Intense automorphisms of finite groups

Mima Stanojkovski – this is part of my PhD thesis, supervised by Prof. Hendrik Lenstra (Universiteit Leiden)

Universität Bielefeld mstanojk@math.uni-bielefeld.de

Intense automorphisms

Let G be a group. An automorphism α of G is *intense* if for all subgroups H of G there exists $g \in G$ such that $\alpha(H) = gHg^{-1}$. Denote by Int(G) the collection of intense automorphisms of G; then $Int(G) \triangleleft Aut(G)$.

Examples:

- 1. Inner automorphisms are intense.
- 2. If V is a vector space over the finite field \mathbb{F}_p of p elements, then the intense automorphisms of V are the scalar multiplications by elements of \mathbb{F}_p^* .

Equivalence relation: Let G, G' be groups and let α, β be intense automorphisms respectively of G and G'. The pairs (G, α) and (G', β) are *equivalent* if there exists an isomorphism $\sigma : G \to G'$ such that $\beta \sigma = \sigma \alpha$.

The general setting

Let G be a finite group. A lot can be said about the structure of G once the structure of $\operatorname{Aut}(G)$ is known. Besides, in some cases, very few assumptions on $\operatorname{Aut}(G)$ can lead to very strong limitations to the shape of G.

Intense automorphisms are a generalization of power automorphisms and, in some sense, they resemble class-preserving automorphisms. If G is a non-abelian p-group then both power and class-preserving automorphisms have order equal to a power of p, but the same need not hold for the elements of Int(G). We will explore this last situation extensively and see how intense automorphisms give rise to a surprisingly rich theory.

The case of groups of prime power order

Let p be a prime number and let G be a finite p-group. Then

$$\operatorname{Int}(G) = P_G \rtimes C_G$$

where P_G is the unique Sylow p-subgroup of Int(G) and C_G is a cyclic group of order dividing p-1. The intensity of G is $int(G)=\#C_G$.

Goal: Classifying finite p-groups G whose group of intense automorphisms Int(G) is not itself a p-group. In other words, we want to know for which groups G one has int(G) > 1. As this can never happen for 2-groups, we restrict ourselves to working with odd primes.

Strategy: Let \mathcal{T}_p be the collection of equivalence classes of pairs (G, α) such that G is a finite p-group and α is conjugate to a non-trivial element of C_G . For all $c \in \mathbb{Z}_{>0}$, define

$$\mathcal{T}_p[c] = \{ [(G, \alpha)] \in \mathcal{T}_p : G \text{ has class } c \}$$

and note that the collection $\{\mathcal{T}_p[c]\}_{c>0}$ is a partition of \mathcal{T}_p .

Small nilpotency classes

Let p be an odd prime number. The following hold.

1. One has

$$\mathcal{T}_p[1] = \{ [(G, \alpha)] : G \neq 1 \text{ abelian}, \ \alpha \in \omega(\mathbb{F}_p^*) \setminus \{1\} \},$$

where $\omega: \mathbb{F}_p^* \to \mathbb{Z}_p^*$ is the Teichmüller character.

2. One has

$$\mathcal{T}_p[2] = \{ [(\mathrm{ES}_p(n), \alpha_\lambda)] : n \in \mathbb{Z}_{\geq 1}, \lambda \in \mathbb{F}_p^* \setminus \{1\} \},$$

where $\mathrm{ES}_p(n)$ is extraspecial, of order p^{2n+1} and exponent p, and α_{λ} is a lift of λ -th powering on $\mathrm{ES}_p(n)/\Phi(\mathrm{ES}_p(n))$.

Note: If G is a finite p-group of class at most 2, then $\operatorname{int}(G)$ is either 1 or p-1. Moreover, $\mathcal{T}_p[1]$ and $\mathcal{T}_p[2]$ are both infinite.

Higher nilpotency classes

Let p be an odd prime number, $c \geq 3$, and $[(G, \alpha)] \in \mathcal{T}_p[c]$. Then the following hold.

- 1. One has $|\alpha| = 2$ and int(G) = 2.
- 2. The lower central series and p-central series of G coincide.
- 3. The map α induces the inversion map on $G/\Phi(G)$.
- 4. The group G is thin, with one of the following diagrams.

Theorem

Let p be odd and let $c \in \mathbb{Z}_{>0}$. Then the following hold.

- 1. If $c \geq 3$, then $\mathcal{T}_p[c]$ is finite.
- 2. $\mathcal{T}_p[c] = \emptyset \iff p = 3 \text{ and } c \ge 5.$
- 3. The set $\mathcal{T}_3[4]$ has exactly one element.
- 4. If p > 3, then $\# \varprojlim_{c} \mathcal{T}_{p}[c] = 1$.

If $\varprojlim_{c} \mathcal{T}_{p}[c] = \{[(G^{(c)}, \alpha^{(c)})]\}_{c>0}$, we want to determine the pro-p-group $G_{\lim} = \varprojlim_{c} G^{(c)}$ and the automorphism α_{\lim} of G_{\lim} that is induced by the automorphisms $\alpha^{(c)}$.

INTENSE PROJECTIVE SYSTEM

There is a well-defined sequence of sets

$$\ldots \longrightarrow \mathcal{T}_p[c+1] \xrightarrow{\pi_{c+1}} \mathcal{T}_p[c] \xrightarrow{\pi_c} \mathcal{T}_p[c-1] \longrightarrow \ldots \longrightarrow \mathcal{T}_p[1]$$

where, for all c, the map π_c is defined by $\pi_c : [(G, \alpha)] \mapsto [(G/\gamma_c(G), \overline{\alpha})].$

The sequence $(\gamma_i(G))_{i\geq 1}$ denotes the lower central series of G and $\overline{\alpha}$ is the map induced by α on $G/\gamma_c(G)$.

The projective system for p = 3

c=1

A maximal class example

Let $k = \mathbb{F}_3[\epsilon]$ of cardinality 9 with $\epsilon^2 = 0$ and set

$$A_3 = k + ki + kj + kij,$$

where i, j satisfy $i^2 = j^2 = \epsilon$, and ji = -ij. The quaternion algebra A_3 is local, with maximal ideal $\mathfrak{m} = A_3i + A_3j$ and canonical anti-homomorphism

$$a = s + ti + uj + vij \mapsto \overline{a} = s - ti - uj - vij.$$

Define $G_{\max} = \{a \in 1 + \mathfrak{m} : a\overline{a} = 1\}$ and let the automorphism $\alpha_{\max} : G_{\max} \to G_{\max}$ be defined by

$$a = s + ti + uj + vij \mapsto \alpha_{\max}(a) = s - ti - uj + vij.$$

Fact: $\mathcal{T}_3[4] = \{ [(G_{\max}, \alpha_{\max})] \}$

Another construction

Let J_3 denote the third Janko group and let $3.J_3$ denote its Schur cover. Let S be a Sylow 3-subgroup of $3.J_3$ and denote by N its normalizer. Let x be an element of order 2 in N and let $\iota_x: S \to S$ be conjugation under x.

Fact:
$$\mathcal{T}_3[4] = \{ [(S, \iota_x)] \}$$

Thanks to: Derek Holt and Frieder Ladisch for this characteriza-

The projective system for $p \geq 5$

A profinite example

Let p > 3 be a prime number and let $t \in \mathbb{Z}_p$ satisfy $(\frac{t}{p}) = -1$. Set $A_p = \mathbb{Z}_p + \mathbb{Z}_p i + \mathbb{Z}_p j + \mathbb{Z}_p i j$ with defining relations $i^2 = t$, $j^2 = p$, and ji = -ij. Then A_p is a non-commutative local ring such that $A_p/jA_p \cong \mathbb{F}_{p^2}$. The involution $\overline{\cdot}: A_p \to A_p$ is defined by

$$a = s + ti + uj + vij \mapsto \overline{a} = s - ti - uj - vij.$$

Let $SL(p) = \{a \in 1 + jA_p : a\overline{a} = 1\}$ and let α_p be the automorphism of SL(p) that is defined by

$$a = s + ti + uj + vij \mapsto \alpha_p(a) = s + ti - uj - vij.$$

Theorem

The group SL(p) is a pro-p-group and α_p is topologically intense, i.e. for any closed subgroup H of SL(p) there exists $g \in SL(p)$ such that $\alpha_p(H) = gHg^{-1}$. Moreover, one has

$$(\operatorname{SL}(p), \alpha_p) \cong (G_{\lim}, \alpha_{\lim}).$$