INTENSE AUTOMORPHISMS OF FINITE GROUPS

Mima Stanojkovski

Topics on Groups and their Representations Gargnano sul Garda, 11th October 2017

イロト 不得 トイヨ トイヨ ト シック

Joint work with

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Hendrik Lenstra (UL)

(ロ)、(部)、(E)、(E)、 E

Andrea Lucchini (UniPD)

★ロト ★課 ト ★注 ト ★注 ト 一注

Jon González Sánchez (EHU)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

э

Intense automorphisms of groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intense automorphisms

Let G be a finite group. An automorphism α of G is **intense** if for all $H \leq G$ there exists $g \in G$ such that $\alpha(H) = gHg^{-1}$. Write $\alpha \in Int(G)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intense automorphisms

Let G be a finite group. An automorphism α of G is **intense** if for all $H \leq G$ there exists $g \in G$ such that $\alpha(H) = gHg^{-1}$. Write $\alpha \in Int(G)$.

Motivation: Intense automorphisms appear naturally as solutions to a certain cohomological problem. They (surprisingly!) give rise to a very rich theory.

ション ふゆ アメリア メリア しょうくう

Intense automorphisms

Let G be a finite group. An automorphism α of G is **intense** if for all $H \leq G$ there exists $g \in G$ such that $\alpha(H) = gHg^{-1}$. Write $\alpha \in Int(G)$.

Motivation: Intense automorphisms appear naturally as solutions to a certain cohomological problem. They (surprisingly!) give rise to a very rich theory.

ション ふゆ マ キャット ビー シンクション

Example:

- Every automorphism of a cyclic group is intense.
- Inner automorphisms are intense.
- Power automorphisms are intense.

Intensity

Let p be a prime number and let G be a finite p-group.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Intensity

Let p be a prime number and let G be a finite p-group. Then $\operatorname{Int}(G)\cong P
times C$

イロト 不得 トイヨ トイヨ ト シック

where

- *P* is a *p*-group.
- C is a subgroup of \mathbb{F}_p^* .

Intensity

Let p be a prime number and let G be a finite p-group. Then $Int(G) \cong P \rtimes C$

イロト 不得 トイヨ トイヨ ト シック

where

- *P* is a *p*-group.
- C is a subgroup of \mathbb{F}_p^* .

The intensity of G is int(G) = |C|.

The problem

Can we classify all *p*-groups *G* satisfying int(G) > 1?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The problem

Can we classify all *p*-groups *G* satisfying int(G) > 1?

YES!

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Let p be a prime number and let G be a finite p-group. Let N be a normal subgroup.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let p be a prime number and let G be a finite p-group. Let N be a normal subgroup. Then we have natural maps

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. $Int(G) \rightarrow Aut(N)$,
- 2. $\operatorname{Int}(G) \to \operatorname{Int}(G/N)$,

Let p be a prime number and let G be a finite p-group. Let N be a normal subgroup. Then we have natural maps

ション ふゆ アメリア メリア しょうくう

- 1. $Int(G) \rightarrow Aut(N)$,
- 2. $\operatorname{Int}(G) \to \operatorname{Int}(G/N)$,

and with a little extra work

3. if $N \neq G$, then int(G) divides int(G/N).

Let p be a prime number and let G be a finite p-group. Let N be a normal subgroup. Then we have natural maps

- 1. $Int(G) \rightarrow Aut(N)$,
- 2. $\operatorname{Int}(G) \to \operatorname{Int}(G/N)$,

and with a little extra work

3. if $N \neq G$, then int(G) divides int(G/N).

Since we want G to have int(G) > 1, we can forget about p = 2!!

Abelian groups

Let p be a prime number and let \mathbb{Z}_p denote the ring of p-adic integers. Let G be a finite abelian p-group.

イロト 不得 トイヨ トイヨ ト シック

Abelian groups

Let p be a prime number and let \mathbb{Z}_p denote the ring of p-adic integers. Let G be a finite abelian p-group. Then

・ロト ・ 一下 ・ ト ・ 日 ・ ・

э

Abelian groups

Let p be a prime number and let \mathbb{Z}_p denote the ring of p-adic integers. Let G be a finite abelian p-group. Then

Theorem

Let p be a prime number and let $G \neq 1$ be a finite abelian p-group. Then int(G) = p - 1.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

Let p be an odd prime and let G be an extraspecial group of exponent p.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let p be an odd prime and let G be an extraspecial group of exponent p. Then, for $\lambda \in \mathbb{Z}_p^*$, we have

▲ロト ▲■ト ▲ヨト ▲ヨト ニヨー のへで

Let p be an odd prime and let G be an extraspecial group of exponent p. Then, for $\lambda \in \mathbb{Z}_p^*$, we have

Theorem

Let p be a prime number and let G be a finite p-group of class 2. Then int(G) > 1 if and only if G is extraspecial of exponent p (in which case int(G) = p - 1).

Theorem

Let p be an odd prime and let G be a finite p-group of class 3. Then the following are equivalent.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへぐ

- 1. One has int(G) > 1.
- 2. One has $|G:\gamma_2(G)| = p^2$.

Theorem

Let p be an odd prime and let G be a finite p-group of class 3. Then the following are equivalent.

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ ● のの⊙

- 1. One has int(G) > 1.
- 2. One has $|G: \gamma_2(G)| = p^2$.
- 3. One has int(G) = 2.

Theorem

Let p be an odd prime and let G be a finite p-group of class 3. Then the following are equivalent.

- 1. One has int(G) > 1.
- 2. One has $|G:\gamma_2(G)| = p^2$.
- 3. One has int(G) = 2.

Corollary

Let p be a prime number and let $c \in \mathbb{Z}_{\geq 3}$. Then there exist, up to isomorphism, only finitely many finite p-groups of class c and intensity greater than 1.

Let p be a prime number and let G be a finite p-group of class $c \ge 3$. Define

 $w_i = \log_p |\gamma_i(G) : \gamma_{i+1}(G)|.$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Let p be a prime number and let G be a finite p-group of class $c \ge 3$. Define

$$w_i = \log_p |\gamma_i(G) : \gamma_{i+1}(G)|.$$

イロト 不得 トイヨ トイヨ ト シック

If $1 \neq \alpha \in Int(G)$ has order coprime to p, then the following hold.

Let p be a prime number and let G be a finite p-group of class $c \ge 3$. Define

$$w_i = \log_p |\gamma_i(G) : \gamma_{i+1}(G)|.$$

イロト 不得 トイヨ トイヨ ト シック

If $1 \neq \alpha \in Int(G)$ has order coprime to p, then the following hold.

•
$$|\alpha| = 2$$
 and $int(G) = 2$.

Let p be a prime number and let G be a finite p-group of class $c \ge 3$. Define

$$w_i = \log_p |\gamma_i(G) : \gamma_{i+1}(G)|.$$

If $1 \neq \alpha \in Int(G)$ has order coprime to p, then the following hold.

•
$$|\alpha|=2$$
 and $int(G)=2$.

• $\gamma_i(G)/\gamma_{i+1}(G)$ is elementary abelian and $\alpha \equiv (-1)^i$ on it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let p be a prime number and let G be a finite p-group of class $c \ge 3$. Define

$$w_i = \log_p |\gamma_i(G) : \gamma_{i+1}(G)|.$$

If $1 \neq \alpha \in Int(G)$ has order coprime to p, then the following hold.

•
$$|lpha|=2$$
 and $\mathsf{int}(G)=2$.

- $\gamma_i(G)/\gamma_{i+1}(G)$ is elementary abelian and $lpha\equiv (-1)^i$ on it.
- $(w_i)_{i\geq 1} = (2, 1, 2, 1, \dots, 2, 1, w, 0, 0, 0, \dots)$ with $w \in \{0, 1, 2\}$.

Normal subgroups structure

 $f = 0 \qquad \qquad f = 1 \qquad \qquad f = 2$

◆□ > ◆■ > ◆目 > ◆目 > ○ ● ○ ○ ○ ○

Pro-p-help?

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

Pro-p-help

Let p > 3 be a prime number and let $t \in \mathbb{Z}_p$ satisfy $(\frac{t}{p}) = -1$. Set

$$\mathbf{A}_{\boldsymbol{\rho}} = \mathbb{Z}_{\boldsymbol{\rho}} + \mathbb{Z}_{\boldsymbol{\rho}}\mathbf{i} + \mathbb{Z}_{\boldsymbol{\rho}}\mathbf{j} + \mathbb{Z}_{\boldsymbol{\rho}}\mathbf{i}\mathbf{j}$$

with defining relations $i^2 = t$, $j^2 = p$, and ji = -ij. Then A_p is a non-commutative local ring such that $A_p/jA_p \cong \mathbb{F}_{p^2}$. The involution $\overline{\cdot} : A_p \to A_p$ is defined by

$$a = s + ti + uj + vij \mapsto \overline{a} = s - ti - uj - vij.$$

Let $G = \{a \in A_p^* \mid a\overline{a} = 1 \text{ and } a \equiv 1 \text{ mod } jA_p\}$ and, for all $a \in G$, define $\alpha(a) = iai^{-1}$.

ション ふゆ アメリア メリア しょうくう

Pro-p-help

Let p > 3 be a prime number and let $t \in \mathbb{Z}_p$ satisfy $(\frac{t}{p}) = -1$. Set

$$\mathbf{A}_{\boldsymbol{\rho}} = \mathbb{Z}_{\boldsymbol{\rho}} + \mathbb{Z}_{\boldsymbol{\rho}}\mathbf{i} + \mathbb{Z}_{\boldsymbol{\rho}}\mathbf{j} + \mathbb{Z}_{\boldsymbol{\rho}}\mathbf{i}\mathbf{j}$$

with defining relations $i^2 = t$, $j^2 = p$, and ji = -ij. Then A_p is a non-commutative local ring such that $A_p/jA_p \cong \mathbb{F}_{p^2}$. The involution $\overline{\cdot} : A_p \to A_p$ is defined by

$$a = s + ti + uj + vij \mapsto \overline{a} = s - ti - uj - vij.$$

Let $G = \{a \in A_p^* \mid a\overline{a} = 1 \text{ and } a \equiv 1 \text{ mod } jA_p\}$ and, for all $a \in G$, define $\alpha(a) = iai^{-1}$.

Theorem

G is a non-nilpotent pro-p-group and α induces an intense automorphism of order 2 on every non-trivial discrete quotient of G.

Pro-p-help

Let p > 3 be a prime number and let $t \in \mathbb{Z}_p$ satisfy $(\frac{t}{p}) = -1$. Set

$$\mathbf{A}_{\boldsymbol{\rho}} = \mathbb{Z}_{\boldsymbol{\rho}} + \mathbb{Z}_{\boldsymbol{\rho}}\mathbf{i} + \mathbb{Z}_{\boldsymbol{\rho}}\mathbf{j} + \mathbb{Z}_{\boldsymbol{\rho}}\mathbf{ij}$$

with defining relations $i^2 = t$, $j^2 = p$, and ji = -ij. Then A_p is a non-commutative local ring such that $A_p/jA_p \cong \mathbb{F}_{p^2}$. The involution $\overline{\cdot} : A_p \to A_p$ is defined by

$$a = s + ti + uj + vij \mapsto \overline{a} = s - ti - uj - vij.$$

Let $G = \{a \in A_p^* \mid a\overline{a} = 1 \text{ and } a \equiv 1 \text{ mod } jA_p\}$ and, for all $a \in G$, define $\alpha(a) = iai^{-1}$.

Theorem

G is a non-nilpotent pro-p-group and α induces an intense automorphism of order 2 on every non-trivial discrete quotient of G. Moreover, G is "unique with this property".

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Lemma

Let p be a prime number and let G be a finite p-group of class at least 4. If int(G) > 1, then p-th powering induces a bijection $G/\gamma_2(G) \rightarrow \gamma_3(G)/\gamma_4(G)$.

ション ふゆ マ キャット ビー シンクション

Lemma

Let p be a prime number and let G be a finite p-group of class at least 4. If int(G) > 1, then p-th powering induces a bijection $G/\gamma_2(G) \rightarrow \gamma_3(G)/\gamma_4(G)$.

We define a κ -group to be a finite 3-group G with $|G:\gamma_2(G)| = 9$ such that cubing induces a bijection $G/\gamma_2(G) \rightarrow \gamma_3(G)/\gamma_4(G)$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

Lemma

Let p be a prime number and let G be a finite p-group of class at least 4. If int(G) > 1, then p-th powering induces a bijection $G/\gamma_2(G) \rightarrow \gamma_3(G)/\gamma_4(G)$.

We define a κ -group to be a finite 3-group G with $|G:\gamma_2(G)| = 9$ such that cubing induces a bijection $G/\gamma_2(G) \rightarrow \gamma_3(G)/\gamma_4(G)$.

ション ふゆ マ キャット ビー シンクション

Theorem

There is, up to isomorphism, a unique κ -group of class 3.

3-groups are really special

Let $R = \mathbb{F}_3[\epsilon]$ be of cardinality 9, with $\epsilon^2 = 0$. Set

$$\Delta = R + Ri + Rj + Rij$$

with defining relations $i^2=j^2=\epsilon$ and ji=-ij. The standard involution is

$$a = s + ti + uj + vij \mapsto \overline{a} = s - ti - uj - vij.$$

Write $\mathfrak{m} = \Delta i + \Delta j$ and define MC(3) = { $x \in 1 + \mathfrak{m} : \overline{x} = x^{-1}$ }.

イロト 不得 トイヨ トイヨ ト シック

3-groups are really special

Let $R = \mathbb{F}_3[\epsilon]$ be of cardinality 9, with $\epsilon^2 = 0$. Set

$$\Delta = R + Ri + Rj + Rij$$

with defining relations $i^2=j^2=\epsilon$ and ji=-ij. The standard involution is

$$a = s + ti + uj + vij \mapsto \overline{a} = s - ti - uj - vij.$$

Write $\mathfrak{m} = \Delta i + \Delta j$ and define MC(3) = { $x \in 1 + \mathfrak{m} : \overline{x} = x^{-1}$ }. The group MC(3) has order 729, class 4, and it is a κ -group.

・ロト ・ 中下・ モー・ ・ モー・ うくつ

3-groups are really special

Let $R = \mathbb{F}_3[\epsilon]$ be of cardinality 9, with $\epsilon^2 = 0$. Set

$$\Delta = R + Ri + Rj + Rij$$

with defining relations $i^2=j^2=\epsilon$ and ji=-ij. The standard involution is

$$a = s + ti + uj + vij \mapsto \overline{a} = s - ti - uj - vij.$$

Write $\mathfrak{m} = \Delta i + \Delta j$ and define MC(3) = { $x \in 1 + \mathfrak{m} : \overline{x} = x^{-1}$ }. The group MC(3) has order 729, class 4, and it is a κ -group.

Theorem

Let G be a finite 3-group of class at least 4. Then int(G) > 1 if and only if $G \cong MC(3)$.

The actual classification

Intensity			
c p	2	3	≥ 5
0		1	
1			p-1
2			p-1 if G extraspecial of exponent p;
		100	1 otherwise
3			2 if $ G:G_2 = p^2$;
		1 otherwise	
4	1	2 if $G \cong MC(3)$;	2 if G is a p -obelisk with a concrete automorphism;
		1 otherwise	1 otherwise
			2 if G is a p-obelisk with $ G_5 = p$, $\Phi(C_G(G_4)) = G_3$,
			and G has a concrete automorphism;
≥ 5		1	2 if G is framed p-obelisk with $ G_5:G_6 = p^2$
			and G has a concrete automorphism;
			1 in all other cases

▲ロト ▲■ト ▲ヨト ▲ヨト ニヨー のへで