INTENSE TRIPLES

Mima Stanojkovski

Universiteit Leiden – Università degli Studi di Padova

31 July 2016

PhD project supervised by Prof. Hendrik Lenstra and Prof. Andrea Lucchini

> Some of the results are joint work with Jon González Sánchez (EHU)

> > イロト (理) (ヨ) (ヨ) (ヨ) ()

Intense automorphisms

Let G be a finite group. An automorphism α of G is **intense** if for all $H \leq G$ there exists $g \in G$ such that $\alpha(H) = gHg^{-1}$. Write $\alpha \in Int(G)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intense automorphisms

Let G be a finite group. An automorphism α of G is **intense** if for all $H \leq G$ there exists $g \in G$ such that $\alpha(H) = gHg^{-1}$. Write $\alpha \in Int(G)$.

Motivation: Intense automorphisms appear naturally as solutions to a certain cohomological problem. They (surprisingly!) give rise to a very rich theory.

・ロト ・ 中下・ モー・ ・ モー・ うくつ

Example:

- Every automorphism of a cyclic group is intense.
- Inner automorphisms are intense.

Intensity

Let p be a prime number and let G be a finite p-group. Then

$$\operatorname{Int}(G) = P \rtimes C$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where

- *P* is a *p*-group.
- C is cyclic of order dividing p 1.

Intensity

Let p be a prime number and let G be a finite p-group. Then

$$\operatorname{Int}(G) = P \rtimes C$$

where

- P is a p-group.
- C is cyclic of order dividing p 1.

The group *C* is unique up to conjugation under elements of *P*. The **intensity** of *G* is int(G) = #C.

Intense triples

An intense triple is a triple (p, G, α) such that

- *p* is a prime number.
- G is a finite p-group.
- α is conjugate to a non-trivial element of *C*.

Intense triples

An intense triple is a triple (p, G, α) such that

- *p* is a prime number.
- G is a finite p-group.
- α is conjugate to a non-trivial element of *C*.

Intense triples are quite rare: if a group occurs in an intense triple, then its structure is almost uniquely determined by p and its *class*.

・ロト ・ 中下・ モー・ ・ モー・ うくつ

There are no intense triples with p = 2.

Equivalent triples

Example:

Let p be an odd prime and let $n \in \mathbb{Z}_{>0}$. For all $\alpha \in \mathbb{F}_p^* \setminus \{1\}$, the triple $(p, \mathbb{F}_p^n, \alpha)$ is intense.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨー のへぐ

Equivalent triples

Example:

Let p be an odd prime and let $n \in \mathbb{Z}_{>0}$. For all $\alpha \in \mathbb{F}_p^* \setminus \{1\}$, the triple $(p, \mathbb{F}_p^n, \alpha)$ is intense.

Two intense triples (p, G, α) and (q, G', β) are **equivalent** if there exists an isomorphism $\sigma : G \to G'$ such that $\beta = \sigma \alpha \sigma^{-1}$. It follows that p = q.

Let $\mathcal{T} = \{[p, G, \alpha] \mid p, G, \alpha ...\}$ denote the set of equivalence classes of intense triples.

・ロト ・ 日 ・ ・ ヨ ト ・ 日 ト ・ 日 ト

Abelian groups

Let p be a prime number and let \mathbb{Z}_p denote the ring of p-adic integers. Define $\omega(\mathbb{F}_p^*) = \{ \alpha \in \mathbb{Z}_p^* \mid \alpha^{p-1} = 1 \}.$

Note that $\omega(\mathbb{F}_p^*) \cong \mathbb{F}_p^*$ and that every abelian *p*-group has a natural structure of \mathbb{Z}_p -module.

Abelian groups

Let p be a prime number and let \mathbb{Z}_p denote the ring of p-adic integers. Define $\omega(\mathbb{F}_p^*) = \{ \alpha \in \mathbb{Z}_p^* \mid \alpha^{p-1} = 1 \}.$

Note that $\omega(\mathbb{F}_p^*) \cong \mathbb{F}_p^*$ and that every abelian *p*-group has a natural structure of \mathbb{Z}_p -module.

ション ふゆ マ キャット しょう くしゃ

Proposition

Assume that:

- p is odd.
- $G \neq 1$ is a finite abelian p-group.
- $\alpha \in \omega(\mathbb{F}_p^*) \setminus \{1\}.$ (<u>Example</u>: $\alpha = -1$)

Then $[p, G, \alpha] \in \mathcal{T}$ and int(G) = p - 1.

The lower central series

The lower central series of G is given by

- $G_1 = G$.
- $G_{i+1} = [G, G_i].$

If G is a p-group, there exists k such that $G_k = 1$ and the **(nilpotency) class** of G is

$$c = \#\{i \mid G_i \neq G_{i+1}\} = -1 + \min\{k \mid G_k = 1\}.$$

Strategy

For all $c \in \mathbb{Z}_{\geq 0}$, let $\mathcal{T}[c] = \{[p, G, \alpha] \in \mathcal{T} \mid G \text{ has class } c\}.$

イロト 不得 トイヨ トイヨ ト シック

Then:

- $\mathcal{T} = \bigsqcup_{c} \mathcal{T}[c].$
- $\mathcal{T}[0] = \emptyset$.
- $\mathcal{T}[1] = \{[p, G, \alpha] \text{ as in the Proposition}\}.$
- $\mathcal{T}[c]$ for c = 2 ?
- $\mathcal{T}[c]$ for $c \geq 3$?

Class 2

Let p be an odd prime and let $n \in \mathbb{Z}_{>0}$. Define $(\mathrm{ES}(p,n),*)$ as

•
$$\operatorname{ES}(p, n) = \mathbb{F}_p \times \mathbb{F}_p^n \times \mathbb{F}_p^n$$
.

•
$$(z_1, y_1, x_1) * (z_2, y_2, x_2) = (z_1 + z_2 + x_1 \cdot y_2, y_1 + y_2, x_1 + x_2).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Class 2

Let p be an odd prime and let $n \in \mathbb{Z}_{>0}$. Define $(\mathrm{ES}(p, n), *)$ as

•
$$\operatorname{ES}(p, n) = \mathbb{F}_p \times \mathbb{F}_p^n \times \mathbb{F}_p^n$$
.
• $(z_1, y_1, x_1) * (z_2, y_2, x_2) = (z_1 + z_2 + x_1 \cdot y_2, y_1 + y_2, x_1 + x_2).$

Exercise:

- (ES(p, n), *) has order p^{2n+1} and class 2.
- Let $\lambda \in \mathbb{F}_p^*$. Then $\alpha_{\lambda} : (z, y, x) \mapsto (\lambda^2 z, \lambda y, \lambda x)$ is an intense automorphism of $(\mathrm{ES}(p, n), *)$.

イロト (理) (ヨ) (ヨ) (ヨ) ()

Class 2

Let p be an odd prime and let $n \in \mathbb{Z}_{>0}$. Define $(\mathrm{ES}(p, n), *)$ as

Exercise:

- (ES(p, n), *) has order p^{2n+1} and class 2.
- Let $\lambda \in \mathbb{F}_p^*$. Then $\alpha_{\lambda} : (z, y, x) \mapsto (\lambda^2 z, \lambda y, \lambda x)$ is an intense automorphism of $(\mathrm{ES}(p, n), *)$.

Proposition

 $\mathcal{T}[2] = \{ [p, (\mathrm{ES}(p, n), *), \alpha_{\lambda}] \mid p \text{ is odd}, n \in \mathbb{Z}_{>0}, \lambda \in \mathbb{F}_p^* \setminus \{1\} \}.$

・ロト ・ 中下・ モー・ ・ モー・ うくつ

Class at least 3

Given a *p*-group *G*, let $(G_i)_{i\geq 1}$ be its lower central series. Let $(f_i)_{i\geq 1}$ be the sequence, with values in $\mathbb{Z}_{\geq 0}$, such that the order of G_i/G_{i+1} is equal to p^{f_i} .

Class at least 3

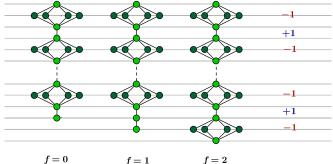
Given a *p*-group *G*, let $(G_i)_{i\geq 1}$ be its lower central series. Let $(f_i)_{i\geq 1}$ be the sequence, with values in $\mathbb{Z}_{\geq 0}$, such that the order of G_i/G_{i+1} is equal to p^{f_i} .

Proposition

Let $c \geq 3$ and assume $[p, G, \alpha] \in \mathcal{T}[c]$. The following hold.

- The order of α is equal to 2 and int(G) = 2.
- For all i, the quotient G_i/G_{i+1} is a vector space over 𝔽_p and α induces multiplication by (−1)ⁱ on it.
- $(f_i)_{i\geq 1} = (2, 1, 2, 1, \dots, 2, 1, f, 0, 0, 0, \dots)$ with $f \in \{0, 1, 2\}$.

Normal subgroups structure



イロト イポト イヨト イヨト

- 31

f = 1f = 2

An intense graph

Fix p and define $\mathcal{T}_p = \{[p, G, \alpha] \mid G, \alpha, \ldots\}.$

There is a well-defined sequence of sets

$$\ldots \longrightarrow \mathcal{T}_{\rho}[c+1] \xrightarrow{\pi_{c+1}} \mathcal{T}_{\rho}[c] \xrightarrow{\pi_c} \mathcal{T}_{\rho}[c-1] \longrightarrow \ldots$$

where, for all c, the map π_c is defined by

$$\pi_{c}: [p, G, \alpha] \mapsto [p, G/G_{c}, \overline{\alpha}].$$

An intense graph

Fix p and define $\mathcal{T}_p = \{[p, G, \alpha] \mid G, \alpha, \ldots\}.$

There is a well-defined sequence of sets

$$\ldots \longrightarrow \mathcal{T}_{\rho}[c+1] \xrightarrow{\pi_{c+1}} \mathcal{T}_{\rho}[c] \xrightarrow{\pi_c} \mathcal{T}_{\rho}[c-1] \longrightarrow \ldots$$

where, for all c, the map π_c is defined by

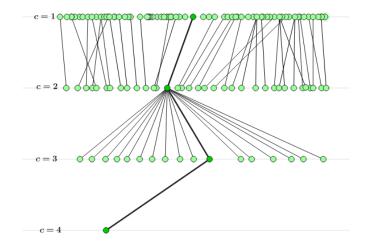
$$\pi_{c}: [p, G, \alpha] \mapsto [p, G/G_{c}, \overline{\alpha}].$$

We define a graph $\mathcal{G}_{p} = (E_{p}, V_{p})$, where

V_p = T_p.
(v, w) ∈ E_p if there exists c such that π_c(v) = w.

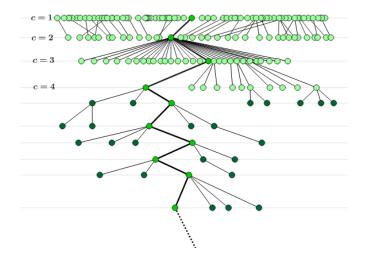
- ロト - 4 画 ト - 4 画 ト - 4 画 ト - 4 回 ト

The graph for p = 3



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The graph for p > 3



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The infinite case

Theorem

Let p be an odd prime and let $c \in \mathbb{Z}_{>0}$. Then the following hold.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ - のくぐ

- If $c \ge 3$, then $\mathcal{T}_p[c]$ is finite.
- $\mathcal{T}_p[c] = \emptyset \iff p = 3 \text{ and } c \ge 5.$

• If
$$p > 3$$
, then $\# \varprojlim_c \mathcal{T}_p[c] = 1$.

The infinite case

Theorem

Let p be an odd prime and let $c \in \mathbb{Z}_{>0}$. Then the following hold.

• If $c \geq 3$, then $\mathcal{T}_p[c]$ is finite.

•
$$\mathcal{T}_p[c] = \emptyset \iff p = 3$$
 and $c \ge 5$.

• If
$$p > 3$$
, then $\# \varprojlim_c \mathcal{T}_p[c] = 1$.

If $\varprojlim_{c} \mathcal{T}_{p}[c] = \{[p, G^{(c)}, \alpha^{(c)}]\}_{c>0}$, we want to determine the pro-*p*-group $G_{lim} = \varprojlim_{c} G^{(c)}$ and the automorphism α_{lim} of G_{lim} that is induced by the automorphisms $\alpha^{(c)}$.

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ・ の へ ()・

A profinite example

Let p > 3 be a prime and let $t \in \mathbb{Z}_p$ satisfy $(\frac{t}{p}) = -1$. Set $A_p = \mathbb{Z}_p + \mathbb{Z}_p i + \mathbb{Z}_p j + \mathbb{Z}_p i j$ with defining relations $i^2 = t$, $j^2 = p$, and ji = -ij. Then A_p is a non-commutative local ring such that $A_p/jA_p \cong \mathbb{F}_{p^2}$. The involution $\overline{\cdot} : A_p \to A_p$ is defined by

$$a = s + ti + uj + vij \mapsto \overline{a} = s - ti - uj - vij.$$

Let $G = \{a \in A_p^* \mid a\overline{a} = 1 \text{ and } a \equiv 1 \text{ mod } jA_p\}$ and, for all $a \in G$, define $\alpha(a) = iai^{-1}$.

Theorem

G is a pro-p-group and α is topologically intense, i.e. for any closed subgroup H of G there exists $g \in G$ such that $\alpha(H) = gHg^{-1}$. Moreover, $(G, \alpha) \cong (G_{lim}, \alpha_{lim})$.

ション ふゆ マ キャット しょう くしゃ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

э