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Intense automorphisms

Let G be a �nite group. An automorphism α of G is intense if

for all H ≤ G there exists g ∈ G such that α(H) = gHg−1.

Write α ∈ Int(G ).

Motivation: Intense automorphisms appear naturally as solutions

to a certain cohomological problem. They (surprisingly!) give rise

to a very rich theory.

Example:

• Every automorphism of a cyclic group is intense.

• Inner automorphisms are intense.

• Power automorphisms are intense.
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Let p be a prime number and let G be a �nite p-group.

Then

Int(G ) ∼= P o C

where

• P is a p-group.

• C is a subgroup of F∗
p.

The intensity of G is int(G ) = |C |.
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Strategy

Let p be a prime number and let G be a �nite p-group. Let N be a

normal subgroup.

Then we have natural maps

1. Int(G )→ Aut(N),

2. Int(G )→ Int(G/N),

and with a little extra work

3. if N 6= G , then int(G ) divides int(G/N).

Since we want G to have int(G ) > 1, we can forget about p = 2!!
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Abelian groups

Let p be a prime number and let Zp denote the ring of p-adic

integers. Let G be a �nite abelian p-group.

Then

Z∗
p

- Aut(G )

F∗
p

-

-

Int(G )

Theorem
Let p be a prime number and let G 6= 1 be a �nite abelian p-group.

Then int(G ) = p − 1.
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exponent p.

Then, for λ ∈ Z∗
p, we have
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Let p be a prime number and let G be a �nite p-group of class 2.

Then int(G ) > 1 if and only if G is extraspecial of exponent p (in

which case int(G ) = p − 1).
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Theorem
Let p be an odd prime and let G be a �nite p-group of class 3.

Then the following are equivalent.

1. One has int(G ) > 1.

2. One has |G : γ2(G )| = p2.

3. One has int(G ) = 2.

Corollary

Let p be a prime number and let c ∈ Z≥3. Then there exist, up to

isomorphism, only �nitely many �nite p-groups of class c and

intensity greater than 1.
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Necessary conditions

Let p be a prime number and let G be a �nite p-group of class

c ≥ 3. De�ne

wi = logp |γi (G ) : γi+1(G )|.

If 1 6= α ∈ Int(G ) has order coprime to p, then the following hold.

• |α| = 2 and int(G ) = 2.

• γi (G )/γi+1(G ) is elementary abelian and α ≡ (−1)i on it.

• (wi )i≥1 = (2, 1, 2, 1, . . . , 2, 1,w , 0, 0, 0, . . .) with w ∈ {0, 1, 2}.
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Pro-p-help

Let p > 3 be a prime number and let t ∈ Zp satisfy ( t
p

) = −1. Set

Ap = Zp + Zpi + Zpj + Zpij

with de�ning relations i2 = t, j2 = p, and ji = −ij. Then Ap is a

non-commutative local ring such that Ap/jAp
∼= Fp2 . The

involution · : Ap → Ap is de�ned by

a = s + ti + uj + v ij 7→ a = s − ti− uj− v ij.

Let G = {a ∈ A∗
p | aa = 1 and a ≡ 1 mod jAp} and, for all a ∈ G ,

de�ne α(a) = iai−1.

Theorem
G is a non-nilpotent pro-p-group and α induces an intense

automorphism of order 2 on every non-trivial discrete quotient of G .

Moreover, G is �unique with this property�.
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Are 3-groups really special?

Lemma
Let p be a prime number and let G be a �nite p-group of class at

least 4. If int(G ) > 1, then p-th powering induces a bijection

G/γ2(G )→ γ3(G )/γ4(G ).

We de�ne a κ-group to be a �nite 3-group G with |G : γ2(G )| = 9

such that cubing induces a bijection G/γ2(G )→ γ3(G )/γ4(G ).

Theorem
There is, up to isomorphism, a unique κ-group of class 3.
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3-groups are really special

Let R = F3[ε] be of cardinality 9, with ε2 = 0. Set

∆ = R + R i + Rj + R ij

with de�ning relations i2 = j2 = ε and ji = −ij. The standard

involution is

a = s + ti + uj + v ij 7→ a = s − ti− uj− v ij.

Write m = ∆i + ∆j and de�ne MC(3) = {x ∈ 1 + m : x = x−1}.

The group MC(3) has order 729, class 4, and it is a κ-group.

Theorem
Let G be a �nite 3-group of class at least 4. Then int(G ) > 1 if

and only if G ∼= MC(3).
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The actual classi�cation




