EVOLVING GROUPS

Mima Stanojkovski

Università degli Studi di Padova – Universiteit Leiden

7-8-9 July 2013

Master thesis supervised by

Prof. Dr. Hendrik W. Lenstra Jr.

Definition of an evolving group

Let G be a finite group,

Let G be a finite group, p be a prime number and $I \leq G$ be a p-subgroup. Then $J \leq G$ is a p-evolution of I in G if

- 1 < J
- $gcd\{|J:I|,p\}=1$
- |G:J| is a *p*-power.

Let G be a finite group, p be a prime number and $I \leq G$ be a p-subgroup. Then $J \leq G$ is a p-evolution of I in G if

- I ≤ J
- $gcd\{|J:I|,p\}=1$
- |G:J| is a *p*-power.

Example:

- The only p-evolution of a Sylow subgroup is G.
- If $G = A_5$ then the trivial subgroup has a 5-evolution in G, i.e. A_4 , but it has no 2-evolution.

LDefinition of an evolving group

An evolving group is a group G such that, for every prime number p, every p-subgroup I of G has a p-evolution in G.

An evolving group is a group G such that, for every prime number p, every p-subgroup I of G has a p-evolution in G.

Example:

- Nilpotent groups are evolving.
- Finite groups for which every Sylow subgroup is cyclic are evolving.

An evolving group is a group G such that, for every prime number p, every p-subgroup I of G has a p-evolution in G.

Example:

- Nilpotent groups are evolving.
- Finite groups for which every Sylow subgroup is cyclic are evolving.

Lemma

G evolving, $N \triangleleft G \Rightarrow N$ and G/N are evolving.

Why do we study evolving groups?

Cohomology

Why do we study evolving groups?

Cohomology

Why do we study evolving groups?

$\mathsf{Theorem}$

The following are equivalent.

- For every G-module M, integer q, and $c \in \widehat{H}^q(G, M)$, the minimum of the set $\{|G:H| \mid H \leq G \text{ with } c \in \ker \operatorname{Res}_H^G\}$ coincides with its greatest common divisor.
- The group G is an evolving group.

A group G is *supersolvable* if there exists a chain $1 = N_0 \le N_1 \le ... \le N_t = G$ such that

- $N_i \triangleleft G$
- N_{i+1}/N_i is cyclic.

A group G is *supersolvable* if there exists a chain $1 = N_0 < N_1 < ... < N_t = G$ such that

- N_i < G
- N_{i+1}/N_i is cyclic.

Theorem

Let G be an evolving group. Then G is supersolvable and it is isomorphic to the semidirect product of two nilpotent groups of coprime orders.

Let
$$\mathcal{P} = \{p \mid |G| : p \text{ prime}\}.$$

Let $\mathcal{P} = \{p \mid |G| : p \text{ prime}\}$. A collection $(S_p)_{p \in \mathcal{P}}$, with $S_p \in \text{Syl}_p(G)$, is a *Sylow family* of G if S_q normalizes S_p whenever q < p.

Let $\mathcal{P} = \{p \mid |G| : p \text{ prime}\}$. A collection $(S_p)_{p \in \mathcal{P}}$, with $S_p \in \text{Syl}_p(G)$, is a *Sylow family* of G if S_q normalizes S_p whenever q < p.

Example: The group $G = \mathbb{F}_{25} \rtimes (\mu_3(\mathbb{F}_{25}) \rtimes \operatorname{Aut}(\mathbb{F}_{25}))$ has a Sylow family.

Let $\mathcal{P} = \{p \mid |G| : p \text{ prime}\}$. A collection $(S_p)_{p \in \mathcal{P}}$, with $S_p \in \operatorname{Syl}_p(G)$, is a *Sylow family* of G if S_q normalizes S_p whenever q < p.

Example: The group $G = \mathbb{F}_{25} \rtimes (\mu_3(\mathbb{F}_{25}) \rtimes \operatorname{Aut}(\mathbb{F}_{25}))$ has a Sylow family.

Lemma

- Every supersolvable group has a Sylow family.
- Sylow families are unique up to conjugation.

Assume G has a Sylow family $(S_q)_{q \in \mathcal{P}}$ and let $T_p = \langle S_q \mid q ;$

Assume G has a Sylow family $(S_q)_{q \in \mathcal{P}}$ and let $T_p = \langle S_q \mid q ; then <math>G$ has the *correction property* if for every $p \in \mathcal{P}$ and for every $l \leq S_p$ there exists $\alpha \in S_p$ such that $T_p \leq N_G(\alpha I \alpha^{-1})$.

Assume G has a Sylow family $(S_q)_{q \in \mathcal{P}}$ and let $T_p = \langle S_q \mid q ; then <math>G$ has the *correction property* if for every $p \in \mathcal{P}$ and for every $l \leq S_p$ there exists $\alpha \in S_p$ such that $T_p \leq N_G(\alpha I \alpha^{-1})$.

Theorem

The following are equivalent.

- The group G is an evolving group.
- The group G is a supersolvable group with the correction property.

The structure of an evolving group

Let G be a group with a Sylow family $(S_p)_{p \in \mathcal{P}}$.

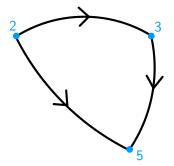
Let G be a group with a Sylow family $(S_p)_{p\in\mathcal{P}}$. The graph associated to G is the directed graph $\mathcal{G}=(V,A)$, where $V=\mathcal{P}$ and $(q,p)\in A$ if and only if q< p and $S_q\to \operatorname{Aut}(S_p/\Phi(S_p))$ is non-trivial.

Let G be a group with a Sylow family $(S_p)_{p\in\mathcal{P}}$. The graph associated to G is the directed graph $\mathcal{G}=(V,A)$, where $V=\mathcal{P}$ and $(q,p)\in A$ if and only if q< p and $S_q\to \operatorname{Aut}(S_p/\Phi(S_p))$ is non-trivial.

Lemma

If G is an evolving group and $p \in \mathcal{P}$, then T_p acts on $S_p/\Phi(S_p)$ by scalar multiplications.

Example: Graph associated to $G = \mathbb{F}_{25} \rtimes (\mu_3(\mathbb{F}_{25}) \rtimes \operatorname{Aut}(\mathbb{F}_{25})).$



Call ${\mathcal S}$ the set of source vertices, ${\mathcal T}$ the set of target vertices and ${\mathcal I}$ the set of isolated vertices of the graph.

Call ${\mathcal S}$ the set of source vertices, ${\mathcal T}$ the set of target vertices and ${\mathcal I}$ the set of isolated vertices of the graph.

$\mathsf{Theorem}$

Let G be an evolving group and let $(S_p)_{p\in\mathcal{P}}$ be a Sylow family. Then $S\cap\mathcal{T}=\varnothing$ and

$$G = \left(\prod_{p \in \mathcal{T}} S_p \rtimes \prod_{p \in \mathcal{S}} S_p\right) \times \prod_{p \in \mathcal{I}} S_p.$$

$$G = \left\{ egin{pmatrix} h & u & v \ 0 & 1 & w \ 0 & 0 & h^{-1} \end{pmatrix} \; : \; u,v,w \in \mathbb{F}_p, h \in \mathbb{F}_p^*
ight\}$$

$$G = \left\{ egin{pmatrix} h & u & v \ 0 & 1 & w \ 0 & 0 & h^{-1} \end{pmatrix} \ : \ u,v,w \in \mathbb{F}_p,h \in \mathbb{F}_p^*
ight\}$$

is an evolving group.

$$G = \left\{ egin{pmatrix} h & u & v \ 0 & 1 & w \ 0 & 0 & h^{-1} \end{pmatrix} \ : \ u,v,w \in \mathbb{F}_p,h \in \mathbb{F}_p^*
ight\}$$

is an evolving group.

By direct computation, one gets $G = G_H \rtimes \mathbb{F}_p^* = S_p \rtimes T_p$;

$$G = \left\{ egin{pmatrix} h & u & v \ 0 & 1 & w \ 0 & 0 & h^{-1} \end{pmatrix} \; : \; u,v,w \in \mathbb{F}_p,h \in \mathbb{F}_p^*
ight\}$$

is an evolving group.

By direct computation, one gets $G = G_H \rtimes \mathbb{F}_p^* = S_p \rtimes T_p$; it follows that G has a Sylow family and that G has the correction property.

The subgroup

$$W=\left\{egin{pmatrix}h&u&v\0&1&0\0&0&h^{-1}\end{pmatrix}\ :\ u,v\in\mathbb{F}_p,h\in\mathbb{F}_p^*
ight\}$$

of G is not evolving.

The subgroup

$$W = \left\{ \begin{pmatrix} h & u & v \\ 0 & 1 & 0 \\ 0 & 0 & h^{-1} \end{pmatrix} : u, v \in \mathbb{F}_p, h \in \mathbb{F}_p^* \right\}$$

of G is not evolving.

Indeed, if we write $W=W_H\rtimes \mathbb{F}_p^*$, then \mathbb{F}_p^* does not act on W_H by scalar multiplications.

Thank you.

