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EVOLVING GROUPS

on of an evolving group

Let G be a finite group,
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EVOLVING GROUPS
L Definition of an evolving group

Let G be a finite group, p be a prime number and / < G be a
p-subgroup. Then J < G is a p-evolution of | in G if

o [ < J
° ged{|J: 1], pp =1
e |G :J|isa p-power.




EVOLVING GROUPS
L Definition of an evolving group

Let G be a finite group, p be a prime number and / < G be a
p-subgroup. Then J < G is a p-evolution of | in G if

o [ < J
o ged{|J: /|, p} =1
e |G :J|isa p-power.

Example:
e The only p-evolution of a Sylow subgroup is G.

e If G = As then the trivial subgroup has a 5-evolution in G, i.e.
A4, but it has no 2-evolution.




EVOLVING GROUPS
L Definition of an evolving group

An evolving group is a group G such that, for every prime number
p, every p-subgroup / of G has a p-evolution in G.
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EVOLVING GROUPS

L Definition of an evolving group

An evolving group is a group G such that, for every prime number
p, every p-subgroup / of G has a p-evolution in G.

Example:
e Nilpotent groups are evolving.
e Finite groups for which every Sylow subgroup is cyclic are

evolving.
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EVOLVING GROUPS

L Definition of an evolving group

An evolving group is a group G such that, for every prime number
p, every p-subgroup / of G has a p-evolution in G.

Example:
e Nilpotent groups are evolving.
e Finite groups for which every Sylow subgroup is cyclic are

evolving.

Lemma

G evolving, N <1 G = N and G/N are evolving.
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EVOLVING GROUPS

LWhy do we study evolving groups?

Cohomology

Why do we study evolving groups?
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EVOLVING GROUPS
LWI-:y do we study evolving groups?

Cohomology

Why do we study evolving groups?

The following are equivalent.
e For every G-module M, integer q, and ¢ € ﬁq(G, M), the
minimum of the set {|G : H| | H < G with c € ker Res$}
coincides with its greatest common divisor.

e The group G is an evolving group.




EVOLVING GROUPS

LWhy do we study evolving groups?

A group G is supersolvable if there exists a chain
1=Ny <Ny <...<N;= G such that

e N;< G

e Niy1/Njis cyclic.
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EVOLVING GROUPS
LWhy do we study evolving groups?

A group G is supersolvable if there exists a chain
1=~Nyg <Ny <...<N;= G such that

e N;<1 G
e Niy1/Njis cyclic.

Let G be an evolving group. Then G is supersolvable and it is
isomorphic to the semidirect product of two nilpotent groups of

coprime orders.
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EVOLVING GROUPS

L Another characterization

Let P={p||G|:p prime}.
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EVOLVING GROUPS

L Another characterization

Let P={p | |G| :p prime}. A collection (Sp)pecp, with
Sp € Syl,(G), is a Sylow family of G if Sq normalizes S, whenever

qg<p.
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EVOLVING GROUPS
L Another characterization

Let P={p | |G| :p prime}. A collection (Sp)pecp, with
Sp € Syl,(G), is a Sylow family of G if Sq normalizes S, whenever
q<p.

Example: The group G = Fas x (u3(Fas) x Aut(Fos)) has a Sylow
family.




EVOLVING GROUPS
L Another characterization

Let P={p | |G| :p prime}. A collection (Sp)pecp, with
Sp € Syl,(G), is a Sylow family of G if Sq normalizes S, whenever
q<p.

Example: The group G = Fas x (u3(Fas) x Aut(Fos)) has a Sylow
family.

Lemma

o Every supersolvable group has a Sylow family.

o Sylow families are unique up to conjugation.




EVOLVING GROUPS

L Another characterization

Assume G has a Sylow family (Sq)qep and let T, = (Sq | g < p);
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EVOLVING GROUPS
L Another characterization

Assume G has a Sylow family (Sq)qep and let T, = (Sq | g < p);
then G has the correction property if for every p € P and for every
| < S, there exists a € S, such that T, < Ng(ala™?).




EVOLVING GROUPS
L Another characterization

Assume G has a Sylow family (Sq)qep and let T, = (Sq | g < p);
then G has the correction property if for every p € P and for every
| < S, there exists a € S, such that T, < Ng(ala™?).

The following are equivalent.

e The group G is an evolving group.

e The group G is a supersolvable group with the correction
property.




EVOLVING GROUPS
L The structure of an evolving group

Let G be a group with a Sylow family (Sp)pep.
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EVOLVING GROUPS
L The structure of an evolving group

Let G be a group with a Sylow family (Sp)pep. The graph
associated to G is the directed graph G = (V, A), where V =P
and (q,p) € Aif and only if g < p and Sg — Aut(S,/P(Sp)) is
non-trivial.




EVOLVING GROUPS
L The structure of an evolving group

Let G be a group with a Sylow family (Sp)pep. The graph
associated to G is the directed graph G = (V, A), where V =P
and (q,p) € Aif and only if g < p and Sg — Aut(S,/P(Sp)) is
non-trivial.

Lemma

If G is an evolving group and p € P, then T, acts on S,/ ®(Sp) by
scalar multiplications.




EVOLVING GROUPS

L The structure of an evolving group

Example: Graph associated to G = Fas x (u3(Fas) x Aut(Fas)).
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EVOLVING GROUPS
L The structure of an evolving group

Call S the set of source vertices, T the set of target vertices and Z

the set of isolated vertices of the graph.
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EVOLVING GROUPS
L The structure of an evolving group

Call S the set of source vertices, T the set of target vertices and Z
the set of isolated vertices of the graph.

Theorem

Let G be an evolving group and let (Sp)pep be a Sylow family.
ThenSNT =@ and

G:(Hspxﬂsp)xﬂsp.
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EVOLVING GROUPS
LA non-trivial example

Let p > 2 be a prime number. Then the group

h u v
G = 01 w u,v,w € Fp, h e T,
0 0 ht
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EVOLVING GROUPS
LA non-trivial example

Let p > 2 be a prime number. Then the group

h u v
G = 01 w u,v,w € Fp, h e T,
0 0 ht

is an evolving group.
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EVOLVING GROUPS
LA non-trivial example

Let p > 2 be a prime number. Then the group

h u v
G = 01 w Cu,v,w €Fp hel,
0 0 ht

is an evolving group.
By direct computation, one gets G = Gy x Fj, = 5, x Tp;




EVOLVING GROUPS
LA non-trivial example

Let p > 2 be a prime number. Then the group

h u v
G = 01 w Cu,v,w €Fp hel,
0 0 ht

is an evolving group.
By direct computation, one gets G = Gy x [, = S, x Tp; it follows
that G has a Sylow family and that G has the correction property.




EVOLVING GROUPS

LA non-trivial example

The subgroup

u v
W= 01 0 cu,vely, hel,
0 0

of G is not evolving.
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EVOLVING GROUPS

LA non-trivial example

The subgroup

u v
W= 01 0 u,velFy, hel,
0 0

of G is not evolving.

Indeed, if we write W = Wy x [, then I, does not act on Wy by

scalar multiplications.
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EVOLVING GROUPS

Thank you.
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