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Intense automorphisms

Let G be a finite group. An automorphism α of G is intense if
for all H ≤ G there exists g ∈ G such that α(H) = gHg−1.
Write α ∈ Int(G ).

Motivation: Intense automorphisms appear naturally as solutions
to a certain cohomological problem. They (surprisingly!) give rise
to a very rich theory.

Example:

• Every automorphism of a cyclic group is intense.
• Inner automorphisms are intense.
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Intensity

Let p be a prime number and let G be a finite p-group. Then

Int(G ) = P o C

where

• P is a p-group.
• C is cyclic of order dividing p − 1.

The group C is unique up to conjugation under elements of P .
The intensity of G is int(G ) = #C .
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Intense triples

An intense triple is a triple (p,G , α) such that

• p is a prime number.
• G is a finite p-group.
• α is conjugate to a non-trivial element of C .

Intense triples are quite rare: if a group occurs in an intense triple,
then its structure is almost uniquely determined by p and its class.

There are no intense triples with p = 2.
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Equivalent triples

Example:

Let p be an odd prime and let n ∈ Z>0.
For all α ∈ F∗p \ {1}, the triple (p,Fn

p, α) is intense.

Two intense triples (p,G , α) and (q,G ′, β) are equivalent if there
exists an isomorphism σ : G → G ′ such that β = σασ−1. It follows
that p = q.

Let T = {[p,G , α] | p,G , α . . .} denote the set of equivalence
classes of intense triples.
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Abelian groups

Let p be a prime number and let Zp denote the ring of p-adic
integers. Define ω(F∗p) = {α ∈ Z∗p | αp−1 = 1}.
Note that ω(F∗p) ∼= F∗p and that every abelian p-group has a natural
structure of Zp-module.

Proposition
Assume that:
• p is odd.
• G 6= 1 is a finite abelian p-group.
• α ∈ ω(F∗p) \ {1}. ( Example: α = −1 )

Then [p,G , α] ∈ T and int(G ) = p − 1.
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The lower central series

The lower central series of G is given by
• G1 = G .
• Gi+1 = [G ,Gi ].

If G is a p-group, there exists k such that Gk = 1 and the
(nilpotency) class of G is

c = #{i | Gi 6= Gi+1} = −1+min{k | Gk = 1}.



Strategy

For all c ∈ Z≥0, let T [c] = {[p,G , α] ∈ T | G has class c}.

Then:

• T =
⊔

c T [c].

• T [0] = ∅.

• T [1] = {[p,G , α] as in the Proposition}.

• T [c] for c = 2 ?

• T [c] for c ≥ 3 ?



Class 2

Let p be an odd prime and let n ∈ Z>0. Define (ES(p, n), ∗) as
• ES(p, n) = Fp × Fn

p × Fn
p.

• (z1, y1, x1) ∗ (z2, y2, x2) = (z1 + z2 + x1 · y2, y1 + y2, x1 + x2).

Exercise:
• (ES(p, n), ∗) has order p2n+1 and class 2.
• Let λ ∈ F∗p. Then αλ : (z , y , x) 7→ (λ2z , λy , λx) is an intense
automorphism of (ES(p, n), ∗).

Proposition
T [2] = {[p, (ES(p, n), ∗), αλ] | p is odd, n ∈ Z>0, λ ∈ F∗p \ {1}}.
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Class at least 3

Given a p-group G , let (Gi )i≥1 be its lower central series. Let
(fi )i≥1 be the sequence, with values in Z≥0, such that the order of
Gi/Gi+1 is equal to pfi .

Proposition
Let c ≥ 3 and assume [p,G , α] ∈ T [c]. The following hold.

• The order of α is equal to 2 and int(G ) = 2.

• For all i , the quotient Gi/Gi+1 is a vector space over Fp and α
induces multiplication by (−1)i on it.

• (fi )i≥1 = (2, 1, 2, 1, . . . , 2, 1, f , 0, 0, 0, . . .) with f ∈ {0, 1, 2}.
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Normal subgroups structure



An intense graph

Fix p and define Tp = {[p,G , α] | G , α, . . .}.

There is a well-defined sequence of sets

. . . −→ Tp[c + 1]
πc+1−−−→ Tp[c]

πc−→ Tp[c − 1] −→ . . .

where, for all c , the map πc is defined by

πc : [p,G , α] 7→ [p,G/Gc , α].

We define a graph Gp = (Ep,Vp), where

• Vp = Tp.
• (v ,w) ∈ Ep if there exists c such that πc(v) = w .
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The infinite case

Theorem
Let p be an odd prime and let c ∈ Z>0. Then the following hold.

• If c ≥ 3, then Tp[c] is finite.

• Tp[c] = ∅ ⇐⇒ p = 3 and c ≥ 5.

• If p > 3, then # lim←−
c

Tp[c] = 1.

If lim←−
c

Tp[c] = {[p,G (c), α(c)]}c>0, we want to determine the

pro-p-group Glim = lim←−
c

G (c) and the automorphism αlim of Glim

that is induced by the automorphisms α(c).
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A profinite example

Let p > 3 be a prime and let t ∈ Zp satisfy ( tp ) = −1. Set
Ap = Zp + Zpi + Zpj + Zpij with defining relations i2 = t, j2 = p,
and ji = −ij. Then Ap is a non-commutative local ring such that
Ap/jAp

∼= Fp2 . The involution · : Ap → Ap is defined by

a = s + ti + uj + v ij 7→ a = s − ti− uj− v ij.

Let G = {a ∈ A∗p | aa = 1 and a ≡ 1 mod jAp} and, for all a ∈ G ,
define α(a) = iai−1.

Theorem
G is a pro-p-group and α is topologically intense, i.e. for any closed
subgroup H of G there exists g ∈ G such that α(H) = gHg−1.
Moreover, (G , α) ∼= (Glim, αlim).




