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EVOLVING GROUPS

Definition of an evolving group

Let G be a finite group,

p be a prime number and I ≤ G be a
p-subgroup. Then J ≤ G is a p-evolution of I in G if
• I ≤ J
• gcd{|J : I |, p} = 1
• |G : J| is a p-power.

Example:
• The only p-evolution of a Sylow subgroup is G .
• If G = A5 then the trivial subgroup has a 5-evolution in G , i.e.
A4, but it has no 2-evolution.
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Definition of an evolving group

An evolving group is a group G such that, for every prime number
p, every p-subgroup I of G has a p-evolution in G .

Example:
• Nilpotent groups are evolving.
• Finite groups for which every Sylow subgroup is cyclic are
evolving.

Lemma

G evolving, N C G ⇒ N and G/N are evolving.
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Why do we study evolving groups?

Cohomology

Why do we study evolving groups?

Theorem

The following are equivalent.
• For every G-module M, integer q, and c ∈ Ĥq(G ,M), the

minimum of the set {|G : H| | H ≤ G with c ∈ ker ResGH}
coincides with its greatest common divisor.

• The group G is an evolving group.
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Why do we study evolving groups?

A group G is supersolvable if there exists a chain
1 = N0 ≤ N1 ≤ . . . ≤ Nt = G such that
• Ni C G
• Ni+1/Ni is cyclic.

Theorem

Let G be an evolving group. Then G is supersolvable and it is
isomorphic to the semidirect product of two nilpotent groups of
coprime orders.
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Another characterization

Let P = {p | |G | : p prime}.

A collection (Sp)p∈P , with
Sp ∈ Sylp(G ), is a Sylow family of G if Sq normalizes Sp whenever
q < p.

Example: The group G = F25 o (µ3(F25) o Aut(F25)) has a Sylow
family.

Lemma

• Every supersolvable group has a Sylow family.
• Sylow families are unique up to conjugation.



EVOLVING GROUPS

Another characterization

Let P = {p | |G | : p prime}. A collection (Sp)p∈P , with
Sp ∈ Sylp(G ), is a Sylow family of G if Sq normalizes Sp whenever
q < p.

Example: The group G = F25 o (µ3(F25) o Aut(F25)) has a Sylow
family.

Lemma

• Every supersolvable group has a Sylow family.
• Sylow families are unique up to conjugation.



EVOLVING GROUPS

Another characterization

Let P = {p | |G | : p prime}. A collection (Sp)p∈P , with
Sp ∈ Sylp(G ), is a Sylow family of G if Sq normalizes Sp whenever
q < p.

Example: The group G = F25 o (µ3(F25) o Aut(F25)) has a Sylow
family.

Lemma

• Every supersolvable group has a Sylow family.
• Sylow families are unique up to conjugation.



EVOLVING GROUPS

Another characterization

Let P = {p | |G | : p prime}. A collection (Sp)p∈P , with
Sp ∈ Sylp(G ), is a Sylow family of G if Sq normalizes Sp whenever
q < p.

Example: The group G = F25 o (µ3(F25) o Aut(F25)) has a Sylow
family.

Lemma

• Every supersolvable group has a Sylow family.
• Sylow families are unique up to conjugation.



EVOLVING GROUPS

Another characterization

Assume G has a Sylow family (Sq)q∈P and let Tp = 〈Sq | q < p〉;

then G has the correction property if for every p ∈ P and for every
I ≤ Sp there exists α ∈ Sp such that Tp ≤ NG (αIα−1).

Theorem

The following are equivalent.
• The group G is an evolving group.
• The group G is a supersolvable group with the correction

property.
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The structure of an evolving group

Let G be a group with a Sylow family (Sp)p∈P .

The graph
associated to G is the directed graph G = (V ,A), where V = P
and (q, p) ∈ A if and only if q < p and Sq → Aut(Sp/Φ(Sp)) is
non-trivial.

Lemma

If G is an evolving group and p ∈ P, then Tp acts on Sp/Φ(Sp) by
scalar multiplications.
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The structure of an evolving group

Example: Graph associated to G = F25 o (µ3(F25) o Aut(F25)).
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The structure of an evolving group

Call S the set of source vertices, T the set of target vertices and I
the set of isolated vertices of the graph.

Theorem

Let G be an evolving group and let (Sp)p∈P be a Sylow family.
Then S ∩ T = ∅ and

G =

( ∏
p∈T

Sp o
∏
p∈S

Sp

)
×
∏
p∈I

Sp.
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A non-trivial example

Let p > 2 be a prime number. Then the group

G =


h u v
0 1 w
0 0 h−1

 : u, v ,w ∈ Fp, h ∈ F∗p



is an evolving group.
By direct computation, one gets G = GHoF∗p = Sp oTp; it follows
that G has a Sylow family and that G has the correction property.
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A non-trivial example

The subgroup

W =


h u v
0 1 0
0 0 h−1

 : u, v ∈ Fp, h ∈ F∗p


of G is not evolving.

Indeed, if we write W = WH o F∗p, then F∗p does not act on WH by
scalar multiplications.
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Thank you.


	Definition of an evolving group
	Why do we study evolving groups?
	Another characterization
	The structure of an evolving group
	A non-trivial example
	

