorem 13.1 in Section 13.6.1 and give that of Theorem 13.2 in Section 13.6.2.
We will close Chapter 13 with Section 13.6.3, where we will draw a bridge between
Theorem 13.1 and Theorem 13.2.

13.1. Some background

This section is a collection of definitions and results from [DdSMS91]. If G is a
profinite group and S is a subset of it, we denote by cl(S) the closure of S in G.

Definition 13.3. Let G be a profinite group. A discrete quotient of G is a
quotient of G by an open normal subgroup. A proper quotient of G is a quotient
of G by a closed normal subgroup that is different from {1}.

Definition 13.4. Let G be a profinite group. Then a set X is a set of topolog-
ical generators of G if G = cl(〈X〉). The group G is topologically finitely generated
if it admits a finite set of topological generators.

Definition 13.5. Let G be a profinite group. The lower central series (Gi)i≥1

of G is defined by
G1 = G and Gi+1 = cl([G,Gi]).

We recall that, as defined in Section 8.2, the rank of a finite group H is the smallest
integer r such that every subgroup of H can be generated by r elements.

Definition 13.6. Let G be a profinite group. The rank of G is

rk(G) = sup{rk(G/N) : N is normal open in G}.

Let G be a profinite group. It follows from the definition that rk(G) belongs to
Z∪{∞} and, if G has finite rank, that G is also finitely generated. Moreover, when
G is finite, the definition of rank given in Section 8.2 is equivalent to the one from
Definition 13.6. In [DdSMS91, Proposition 3.11], a series of equivalent definitions
of rank is given.

Definition 13.7. A p-adic analytic group is a profinite group that contains
an open pro-p-subgroup of finite rank.

Our definition of a p-adic analytic group is not among the standard ones, but
it serves our purposes the best. In general, p-adic analytic groups are defined
to be topological groups that present the structure of a p-adic manifold. The
equivalence of the two definitions, for profinite groups, is given by Corollary 9.35
from [DdSMS91]. For more information about the topic, see [DdSMS91, Ch. 9].

Definition 13.8. Let p be an odd prime number and let U be a pro-p-group.
Then U is uniform if the following hold.
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1. The group U is topologically finitely generated.
2. The quotient U/ cl(Up) is abelian.
3. The group U is torsion-free.

The definition of uniform group we give is slightly different from the one that is
given in [DdSMS91]. However, the equivalence of the two is proven in [DdSMS91,
Theorem 4.8].

Definition 13.9. Let p be an odd prime number and let U be a uniform pro-
p-group. The dimension of U is the cardinality of a minimal set of topological
generators of U . The dimension of U is denoted dim(U).

Definition 13.10. Let p be an odd prime number and let G be a pro-p-group
of finite rank. The dimension of G is the dimension of any of its open uniform
subgroups.

Corollary 4.3 and Corollary 4.6 from [DdSMS91] guarantee the consistency of
Definition 13.10.

13.2. Properties and intensity

In the present section we give several properties of topologically intense auto-
morphisms and, for a given prime number p, we define the intensity of a pro-p-group.
The following lemma is straightforward.

Lemma 13.11. Let G be a profinite group and let α be a topologically intense
automorphism of G. Then α induces an intense automorphism on each discrete
quotient of G.

If G is a profinite group and Υ denotes the set of open normal subgroups of G, then
Aut(G) has a natural topology, the “congruence topology”, for which a basis of open
neighbourhoods of the identity is {Γ(N) = {α ∈ Aut(G) : α ≡ id modN}}N∈Υ. For
more information on the subject see for example [DdSMS91, Ch. 5.2]. Using
Lemma 13.11, one then easily proves the following.

Proposition 13.12. Let G be a profinite group and let Υ denote the collection
of open normal subgroups of G. Then one has

Intc(G) = lim←−
N∈Υ

Int(G/N).

Lemma 13.13. Let {Xλ}λ∈Λ be an inverse system of finite non-empty sets over
a directed set Λ. Then lim←−Xλ is non-empty.

Proof. This is Proposition 1.4 from [DdSMS91]. �

Proposition 13.14. Let G be a profinite group and let α be an automorphism
of G. Then the following are equivalent.

1. The automorphism α is topologically intense.
2. For every open subgroup H of G, there exists an element x ∈ G such that
α(H) = xHx−1.

Proof. As every open subgroup is also closed, (1) clearly implies (2). Assume
now (2) and let H be a closed subgroup of G. We will construct x ∈ G such that
α(H) = xHx−1. Let Λ denote the collection of all discrete quotients of G and let
moreover Υ be the collection of all open normal subgroups of G. Then there is a
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natural bijection Υ → Λ, given by N 7→ G/N . Now, thanks to Lemma 13.11, the
automorphism α induces an intense automorphism on each element of Λ. Hence, if
G is an element of Λ and H denotes the image of H in G, then there exists x ∈ G
such that α(H) = xHx−1. For each G ∈ Λ define XG = {x ∈ G : α(H) = xHx−1}
and observe that XG is finite and non-empty. Let now G and G ′ be elements of

Λ such that G ′ is a quotient of G. Then the natural projection G → G ′ induces
a well-defined map XG → XG ′ . It follows that {XG}G∈Λ is an inverse system of
finite non-empty sets so, by Lemma 13.13, the set X = lim←−XG is non-empty. Let
x ∈ X. Then, for each element N of Υ, the element xN belongs to XG/N and thus,

for each N ∈ Υ, we have α(HN) = xHx−1N . The map α is continuous, because
it stabilizes each open normal subgroup, and so it follows that

α(H) =
⋂
N∈Υ

α(H)N =
⋂
N∈Υ

α(HN) =
⋂
N∈Υ

xHx−1N = xHx−1.

This proves (1), and therefore the proof is complete. �

In the proof of the following result we will use the generalization to profinite groups
of Schur-Zassenhaus’s theorem (see for example Theorem 2.3.15 from [RZ10]).

Proposition 13.15. Let p be a prime number and let G be a pro-p-group. Then

Intc(G) = SC,

where S is a Sylow pro-p-subgroup of Intc(G) and C is isomorphic to a subgroup of
F∗p. Moreover, one has

|C| = gcd{int(G/N) : N normal open in G, N 6= G}.

Proof. Let Υ denote the collection of open normal subgroups of G. For each
N ∈ Υ, denote by πN : Int(G/N) → Int((G/N)/Φ(G/N)) the map from Lemma
3.2(2) and set KN = kerπN and IN = πN (Int(G/N)). For each N ∈ Υ, we then
get a short exact sequence

1→ KN → Int(G/N)→ IN → 1

which induces, thanks to Proposition 13.12 and the exactness of lim←−, the short exact
sequence

1→ lim←−
N∈Υ

KN → Intc(G)→ lim←−
N∈Υ

IN → 1.

Define S = lim←−
N∈Υ

KN and C = lim←−
N∈Υ

IN . As a consequence of Lemma 3.13, whenever

M,N ∈ Υ \ {G} and N ⊆M , the natural map IN → IM is injective and therefore,
lim←−
N∈Υ

Int((G/N)/Φ(G/N)) being equal to Int(G/Φ(G)), Lemma 3.3 yields that C

is isomorphic to a subgroup of F∗p. Moreover, thanks to Lemma 3.9, the group
S is a pro-p-subgroup of Intc(G). The order of C being coprime to p, it follows
that in fact S is a Sylow pro-p-subgroup of Intc(G) and, from the generalization of
Schur-Zassenhaus’s theorem to profinite groups, that Intc(G) = SC. Moreover, the
fact that |C| is equal to the greatest common divisor of the int(G/N), as N varies
in Υ \ {G}, is a direct consequence of Lemma 3.13. �

Let p be a prime number and let G be a pro-p-group. Let moreover C be as in
Proposition 13.15. The intensity int(G) of G is defined to be the cardinality of C.
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Thanks to Proposition 13.15, the intensity of G is also equal to the greatest com-
mon divisor of the set {int(G/N) : N normal open in G, N 6= G}. The following
directly follows from Proposition 13.15 and Theorem 3.1.

Let p be a prime number and let G be an abelian pro-p-group. If G is non-
trivial, then int(G) = p− 1.

13.3. Non-abelian groups, part I

The main purpose of the present section is to give a proof of Proposition 13.16.
We refer to Section 13.1 for the definitions of p-adic analytic groups and their
dimensions.

Proposition 13.16. Let p > 3 be a prime number and let G be a non-abelian
infinite pro-p-group. Assume that int(G) > 1. Then G is a just-infinite p-adic
analytic group of dimension 3.

The following assumptions will be valid until the end of Section 13.3. Let p be an
odd prime number and let G be an infinite non-abelian pro-p-group of intensity
greater than 1. Let (Gi)i≥1 denote the lower central series of G, as defined in
Section 13.1, and let α be a topologically intense automorphism of G of order 2.
The existence of α is guaranteed by the combination of Proposition 13.15 with our
classification of finite p-groups of intensity greater than 1. Moreover, α induces an
intense automorphism of order 2 on each non-trivial discrete quotient of G. Indeed,
without loss of generality, α ∈ C with C is as in Proposition 13.15 and, given open
normal subgroups N and M of G such that N ⊆ M 6= G, Lemma 13.11 yields a
commutative diagram

C

��

// Int(G/M)

Int(G/N)

88
.

The map α being non-trivial, there exists a discrete quotient of G on which α
induces an automorphism of order 2 so α induces an intense automorphism of order
2 on each non-trivial discrete quotient of G. In particular, each non-trivial discrete
quotient of G has intensity greater than 1.

Lemma 13.17. Assume that p > 3. Then each discrete quotient of G of class
at least 4 is a p-obelisk.

Proof. This follows from Proposition 10.1. �

Lemma 13.18. Let c be a non-negative integer. Then G has a discrete quotient
of class c.

Proof. Assume by contradiction that there exists an upper bound on the class
of the discrete quotients of G and let C ∈ Z≥0 be minimal with this property. Since
G is non-abelian, one has C ≥ 2. Let us now denote by Υ the collection of open
normal subgroups of G. Then G = lim←−

N∈Υ

G/N and so G has class C. The group

G being infinite, it follows from Theorem 6.2 that C < 3 and so C = 2. Let
now M,N ∈ Υ be such that G/N has class 2 and MN . Let K = G/M and let
π : G→ K denote the canonical projection. Then K has class 2 and the intensity
of K is greater than 1. By Theorem 4.1, the group K is extraspecial and, π(N)
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being non-trivial and normal in K, it follows that π(N) contains Z(K) = [K,K].
In particular, K/π(N) is abelian and therefore so is G/N . Contradiction. �

Lemma 13.19. The lower central series (Gi)i≥1 of G is a base of open neigh-
bourhoods of 1 in G.

Proof. Let Υ denote the collection of open normal subgroups N ofG such that
G/N has class at least 3. As a consequence of Lemma 13.18, the group G is equal
to lim←−

N∈Υ

G/N and, each subgroup Gi being closed, we also have Gi = lim←−
N∈Υ

(G/N)i.

For each N ∈ Υ, the quotient G/N has intensity greater than 1 and so Theorem
8.1 yields that (Gi)i≥1 is a base of open neighbourhoods of 1 in G. �

Lemma 13.20. Assume that p > 3. Then rk(G) = 3 and G is p-adic analytic.

Proof. As a consequence of Lemma 13.18, the rank of G coincides with
sup{rk(G/N) : G/N has class at least 4}. Proposition 8.7 yields rk(G) = 3 and
thus G is p-adic analytic. �

Lemma 13.21. Assume that p > 3. Let N be a non-trivial closed subgroup of
G. Then the following are equivalent.

1. The subgroup N is normal.
2. There exists l ∈ Z≥1 such that Gl+1 ⊆ N ⊆ Gl.

Moreover, P is just-infinite.

Proof. The implication (2) ⇒ (1) is clear; we prove (1) ⇒ (2). Thanks to
Lemma 13.19, every element of the lower central series of G is open and (Gi)i≥1 is
a base of open neighbourhoods of 1. For all k ∈ Z≥1, denote by πk : G→ G/Gk the
canonical projection and set l = max{k : πk(N) = 1}. The index l is well-defined,
because N 6= 1, and N is contained in Gl, but not in Gl+1, by the maximality of l.
In particular, for each k > l, the minimum jump (see Section 2.3) of πk(N) in G/Gk
is l. Now, by Lemma 13.17, whenever k ≥ 5, the quotient G/Gk is a p-obelisk. It
follows from Lemma 10.9(2) that, if k > max{l, 5}, then Gl+1 is contained in NGk,
and therefore

Gl+1 ⊆
⋂

k>max{l,5}

NGk =
⋂
k≥1

NGk = cl(N) = N.

We have proven that Gl+1 ⊆ N ⊆ Gl and thus also that (1) implies (2). Each
subgroup Gk being open in G, the group G is just-infinite. �

Lemma 13.22. Assume that p > 3. Then G is torsion-free.

Proof. By Lemma 13.17, whenever k is at least 5, the quotient G/Gk is a p-
obelisk. It follows from Corollary 10.2 that, for each non-negative integer i, raising
to the power p induces a well-defined isomorphism Gi/Gi+1 → Gi+2/Gi+3. By
Lemma 13.18, there is no bound on the class of the finite quotients of G, and
therefore G is torsion-free. �

Lemma 13.23. Assume that p > 3. Then G2 is open, uniform, and has dimen-
sion 3.

Proof. Let G be a discrete quotient of class at least 5 of G, which exists by
Lemma 13.18. As a consequence of Lemma 13.17, the group G is a p-obelisk and
so Lemma 10.4 yields |G2 : G4| = p3. The subgroup G

p

2 is equal to G4, thanks to
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Lemma 10.5, and so G2/G
p

2 = G2/G4 is elementary abelian. It follows that each
generating set of G2 has at least 3 elements. However, the rank of G is equal to 3,
thanks to Lemma 13.20, and therefore G2 is generated by exactly 3 elements. Since
G was chosen arbitrarily, the quotient G2/ cl(Gp2) is abelian and any minimal set
of topological generators of G2 has 3 elements. Now, as a consequence of Lemma
13.22, the torsion of G2 is trivial and hence G2 is uniform of dimension 3. Moreover,
the subgroup G2 is open thanks to Lemma 13.19. �

We conclude Section 13.3 by giving the proof of Proposition 13.16. Assume that
p > 3. Then G is p-adic analytic, by Lemma 13.20, and it has dimension 3 thanks
to Lemma 13.23. Moreover, G is just-infinite by Lemma 13.21. The proof of
Proposition 13.16 is now complete.

13.4. Two infinite groups

In this section we present two infinite pro-p-groups, which are p-adic analytic.
We will see, in Section 13.5, the role they play in the proof of Theorem 13.1.

13.4.1. The first group. Let p > 3 be a prime number and let π : SL2(Zp)→
SL2(Fp) be the canonical projection. Let SL42 (Fp) denote the subgroup of SL2(Fp)
consisting of those elements of the form(

1 x
0 1

)
where x ∈ Fp.

We define SL42 (Zp) = π−1(SL42 (Fp)) and remark that SL42 (Zp) is a pro-p-group.
Our notation is consistent with that of [GSK09]; however, we will make use of sev-

eral facts coming from [Hup67, Ch. III.17], where the group SL42 (Zp) is denoted
by M0,1,1.

We recall that a p-obelisk is a non-abelian finite p-group G satisfying G3 = Gp

and |G : G3| = p3. A p-obelisk G is framed if, given any maximal subgroup M
of G, one has Φ(M) = G3. For more information about p-obelisks, we refer to
Chapter 10.

Lemma 13.24. Let p > 3 be a prime number and let G = SL42 (Zp). Denote by
(Gi)i≥1 the lower central series of G. Then, for each k ∈ Z≥3, the quotient G/Gk
is a p-obelisk.

Proof. This is a reformulation of Satz 17.8 from [Hup67, Ch. III]. �

Lemma 13.25. Let p > 3 be a prime number and let G = SL42 (Zp). Denote by
(Gi)i≥1 the lower central series of G. Then there exist x ∈ G \G2 and a ∈ G2 \G3

such that [x, a] ∈ cl(〈x〉).

Proof. This proof relies on several lemmas from [Hup67, Ch. III.17]; we will
respect Huppert’s notation. Let

x = B(1) =

(
1 1
0 1

)
and a = D(1 + p) =

(
(1 + p)−1 0

0 (1 + p)

)
.

Satz 17.4 from [Hup67, Ch. III.17] gives a concrete characterization of the lower
central series of G, from which it directly follows that x ∈ G \G2 and a ∈ G2 \G3.
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As a consequence of Hilfssatz 17.2(a), the element x generates topologically the
subgroup B0 consisting of all matrices of the form(

1 x
0 1

)
where x ∈ Zp.

To conclude, Hilfssatz 17.3 guarantees that there exists an element b ∈ Zp such
that

[x, a] =

(
1 pb
0 1

)
so, in particular, [x, a] belongs to the subgroup B0 = cl(〈x〉). �

Lemma 13.26. The group SL42 (Zp) has a discrete quotient of class 6 that is
not a framed p-obelisk.

Proof. Let G = SL42 (Zp) and denote by (Gi)i≥1 the lower central series of

G, as defined in Section 13.1. We define G = G/G7 and we use the bar notation
for subgroups and elements of G. The group G has class 6 and it is a p-obelisk, by
Lemma 13.24. Let now x ∈ G be as in Lemma 13.25 and set ` = 〈xG2〉, which is a
1-dimensional subspace of G/G2. Let moreover

ρ1
1 : G/G2 → G3/G4

and
γ1,2 : G/G2 ×G2/G3 → G3/G4

denote the maps from Lemma 10.10. As a consequence of Lemma 13.25, the elments
ρ1

1(`) and γ1,2({`} × G2/G3) generate a 1-dimensional subspace `′ of G3/G4. By

Lemma 10.4(1), the width wtG(3) is equal to 2 so `′ is different from G3/G4.

Proposition 10.14 yields that G is not framed. �

13.4.2. The second group. Let p > 3 be a prime number and let t ∈ Zp
be a quadratic non-residue modulo p. Define ∆p to be

(
t , p
Zp

)
, i.e., the quaternion

algebra
∆p = Zp ⊕ Zpi⊕ Zpj⊕ Zpk

with defining relations

i2 = t, j2 = p, and k = ij = −ji.

The quaternion algebra ∆p is equipped with a bar map, defined by

x = a+ bi + cj + dk 7→ x = a− bi− cj− dk,

which is an anti-homomorphism of order 2. The algebra ∆p has, in addition, a
unique maximal (left/right/two-sided) ideal m, which is principal generated by j,
i.e. m = ∆p j. It follows that an element x = a + bi + cj + dk belongs to m if and
only if both a and b belong to pZp. Moreover, for each k ∈ Z≥1, the ideal mk is
principal generated by jk and therefore, for each s ∈ Z≥0, one has

m2s = ps∆p and m2s+1 = psm.

As a result, for each k ∈ Z≥1, the quotient mk/mk+1 is a vector space over Fp of
dimension 2. Now, for each k ∈ Z≥1, the set 1 +mk is easily seen to be a subgroup
of ∆∗p and the natural map (1 + mk)/(1 + mk+1)→ mk/mk+1 is an isomorphism of
groups. It follows that 1 + m is a pro-p-subgroup of ∆∗p. Define

S(∆p) = (1 + m) ∩ {x ∈ ∆p : x = x−1}.
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Then S(∆p) is a closed subgroup of 1 + m and thus a pro-p-group itself. We have
here lightened the notation from [GSK09], where the group S(∆p) is denoted by

SL1
1(∆p).

Lemma 13.27. Let p > 3 be a prime number and let G = S(∆p). Denote by
(Gi)i≥1 the lower central series of G. Then, for each k ∈ Z≥1, one has Gk =
(1 + mk) ∩G.

Proof. We sketch here the proof, but leave out the computations. For all
i ∈ Z≥1, denote Mi = (1 + mi) ∩ G. We remark that all Mi are normal in G
and they form a base of open neighbourhoods of 1 in G. It is easy to check that
(Mi)i≥1 is a central series, in other words for all i ∈ Z≥1 the subgroup [M1,Mi] is
contained in Mi+1. Then, for each index i, the commutator map induces a bilinear
map γi : M1/M2 ×Mi/Mi+1 → Mi+1/Mi+2. Next, by direct computation, one
gets that, for every i ∈ Z≥1, the image of γi generates Mi/Mi+1, and therefore
Mi+1 = [M1,Mi]Mi+2. Fix i. By induction one shows that, for each positive
integer n, one has Mi+1 = [M1,Mi]Mi+n, and hence

Mi+1 =
⋂
n≥1

[M1,Mi]Mi+n = cl([M1,Mi]).

Since M1 = G, we get that Mi+1 = cl([G,Gi]) = Gi+1 and the proof is complete.
�

Lemma 13.28. Let p > 3 be a prime number and let G = S(∆p). Denote by
(Gi)i≥1 the lower central series of G. Then, for each i ∈ Z≥1, the map x 7→ xp on
G induces an isomorphism ρi : Gi/Gi+1 → Gi+2/Gi+3.

Proof. By Lemma 13.27, given any positive integer i, one has Gi = (1+mi)∩
G. Fix i ∈ Z≥1 and let 1 + x be an element of Gi. One shows that (1 + x)p ≡
1 + px mod Gi+3. It is now easy to conclude. �

Lemma 13.29. Let p > 3 be a prime number and let G = S(∆p). Denote by
(Gi)i≥1 the lower central series of G. Let x ∈ G \ G2 and let y ∈ G2 \ G3. Then
G3 is generated by xp and [x, y] modulo G4.

Proof. Straightforward computation. �

We remind the reader that, as defined in Chapter 10, a p-obelisk is a finite non-
abelian p-group G such that |G : G3| = p3 and Gp = G3. A p-obelisk is said to be
framed if, for each maximal subgroup M of G, one has Φ(M) = G3.

Lemma 13.30. Let p > 3 be a prime number and let G = S(∆p). Denote by
(Gi)i≥1 the lower central series of G. Then, for each k ∈ Z≥3, the quotient G/Gk
is a framed p-obelisk.

Proof. Let k ∈ Z≥3 and denote G = G/Gk. The group G is non-abelian and
it is finite. Moreover, as a consequence of Lemma 13.27, one can easily compute
that |G : G3| = |G : G3| = p3 and, thanks to Lemma 13.28, one has G

p
= G3. It

follows that G is a p-obelisk. To show that G is framed, combine Lemma 13.29 and
Proposition 10.14. �

Lemma 13.31. Let p > 3 be a prime number and let G = S(∆p). Let moreover
α : G→ G be defined by

a+ bi + cj + dk 7→ a+ bi− cj− dk.
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Then α is a continuous automorphism of G and the map G/G2 → G/G2 that is
induced by α is equal to the inversion map a 7→ a−1.

Proof. The map α coincides with conjugation by i and it is therefore a con-
tinuous automorphism. Moreover, thanks to Lemma 13.27, the subgroup G2 co-
incides with (1 + m2) ∩ G. Since each element x of G can be written in the form
x = 1 + cj + dk + m, with c, d ∈ Zp and m ∈ m2, we get that α(x) ≡ x mod G2.
The elements x and x−1 being equal, it follows that α(x) ≡ x−1 mod G2. �

Lemma 13.32. Let p > 3 be a prime number and let G = S(∆p). Define
moreover α : G→ G by

a+ bi + cj + dk 7→ a+ bi− cj− dk.

Then α is a topologically intense automorphism of G of order 2 and int(G) = 2.

Proof. By Lemma 13.31, the map α is a continuous automorphism of G and,
by its definition, it clearly has order 2. We prove that α is topologically intense.
To this end, let H be an open subgroup of G. As a consequence of Lemma 13.19,
there exists a positive integer k such that Gk is contained in H. Fix such integer
k and define K = max{k, 4}. Denote G = G/GK and use the bar notation for the
subgroups of G. Denote moreover by αK the automorphism that is induced on G
by α. Then αK induces the inversion map on G/G2, as a consequence of Lemma
13.31 and the definition of αK . Moreover, the class of G is at least 3 so, thanks
to Lemma 13.30, the group G is a framed obelisk. It follows from Theorem 11.2
that αK is intense, so there exists g ∈ G such that αK(H) = gHg−1. Furthermore,
we have that α(H) = gHg−1 and, the choice of H being arbitrary, it follows from
Proposition 13.14 that α is topologically intense. In particular, int(G) is even. The
intensity of G is equal to 2, as a consequence of Proposition 13.15 and Theorem
5.2. �

13.5. Non-abelian groups, part II

The aim of this section is to give a proof of the following proposition. We

remind the reader that, for each prime number p > 3, the groups SL42 (Zp) and
S(∆p) have been defined in Section 13.4.

Proposition 13.33. Let p > 3 be a prime number and let G be a non-abelian
infinite pro-p-group. Assume that int(G) > 1. Then G is topologically isomorphic
to S(∆p).

Until the end of Section 13.5, let the following assumptions be valid. Let p > 3 be a
prime number and let G be an infinite non-abelian pro-p-group of intensity greater
than 1. Let (Gi)i≥1 denote the lower central series of G and let α be a topologically
intense automorphism of G of order 2. In the proof of Proposition 13.33, we will
make heavy use of results coming from Chapters 10 and 11.

Lemma 13.34. Every solvable just-infinite pro-p-group other than Zp has tor-
sion.

Proof. This is Proposition 6.1 in [GSK09]. �

Lemma 13.35. Let P be a p-adic analytic group of dimension 3. Assume that
P is both torsion-free and non-solvable. Then P is topologically isomorphic to an

open subgroup of S(∆p) or SL42 (Zp).
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Proof. See [GSK09, Section 7.3]. �

Lemma 13.36. The group G is topologically isomorphic to an open subgroup of

S(∆p) or SL42 (Zp).

Proof. The group G is a just-infinite p-adic analytic group of dimension 3,
by Proposition 13.16. By Lemma 13.22, the torsion of G is trivial and so, by
Lemma 13.34, the group G is not solvable. It follows from Lemma 13.35 that G is

isomorphic to an open subgroup of S(∆p) or SL42 (Zp). �

Lemma 13.37. The group G is topologically isomorphic to S(∆p) or SL42 (Zp).

Proof. Let P ∈ {S(∆p),SL42 (Zp)} and let (Pi)i≥1 denote the lower central
series of P . From the combination of Lemmas 13.24 and 13.30, we know that, for
each k ≥ 3, the quotient P/Pk is a p-obelisk. Let now H be an open subgroup of P
such that G is topologically isomorphic to H as given by Lemma 13.36. By Lemma
13.18, the group H has discrete quotients of any class and, thanks to Lemma 13.17,
each such quotient, of class at least 4, is a p-obelisk. The subgroup H being open,
it follows from Lemma 13.19 that there exists k ∈ Z>4 such that Pk is contained in
H so H/Pk is a p-obelisk. Proposition 10.15 yields P = H. �

Lemma 13.38. Each discrete quotient of G of class at least 6 is a framed p-
obelisk.

Proof. Let G be a discrete quotient of G of class at least 6. Since α induces an
intense automorphism of order 2 on G, Lemma 13.17 yields that G is a p-obelisk.
By Lemma 10.4(1), the number wtG(5) is equal to 2 so, by Theorem 12.2, the

p-obelisk G is framed. �

We are finally ready to give the proof of Proposition 13.33. Thanks to Lemma
13.37, there are only two possibilities for the isomorphism type of G: that of S(∆p)

or that of SL42 (Zp). By Lemma 13.38, every discrete quotient of G of class 6 is a

framed p-obelisk so, in view of Lemma 13.26, the group SL42 (Zp) is not isomorphic
to G. It follows that G is topologically isomorphic to S(∆p) and so the proof of
Proposition 13.33 is complete.

13.6. Proving the main theorems and more

In Sections 13.6.1 and 13.6.2 we prove respectively Theorem 13.1 and Theorem
13.2. The last two theorems are the most important results of Chapter 13: we are
able to draw a bridge between the two thanks to Proposition 13.39, which is proven
in Section 13.6.3.

13.6.1. The proof of Theorem 13.1. Let p be a prime number. As a
consequence of Proposition 13.15, the intensity of a pro-p-group divides p− 1 and
so there are no pro-2-groups of intensity greater than 1. Assume now that p is odd.
Then, thanks to Corollary 13.2, each infinite abelian pro-p-group has intensity p−1,
which, p being odd, is greater than 1. Let now G be a non-abelian infinite pro-
p-group with int(G) > 1. Then G has a discrete quotient of any class, thanks to
Lemma 13.18, so Theorem 9.1 yields that p is larger than 3. By Proposition 13.33,
the group G is topologically isomorphic to S(∆p), which, by Lemma 13.32, has
indeed intensity 2. The proof of Theorem 13.1 is now complete.
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13.6.2. The proof of Theorem 13.2. Let p > 3 be a prime number and let
c be a positive integer. Write G = S(∆p) and let (Gi)i≥1 denote the lower central
series of G, as defined in Section 13.1. Then the group G/Gc+1 has class c and it is
finite, as a consequence of Lemma 13.19. The group G being a pro-p-group, G/Gc+1

is a finite p-group. Moreover, by Theorem 13.1, the intensity of G is greater than
1 and so, thanks to Proposition 13.15, we get int(G/Gc+1) > 1. The number c was
chosen arbitrarily and therefore Theorem 13.2 is proven.

13.6.3. A bridge between finite and infinite. The purpose of Section
13.6.3 is to compare, for a fixed prime p > 3, the finite p-groups of intensity greater
than 1 with the discrete quotients of S(∆p).

Proposition 13.39. Let p > 3 be a prime number and write P = S(∆p).
Denote by (Pi)i≥1 the lower central series of P . Then there exists a function f :
Z>0 → Z≥0 with the following properties.

1. One has limc→∞ f(c) =∞.
2. For each finite p-group G of class c with int(G) > 1, the quotients G/Gf(c)

and P/Pf(c) are isomorphic.

Proof. For each positive integer c, let Int(p, c) denote the collection of all
finite p-groups of class c and intensity greater than 1. We define f : Z>0 → Z≥0

by mapping each element c ∈ Z>0 to the maximum index m ∈ Z>0 for which,
whenever G ∈ Int(p, c), the quotients G/Gm and P/Pm are isomorphic. The map
f is well-defined, thanks to Theorem 13.2, and it follows directly from the definition
of f that (2) is satisfied. Moreover, thanks to Lemma 3.13, the function f is non-
decreasing. We prove (1) by contradiction. Let C ∈ Z≥0 be such that, for all c ≥ C,
one has f(c) = f(C). In other words, for each c ∈ Z≥C , there exists G ∈ Int(p, c)
such that G/Gf(C) and P/Pf(C) are isomorphic, but G/Gf(C)+1 and P/Pf(C)+1

are not. For all c ≥ C, call Xc the collection of such G and note that, for each
c ≥ C, the set Xc is non-empty. Thanks to Lemma 3.13, for each c ∈ Z>C , we
have a natural map Xc+1 → Xc, which is defined by G 7→ G/Gc+1. The collection
{Xc}c>C is thus an inverse system of non-empty sets. As a consequence of Theorem
5.1, the constant C is at least 3 and so, for each c > C, Theorem 8.1 yields that Xc

is finite. By Lemma 13.13, the set X = lim←−
c>C

Xc is non-empty and therefore there

exists an infinite non-abelian pro-p-group of intensity larger than 1 and which is,
by construction, not isomorphic to P . Contradiction to Theorem 13.1. It follows
that (2) is satisfied and the proof is complete. �

In summary, Proposition 13.39 states that, for p > 3, each finite p-group G with
int(G) > 1 shares a “relatively big” quotient (growing in size with the class of G)
with the infinite group S(∆p). One can then ask: if p > 3 and G is a finite p-group
of intensity greater than 1, then “how far is G from being a quotient of S(∆p)”?
More precisely, if G is a finite p-group of class c with int(G) > 1 and f is as in
Proposition 13.39, then what is the average size of Gf(c)? Is there an absolute
constant B such that, for each c ∈ Z>0 and for each finite p-group G of class c and
intensity greater than 1, one has |Gf(c)| ≤ pB? In view of Theorem 12.2, we can
surely answer this question if we manage to classify, for each given prime p > 3, all
framed p-obelisks that have an automorphism of order 2 that induces the inversion
map on the Frattini quotient of the group.
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