Lecture Notes

Introduction to Stochastic Analysis

Michael Röckner

Universität Bielefeld
This script has been written by Matthias Stephan on behalf of Prof. M. Röckner and has been revised by Dr. Judith Dohmann. Please note that despite several checks it may still contain mistakes and, therefore, there is no guarantee of correctness. A report of any kind of errors found in these notes is appreciated (mstephan@math.uni-bielefeld.de).
Inhaltsverzeichnis

1. **Introduction to Pathwise Itô-Calculus** .. 1
 1.1. Preparation .. 1
 1.1.1. Quadratic Variation of Brownian Motion .. 2
 1.2. Quadratic Variation and Itô’s Formula .. 2
 1.2.1. Supplement on the Quadratic Variation .. 6
 1.3. d-Dimensional Itô-Formula and Covariation .. 7
 1.3.1. Important special cases .. 13
 1.4. Itô-Integrals as (Local) Martingales .. 17
 1.5. Levy’s Characterization of Brownian Motion .. 22

2. **(Semi-)Martingales and Stochastic Integration** ... 25
 2.1. Review of Some Facts from Martingale Theory .. 25
 2.2. Quadratic Variation and Covariation for Continuous Local Martingales 27
 2.3. Construction of stochastic integrals on Hilbert space 34
 2.4. Characterization of \(H \cdot M \) in \(M^2 \) ... 42
 2.4.1. Orthogonality in \(M^2 \) .. 44
 2.5. Itô’s Representation Theorem ... 47

3. **Markov Processes** .. 55
 3.1. Markov Processes and Semigroups ... 55
 3.2. The Strong Markov Property ... 58
 3.3. Application to Brownian Motion ... 60
 3.4. Sojourn Time .. 63

4. **Girsanov Transformation** .. 67
 4.1. Problem Outline \((d = 1)\) ... 67
 4.2. The General Girsanov Transformation ... 69
 4.3. Girsanov Transform with Brownian Motion ... 71
 4.4. Novikov condition ... 80
 4.5. Integration by Parts on Wiener Space ... 83

A. **Time Transformation** .. 89
1. Introduction to Pathwise Itô-Calculus

1.1. Preparation

Definition 1.1.1. \(X : [0, \infty] \to \mathbb{R} \) has bounded variation, if for all \(t \geq 0 \)

\[
\text{var}_t X := \sup_{\tau_n} \sum_{t_i^{(n)} \leq t} \left| X \left(t_{i+1}^{(n)} \right) - X \left(t_i^{(n)} \right) \right| < \infty, \tag{1.1.1}
\]

where \(\tau_n \) is a partition \(0 = t_0^{(n)} < t_1^{(n)} < \ldots < t_N^{(n)} < \infty \).

Notation: Since in Stochastics a process \(X \) also depends on \(\omega \), we write \(X_t \) and \(X_t(\omega) \) instead of \(X(t) \) and \(X(t)(\omega) \) respectively.

As a reference to this field see [dB03]. Note that \(\text{var}_t X \) defined by (1.1.1) is independent of the choice of \((\tau_n)_{n \in \mathbb{N}} \).

Definition 1.1.2. Suppose \(X \) to be right-continuous and of bounded variation. Let \(f \in C(\mathbb{R}) \) and \((\tau_n)_{n \in \mathbb{N}} \) be a sequence of partitions, whose mesh

\[
|\tau_n| := \sup_{1 \leq i \leq N_n} \left(t_{i+1}^{(n)} - t_i^{(n)} \right)
\]

converges to zero as \(n \to \infty \) and \(t_{N_n} \to \infty \). Then, since \(X \) is of bounded variation, there exists the Lebesgue-Stieltjes-Integral defined by

\[
\int_0^t f_s \, dX_s := \lim_{n \to \infty} \sum_{t_i^{(n)} \leq s \leq t_{i+1}^{(n)}} f_{t_i^{(n)}} \cdot \left(X_{s}^{(n)} - X_{t_i^{(n)}} \right). \tag{1.1.2}
\]

Remark 1.1.3. Note that for continuous \(X \) this definition is independent of the choice of \((\tau_n)_{n \in \mathbb{N}} \):

\[
\left| \lim_{n \to \infty} \sum_{t_i^{(n)} \leq s} f_{t_i^{(n)}} \left(X_{s}^{(n)} - X_{t_i^{(n)}} \right) - \lim_{n \to \infty} \sum_{s_i^{(n)} \leq s} f_{s_i^{(n)}} \left(X_{s}^{(n)} - X_{s_i^{(n)}} \right) \right|
\]

\[
\leq \sup_{s \in [0,t]} |f_s| \lim_{n \to \infty} \sum_{t_i^{(n)} \leq s} \sum_{s_i^{(n)} \leq t} \left| (X_{s}^{(n)} - X_{t_i^{(n)}}) - (X_{s_i^{(n)}} - X_{s_i^{(n)}}) \right|
\]

\[
= \sup_{s \in [0,t]} |f_s| \cdot |(X_t - X_0) - (X_t - X_0)| = 0.
\]
1. Introduction to Pathwise Itô-Calculus

1.1.1. Quadratic Variation of Brownian Motion

We know (cf. [Röc06]) that a typical path of Brownian motion X on \mathbb{R}^1 is of unbounded variation, since for its quadratic variation $\langle X \rangle_t = t$ (see 1.1.4(i) below). Nonetheless, one wants to define

$$\int_0^t f_s \, dX_s$$

for a typical path of Brownian motion X. More generally, we want to do this for every continuous path with continuous quadratic variation $t \mapsto \langle X \rangle_t$.

$$(X_t)_{t \geq 0}$$

is a (continuous) \mathbb{R}-valued Brownian motion on (Ω, \mathcal{F}, P) if

i. The increments $X_t - X_s$ are independent and $N(0, t - s)$ distributed ($t > s$).

ii. $t \mapsto X_t(\omega)$ is continuous for all $\omega \in \Omega$.

Theorem 1.1.4. Let $(X_t)_{t \geq 0}$ be a (continuous) Brownian motion and $(\tau_n)_{n \in \mathbb{N}}$ a sequence of subdivisions with $|\tau_n| \xrightarrow[n \to \infty]{} 0$, $\tau_n \subset \tau_{n+1}$, $t^{(n)}_N \xrightarrow[n \to \infty]{} \infty$. Then, for all $t \geq 0$

i. $\sum_{i(n) \leq \tau_n} \left(X_{i+1} - X_i \right)^2 \xrightarrow[n \to \infty]{} t$ P-a.s.

(Here the zero sets could depend on t.)

ii. Moreover,

$$P\left(\sum_{i(n) \leq \tau_n} \left(X_{i+1} - X_i \right)^2 \xrightarrow[n \to \infty]{} t, \forall t \geq 0 \right) = 1.$$

Proof.

i. See [Röc06, Part II, Chapter III, Proposition 4.3].

ii. Exercise (“sandwich argument”, notice that zero set in (i) depends on t).

1.2. Quadratic Variation and Itô’s Formula

Fix a continuous and real-valued function $t \mapsto X_t$ on $[0, \infty]$ (in short $(X_t)_{t \geq 0}$) with an existing sequence of subdivisions (τ_n) with $|\tau_n| \xrightarrow[n \to \infty]{} 0$ and $t^{(n)}_N \xrightarrow[n \to \infty]{} \infty$ such that the quadratic variation (along (τ_n))

$$\langle X \rangle_t := \lim_{n \to \infty} \sum_{i(n) \leq \tau_n} \left(X_{i+1} - X_i \right)^2, \quad t \geq 0, \quad \text{(1.2.3)}$$

exists for all $t \geq 0$ and such that $t \mapsto \langle X \rangle_t$ is continuous on $[0, \infty)$. Note that $\langle X \rangle_t$ in (1.2.3) could depend upon the choice of $(\tau_n)_{n \geq 1}$ in contrary to the limit in (1.1.2) (cf. [RY99, (2.3)-(2.5) p. 27/28]). By definition it is obvious that $t \mapsto \langle X \rangle_t$ is increasing.

Example: For a typical path of a Brownian motion X and $\tau_n \subset \tau_{n+1}$ we have $\langle X \rangle_t = t$ for all t.

2
1.2. Quadratic Variation and Itô’s Formula

Remark 1.2.1.

i. If \((X_t)_{t \geq 0}\) is of bounded variation, then

\[
\sum_{t_i^{(n)} \leq t} \left(X_{t_i^{(n)}} - X_{t_{i-1}^{(n)}} \right)^2 \leq \max_{t_i^{(n)} \leq t} \left| X_{t_i^{(n)}} - X_{t_{i-1}^{(n)}} \right| \sum_{t_i^{(n)} \leq t} \left| X_{t_i^{(n)}} - X_{t_{i-1}^{(n)}} \right| \to 0, \\
\text{uniformly for large } n
\]

hence, \(\langle X \rangle \equiv 0\).

Therefore, \(\langle X \rangle \neq 0\) implies that \((X_t)_{t \geq 0}\) is not of bounded variation and the Lebesgue-Stieltjes-Integral cannot be defined in the usual way.

ii. If \(t \mapsto \langle X \rangle_t\) is increasing, continuous and \(\langle X \rangle_0 = 0\), hence, \(t \mapsto \langle X \rangle_t\) is a distribution function of a measure \(\mu\) (i.e. \(d\mu = d\langle X \rangle_t\) on \([0, \infty), B([0, \infty])\)), then (1.2.3) is equivalent to: The distribution function of

\[
\mu_n := \sum_{t_i^{(n)} \leq t} \left(X_{t_i^{(n)}} - X_{t_{i-1}^{(n)}} \right)^2 \delta_{t_i}
\]

converges pointwise to

\[
F(t) := \mu(]-\infty, t]) = \int 1_{]-\infty, t]} \, d\mu.
\]

But, since for continuous \(\langle X \rangle_t\)

\[
\mu(\{t\}) = \lim_{n \to \infty} \mu(]-\infty, t]) - \mu(]-\infty, t - \frac{1}{n}] = \lim_{n \to \infty} \left(\langle X \rangle_t - \langle X \rangle_{t - \frac{1}{n}} \right) = 0,
\]

we have that \(\mu_n \to \mu\) weakly by Portemanteau.

iii. Note that if \(X\) is an increasing function, then \(X\) is always of bounded variation:

\[
\text{var}_t X = \sup_{\tau_n} \sum_{t_i^{(n)} \leq t} \left| X_{t_i^{(n)}} - X_{t_{i-1}^{(n)}} \right| = \sup_{\tau_n} \sum_{t_i^{(n)} \leq t} \left(X_{t_i^{(n)}} - X_{t_{i-1}^{(n)}} \right) = X_t - X_0 < \infty.
\]

Therefore, we can define the Itô-integral with respect to \(\langle X \rangle\) as a Lebesgue-Stieltjes-Integral.

Lemma 1.2.2 (Calculating integrals with respect to \(d\langle X \rangle_s\)). Let \(g \in C([0, \infty))\). Then

\[
\sum_{t_i^{(n)} \leq t} g(t_i) \left(X_{t_i^{(n)}} - X_{t_{i-1}^{(n)}} \right)^2 \to \int_0^t g(s) \, d\langle X \rangle_s.
\]

Proof. The left hand side is equal to \(\int g1_{[0,t]} \, d\mu_n\), whereas the right hand side equals \(\int g1_{[0,t]} \, d\mu\). But the integrand \(g1_{[0,t]}\) is \(\mu\)-a.e. continuous and bounded. Hence, convergence follows by the Portemanteau theorem and Remark 1.2.1 (ii).

Theorem 1.2.3 (Pathwise Itô-formula): Let \(F \in C^2(\mathbb{R})\). Then for all \(t \geq 0\) the Itô-Formula is given by

\[
F(X_t) - F(X_0) = \int_0^t F'(X_s) \, dX_s + \frac{1}{2} \int_0^t F''(X_s) \, d\langle X \rangle_s,
\]

(1.2.4)
1. Introduction to Pathwise Itô-Calculus

where

$$\int_0^t F'(X_s) \, dX_s := \lim_{n \to \infty} \sum_{\frac{i}{n} \leq t, \frac{i}{n} < t} F' \left(X_{\frac{i}{n}} \right) \left(X_{\frac{i+1}{n}} - X_{\frac{i}{n}} \right).$$

\(\int_0^t F'(X_s) \, dX_s\) is called the (pathwise) Itô-Integral and depends on \((\tau_n)_{n \in \mathbb{N}}\).

Proof. Consider \((\tau_n)_{n \in \mathbb{N}}\) such that \(\langle X \rangle_t\) exists along \((\tau_n)_{n \in \mathbb{N}}\). We apply the Taylor formula on \(F\). Hence, for all \(n \in \mathbb{N}\) there exist \(\theta_i^{(n)} \in [0,1]\) such that

$$\sum_{\frac{i}{n} \leq \tau_n} F \left(X_{\frac{i}{n}} \right) - F \left(X_{\frac{i}{n}} \right) \xrightarrow{n \to \infty} F(X_t) - F(X_0)$$

$$= \sum_{\frac{i}{n} \leq \tau_n} F' \left(X_{\frac{i}{n}} \right) \left(X_{\frac{i+1}{n}} - X_{\frac{i}{n}} \right) + \sum_{\frac{i}{n} \leq \tau_n} \frac{1}{2} F'' \left(X_{\frac{i}{n}} \right) \left(X_{\frac{i+1}{n}} - X_{\frac{i}{n}} \right)^2$$

$$+ \sum_{\frac{i}{n} \leq \tau_n} \frac{1}{2} \left[F'' \left(X_{\frac{i}{n}} + \theta_i^{(n)} \left(X_{\frac{i+1}{n}} - X_{\frac{i}{n}} \right) \right) - F'' \left(X_{\frac{i}{n}} \right) \right] \cdot \left(X_{\frac{i+1}{n}} - X_{\frac{i}{n}} \right)^2$$

$$=: S$$

Since \(F''\) is locally uniformly continuous and \(X\) is uniformly continuous,

$$F'' \left(X_{\frac{i}{n}} + \theta_i^{(n)} \left(X_{\frac{i+1}{n}} - X_{\frac{i}{n}} \right) \right) - F'' \left(X_{\frac{i}{n}} \right) < \varepsilon$$

holds uniformly in \(i\) for \(n\) big enough. Therefore,

$$S \leq \varepsilon \sum_{\frac{i}{n} \leq \tau_n} \left(X_{\frac{i+1}{n}} - X_{\frac{i}{n}} \right)^2 \xrightarrow{n \to \infty} 0,$$

which finishes the proof. \(\square\)

Remark 1.2.4. If \(\langle X \rangle_t \equiv 0\) (e.g. \((X_t)_{t \geq 0}\) is of bounded variation), then we are in the classical case:

$$F(X_t) - F(X_0) = \int_0^t F'(X_s) \, dX_s$$

is an ordinary Lebesgue-Stieltjes-Integral. (If \(X_t = t\), it is the “Fundamental theorem of calculus”). We introduce a different notation to (1.2.4)

$$dF(X) = F'(X) \, dX + \frac{1}{2} F''(X) \, d\langle X \rangle$$

(1.2.5)

in contrast to the classical case (i.e. \(\langle X \rangle_t \equiv 0\), where

$$dF(X) = F'(X) \, dX.$$

(1.2.6)
Example 1.2.5. Consider the differential equation

\[dX^n = nX^{n-1} \, dX \quad \text{for } n \in \mathbb{N} \text{ fixed.} \]

If \((X) = 0 \), then a solution is \(X^n \).

If \((X) \neq 0 \), this is not a solution, since by Itô

\[dX^n = nX^{n-1} \, dX + \frac{1}{2} n(n-1)X^{n-2} \, d\langle X \rangle. \]

We would like to find a function \(h_n : \mathbb{R} \to \mathbb{R} \) such that

\[dh_n(X) = nh_{n-1}(X) \, dX \]

in the general case \((X) \neq 0 \). Later (cf. Example 1.3.12(ii) below), we shall see that the \(n \)-th Hermite polynomial \(h_n \) will provide a solution to this problem.

Remark 1.2.6. We know that, if \(f \in C^1(\mathbb{R}) \), then the Itô-integral

\[\int_0^t f(X_s) \, dX_s, \quad t \geq 0, \]

is (well-)defined. (Simply take \(F \) as a primitive of \(f \), i.e. \(F' = f \), and apply Itô formula.)

Definition 1.2.7 (\(\alpha \)-Integral). More generally we define for \(\alpha \in [0, 1] \) and \(f \in C^1(\mathbb{R}) \)

\[\alpha-\int_0^t f(X_s) \, dX_s := \lim_{n \to \infty} \sum_{\substack{t_{(n)}^i \leq t \leq t_{(n)}^{i+1} \in \mathbb{N} \cap t_{(n)}^i \leq t}} f(X_{t_{(n)}^i} + \alpha (X_{t_{(n)}^{i+1}} - X_{t_{(n)}^i}))) \cdot (X_{t_{(n)}^{i+1}} - X_{t_{(n)}^i}) \quad (1.2.7) \]

Claim: This limit exists and

\[\alpha-\int_0^t f(X_s) \, dX_s = \int_0^t f(X_s) \, dX_s + \alpha \int_0^t f'(X_s) \, d\langle X \rangle_s. \quad (1.2.8) \]

Proof. Exercise (Compare “\(\alpha \)-sum” with “0-sum” (Itô-Integral) and use the mean-value-theorem for \(f \)). \(\square \)

Special cases:

\(\alpha = 0 \): “Itô-integral”

\(\alpha = 1 \): “Backward Itô-integral”.

\(\alpha = \frac{1}{2} \): “Stratonovich-Fisk-Integral”

Notation: \(\oint : = \int \ldots \circ \, dX_s := \alpha-\int \ldots \, dX_s \). Hence

\[\oint_0^t f(X_s) \, dX_s \left(= \frac{1}{2} - \int_0^t f(X_s) \, dX_s \right) = \int_0^t f(X_s) \, dX_s + \frac{1}{2} \int_0^t f'(X_s) \, d\langle X \rangle_s \]

and we have by Itô the Stratonovich-formula

\[F(X_t) - F(X_0) = \oint_0^t F'(X_s) \, dX_s \left(= \int_0^t F'(X_s) \, dX_s \right). \quad (1.2.9) \]

Remark 1.2.8. i. An advantage of the Itô-integral is (see Section 1.4 below) that, if \(X \) is a martingale, then, again, \(\oint f(X_s) \, dX_s \) is a martingale.

ii. In the Stratonovich-formula one only has to deal with derivatives of first order and, therefore, it can be used for manifold-valued \(X \).
1. Introduction to Pathwise Itô-Calculus

1.2.1. Supplement on the Quadratic Variation

Lemma 1.2.9.

i. Let \(F \in C^1(\mathbb{R}) \). Then \(t \mapsto F(X_t) \) has (finite) quadratic variation (along fixed \((\tau_n)_{n \in \mathbb{N}} \))

\[
\langle F(X) \rangle_t = \int_0^t (F'(X_s))^2 \, d\langle X \rangle_s \quad \text{(automatically continuous in } t)\]

ii. If \(M_t := X_t + A_t, t \geq 0 \), for some \(t \mapsto A_t \) continuous and \(\langle A \rangle \equiv 0 \) (again \(\langle A \rangle \) calculated along \((\tau_n) \)), then

\[
\langle M \rangle_t = \langle X \rangle_t.
\]

iii. The Itô-integral \(t \mapsto \int_0^t f(X_s) \, dX_s =: M_t \) with \(f \in C^1(\mathbb{R}) \), has quadratic variation (along \((\tau_n) \)) and

\[
\langle M \rangle_t = \left\langle \int_0^t f(X_s) \, dX_s \right\rangle_t = \int_0^t f(X_s)^2 \, d\langle X \rangle_s.
\]

Proof.

i. We first apply Taylor up to order 1, then take the square on both sides and finally apply the Binomial formula to get

\[
\sum_{\substack{i, n \in \mathbb{N} \\text{ such that } \frac{n}{i} \leq t}} \left(F(X_{i+1}^{(n)}) - F(X_i^{(n)}) \right)^2
\]

\[
= \sum_{\substack{i, n \in \mathbb{N} \\text{ such that } \frac{n}{i} \leq t}} F'(X_i^{(n)})^2 \left(X_{i+1}^{(n)} - X_i^{(n)} \right)^2
\]

\[
\left(\sum_{\substack{i, n \in \mathbb{N} \\text{ such that } \frac{n}{i} \leq t}} \int_0^t (F'(X))^2 \, d\langle X \rangle_s \right. \text{ by Lemma 1.2.2}
\]

\[
+ \sum_{\substack{i, n \in \mathbb{N} \\text{ such that } \frac{n}{i} \leq t}} \left(F'(X_{i+1}^{(n)}) + \theta_{i+1}^{(n)} \left(X_{i+1}^{(n)} - X_i^{(n)} \right) \right) \left(F'(X_i^{(n)}) \right) \left(X_{i+1}^{(n)} - X_i^{(n)} \right)^2
\]

\[
< \varepsilon \text{ for large } n, \text{ since } F' \text{ is continuous on the compact set } \{ X_{i+1}^{(n)} \mid i \in \mathbb{N}, \varepsilon \} \text{ uniformly in } i
\]

\[
+ 2 \sum_{\substack{i, n \in \mathbb{N} \\text{ such that } \frac{n}{i} \leq t}} F'(X_i^{(n)}) \left(X_{i+1}^{(n)} - X_i^{(n)} \right)
\]

\[
\cdot \sum_{\substack{i, n \in \mathbb{N} \\text{ such that } \frac{n}{i} \leq t}} \left(F'(X_{i+1}^{(n)}) + \theta_i^{(n)} \left(X_{i+1}^{(n)} - X_i^{(n)} \right) \right) \left(X_{i+1}^{(n)} - X_i^{(n)} \right).
\]

Since the second term goes to zero as \(n \to \infty \), so, by Cauchy-Schwartz, the third does.
1.3. d-Dimensional Itô-Formula and Covariation

ii. \[
\sum_{t_i^{(n)} \leq t} \left(M_{t_i^{(n)}} - M_{t_i} \right)^2 = \sum_{t_i^{(n)} \leq t} \left(X_{t_i^{(n)}} - X_{t_i} \right)^2 + \sum_{t_i^{(n)} \leq t} \left(A_{t_i^{(n)}} - A_{t_i} \right)^2 + 2 \sum_{t_i^{(n)} \leq t} \left(X_{t_i^{(n)}} - X_{t_i} \right) \left(A_{t_i^{(n)}} - A_{t_i} \right) \text{n}\to\infty 0 \text{ by assumption}\]
\[
= \sum_{t_i^{(n)} \leq t} \left(X_{t_i^{(n)}} - X_{t_i} \right)^2 \text{n}\to\infty 0 \text{ by Cauchy-Schwartz}\]

iii. Let \(F \in C^2(\mathbb{R}) \) such that \(F' = f \) and apply Itô to get
\[
M_t = F(X_t) - \left(F(X_0) + \frac{1}{2} \int_0^t F''(X_s) \, d\langle X \rangle_s \right) =: A_t.
\]

But \(A_t \) can be written as a difference of increasing functions. Therefore, \(A_t \) is of bounded variation, hence, \(\langle A \rangle = 0 \). Thus, by (ii) and (i)
\[
\langle M \rangle = \langle F(X) \rangle_t = \int_0^t (F'(X_s))^2 \, d\langle X \rangle_s.
\]

\(\Box \)

1.3. d-Dimensional Itô-Formula and Covariation

Fix \(X, Y : [0, \infty) \to \mathbb{R} \) continuous with bounded quadratic variation \(\langle X \rangle, \langle Y \rangle \) (along the same \((\tau_n)_{n\in\mathbb{N}} \) (cf. [RY99, (2.3)-(2.5) (p.27/28)]).

Definition 1.3.1. If
\[
\langle X, Y \rangle_t := \lim_{n\to\infty} \sum_{t_i^{(n)} \leq t} \left(X_{t_i^{(n)}} - X_{t_i} \right) \left(Y_{t_i^{(n)}} - Y_{t_i} \right), \quad t \geq 0,
\]
exists, then it is called the covariation of \(X \) and \(Y \) (along \((\tau_n) \)).

Lemma 1.3.2. The following assertions are equivalent:

i. \(\langle X, Y \rangle \) exists and is continuous.

ii. \(\langle X + Y \rangle \) exists and is continuous. In this case the Polarization identity holds:
\[
\langle X, Y \rangle = \frac{1}{2} \left((X + Y) - \langle X \rangle - \langle Y \rangle \right).
\]
In particular, \(\langle X, Y \rangle \) is the distribution function of a signed measure on \(\mathbb{R}_+ \)
\[
d\langle X, Y \rangle = \frac{1}{2} \, d(X + Y) - \frac{1}{2} \, d(X) - \frac{1}{2} \, d(Y).
\]
1. Introduction to Pathwise Itô-Calculus

Furthermore, if \(\langle X, Y \rangle \) exists, we have

\[
|\langle X, Y \rangle| \leq \langle X \rangle^{\frac{1}{2}} \langle Y \rangle^{\frac{1}{2}}.
\]

Proof. Exercise. \(\square \)

Remark 1.3.3. \(|\langle X, Y \rangle| \leq \langle X \rangle^{\frac{1}{2}} \langle Y \rangle^{\frac{1}{2}}\) is a special case of the Kunita-Watanabe-inequality (cf. 2.2.11 below). By this inequality we get an estimation of \(d\langle X, Y \rangle \) by \(d\langle X \rangle \) and \(d\langle Y \rangle \).

Example 1.3.4.

i. Let \((X_t)_{t \geq 0}, (Y_t)_{t \geq 0} \) be independent Brownian motions on \((\Omega, \mathcal{F}, P)\).

Then there exists \(\langle X, Y \rangle(\omega) \) for \(P\)-a.e. \(\omega \in \Omega \) and

\[
\langle X, Y \rangle(\omega) = 0 \quad P\text{-a.e. } \omega \in \Omega.
\]

Proof. We know that

\[
Z_t := \frac{1}{\sqrt{2}}(X_t + Y_t), \quad t \geq 0,
\]

is a Brownian motion. Hence, (cf. Proposition 1.1.4(i)) \(\langle Z \rangle_t = t \), so there exists \(\langle X + Y \rangle_t = 2\langle Z \rangle_t = 2t \). Then it follows by Lemma 1.3.2 applied to \(P\)-a.e. \(\omega \in \Omega \) that

\[
\langle X, Y \rangle = \frac{1}{2}(\langle X + Y \rangle - \langle X \rangle - \langle Y \rangle) = 0.
\]

\(\square \)

ii. Let \(f, g \in C(\mathbb{R}) \) and

\[
Y_t := \int_0^t f(X_s) \, d\langle X \rangle_s, \quad Z_t := \int_0^t g(X_s) \, d\langle X \rangle_s.
\]

Then (again with respect to our \((\tau_n)\)) there exists

\[
\langle Y, Z \rangle_t = \int_0^t f(X_s)g(X_s) \, dX_s.
\]

Proof. By 1.2.9(iii) the quadratic variation of

\[
Y_t + Z_t = \int_0^t (f + g)(X_s) \, dX_s
\]

along our \((\tau_n)\) exists. Hence, by the polarization identity, Lemma 1.2.9(iii) and Lemma 1.3.2 we get

\[
2\langle Y, Z \rangle = \langle Y + Z \rangle - \langle Y \rangle - \langle Z \rangle
\]

\[
= 2 \int f(X_s)g(X_s) \, d\langle X \rangle_s + \int f(X_s)^2 \, d\langle X \rangle_s + \int g(X_s)^2 \, d\langle X \rangle_s - \langle Y \rangle - \langle Z \rangle
\]

\[
= 2 \int f(X_s)g(X_s) \, d\langle X \rangle_s.
\]

\(\square \)
Proposition 1.3.5 (Itô product rule). Let X, Y be as above such that there exists $\langle X, Y \rangle$ (with respect to (τ_n)) and is continuous in $t \geq 0$. If there exists either

$$
\lim_{n \to \infty} \sum_{i \in \tau_n, i \leq t} X_{i(n)} (Y_{i+1(n)} - Y_{i(n)}) =: \int_0^t X_s \, dY_s
$$

or

$$
\lim_{n \to \infty} \sum_{i \in \tau_n, i \leq t} Y_{i(n)} (X_{i+1(n)} - X_{i(n)}) =: \int_0^t Y_s \, dX_s,
$$

then both of these limits exist and

$$X_t Y_t = X_0 Y_0 + \int_0^t X_s \, dY_s + \int_0^t Y_s \, dX_s + \langle X, Y \rangle_t.
$$

Proof. We have

$$X_t Y_t = \frac{1}{2} \left((X_t + Y_t)^2 - X_t^2 - Y_t^2\right).$$

Furthermore, by Lemma 1.3.2 $\langle X + Y \rangle$ exists and is continuous, since by Itô with $F(X) = \frac{1}{2} X^2$ we know that

$$X_t Y_t = \frac{1}{2} \left((X_0 + Y_0)^2 - X_0^2 - Y_0^2\right) + \int_0^t (X + Y)_s \, d(X + Y)_s
$$

$$- \int_0^t X_s \, dY_s - \int_0^t Y_s \, dX_s + \frac{1}{2} \left(\langle X + Y \rangle_t - \langle X \rangle_t - \langle Y \rangle_t\right).
$$

By definition we have

$$
\int_0^t (X + Y)_s \, d(X + Y)_s
$$

$$= \lim_{n \to \infty} \sum_{i \in \tau_n, i \leq t} \left(X_{i(n)} + Y_{i(n)} \right) \left(X_{i+1(n)} + Y_{i+1(n)} - X_{i(n)} - Y_{i(n)} \right)
$$

$$= X_{i(n)} \left(Y_{i+1(n)} - Y_{i(n)} \right) + Y_{i(n)} \left(X_{i+1(n)} - X_{i(n)} \right)
$$

$$+ X_{i(n)} \left(Y_{i(n)} - Y_{i+1(n)} \right) + Y_{i(n)} \left(X_{i(n)} - X_{i+1(n)} \right).
$$

Therefore, we get

$$X_t Y_t = X_0 Y_0 + \lim_{n \to \infty} \sum_{i \in \tau_n, i \leq t} \left(X_{i(n)} (Y_{i+1(n)} - Y_{i(n)}) + Y_{i(n)} (X_{i+1(n)} - Y_{i(n)}) \right) + \langle X, Y \rangle_t,
$$

which implies the assertion.

\[\square \]

Remark 1.3.6. If X or Y has bounded variation, e.g. X, then there already exists $\int Y_s \, dX_s$ and all assumptions in Proposition 1.3.5 are fulfilled. In this case $\langle X, Y \rangle = 0$ and, by substituting $dY_s = Y'_s ds$, we are in the classical case of integration by parts:

$$X_t Y_t - X_0 Y_0 = \int X_s Y'_s \, ds + \int Y_s X'_s \, ds.$$
Example 1.3.7. Suppose $t \mapsto Y_t$ is of bounded variation, hence, $\langle Y \rangle \equiv 0$ and $\langle X, Y \rangle = 0$ (by Hölder). Then by Proposition 1.3.5

$$\int_0^t Y_s \, dX_s = - \int_0^t X_s \, dY_s + X_t Y_t - X_0 Y_0.$$

Here, we can define the left hand side by the right hand side since $\int_0^t X_s \, dY_s$ is a usual Lebesgue-Stieltjes integral. This approach was used by Paley-Wiener to define stochastic integrals, if X is a Brownian motion:

Let $X(\omega)$ be a typical Brownian path (hence, $X_0(\omega) = 0$) and $h(= Y_s)$ continuous, of bounded variation and independent of ω with $h(1) = 0$. Define

$$\int_0^1 h(s) \, dX_s(\omega) := - \int_0^1 h(s) \, dX_s.$$

One can show that

$$E \left[\left(\int_0^1 h(s) \, dX_s \right)^2 \right] = \int_0^1 h(s)^2 \, ds,$$

hence,

$$\mathcal{L}^2([0, 1], ds) \to \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P}) \quad \quad h \mapsto \int h(s) \, dX_s(\omega)$$

is an isometry. It is first defined for a dense subset of functions h in $\mathcal{L}^2([0, 1], ds)$, and then extended to the closure, i.e. for all $h \in \mathcal{L}^2([0, 1], ds)$, by this isometry.

Fix now $X_t = (X^1_t, \ldots, X^d_t) : [0, \infty) \to \mathbb{R}^d$ continuous with continuous $\langle X^i \rangle, \langle X^i, X^j \rangle$, $i, j \in \{1, \ldots, d\}$, $i \neq j$ (along our (τ_n)).

Proposition 1.3.8 (d-dimensional Itô-formula). Let $F \in C^2(\mathbb{R}^d)$. Then with $(\cdot, \cdot)_t$ as Euklidean inner product on \mathbb{R}

$$F(X_t) - F(X_0) = \int_0^t (\nabla F(X_s), dX_s) + \frac{1}{2} \int_0^t \sum_{k,l=1}^d \frac{\partial^2 F}{\partial x_k \partial x_l} (X_s) \, d\langle X^k, X^l \rangle_s, \quad (1.3.10)$$

where

$$\int_0^t (\nabla F(X_s), dX_s) := \lim_{n \to \infty} \sum_{\substack{i^{(n)} \leq \tau_n \leq t \atop l^{(n)} \leq t}} \left(\nabla F(X_{l^{(n)}}), X_{l^{(n)} + 1} - X_{l^{(n)}} \right)$$

is called multidimensional Itô-integral.

Proof. Obviously, we have

$$\sum_{\substack{i^{(n)} \leq \tau_n \leq t \atop l^{(n)} \leq i}} F(X_{i^{(n)} + 1}) - F(X_{l^{(n)}}) \xrightarrow{n \to \infty} F(X_t) - F(X_0).$$
Furthermore, by d-dimensional Taylor formula we obtain

\[
\sum_{l_i^{(n)} \leq t} F\left(X_{l_i}^{(n)} \right) - F\left(X_{l_i}^{(n)} \right) = \sum_{l_i^{(n)} \leq t} \left(\nabla F\left(X_{l_i}^{(n)} \right) , X_{l_i+1}^{(n)} - X_{l_i}^{(n)} \right) + \frac{1}{2} \sum_{l_i^{(n)} \leq t} \left(A\left(X_{l_i}^{(n)} \right) \left(X_{l_i+1}^{(n)} - X_{l_i}^{(n)} \right) , \left(X_{l_i+1}^{(n)} - X_{l_i}^{(n)} \right) \right) =: S
\]

where

\[
A(x) = \left(\frac{\partial^2}{\partial x_i \partial x_j} F(x) \right)_{i,j}.
\]

The third summand vanishes analogously to the 1-dimensional case. Moreover, since we can interchange the sums, we have by polarization

\[
S = \sum_{j,k=1}^{d} \sum_{l_i^{(n)} \leq t} \frac{\partial^2 F}{\partial x_j \partial x_k} \left(X_{l_i}^{(n)} \right) \left(X_{l_i+1}^{(j)} - X_{l_i}^{(j)} \right) \left(X_{l_i+1}^{(k)} - X_{l_i}^{(k)} \right)
\]

\[
= \sum_{j,k=1}^{d} \sum_{l_i^{(n)} \leq t} \frac{\partial^2 F}{\partial x_j \partial x_k} \left(X_{l_i}^{(n)} \right)
\]

\[
\cdot \frac{1}{2} \left(\left(X_{l_i+1}^{(j)} + X_{l_i+1}^{(k)} \right) - \left(X_{l_i}^{(j)} + X_{l_i}^{(k)} \right) \right)^2 - \left(X_{l_i+1}^{(j)} - X_{l_i}^{(j)} \right)^2 - \left(X_{l_i+1}^{(k)} - X_{l_i}^{(k)} \right)^2
\]

\[
\xrightarrow{n \to \infty} \frac{1}{2} \sum_{j,k=1}^{d} \left(\int_0^t \frac{\partial^2 F}{\partial x_j \partial x_k} (X_s) \, d\langle X^{(j)} + X^{(k)} \rangle_s - \int_0^t \frac{\partial^2 F}{\partial x_j \partial x_k} (X_s) \, d\langle X^{(j)} \rangle_s \right.
\]

\[
- \int_0^t \frac{\partial^2 F}{\partial x_j \partial x_k} (X_s) \, d\langle X^{(k)} \rangle_s
\]

\[
= \int_0^t \sum_{k,l=1}^{d} \frac{\partial^2 F}{\partial x_k \partial x_l} (X_s) \, d\langle X^k, X^l \rangle_s, \quad \text{P-a.s.}
\]
1. Introduction to Pathwise Itô-Calculus

Remark 1.3.9.

i. Of course, we have defined

$$\int_0^t (\nabla F(X_s), dX_s) := \lim_{n \to \infty} \sum_{k=1}^d \sum_{(l(n), l_i(n)) \leq t} \frac{\partial F}{\partial x_k} \left(X_{l(n)}^{t_i(n)} - X_{l_i(n)}^{t_i(n)} \right),$$

but we cannot interchange \(\sum_{k=1}^d\) with the limit, since we do not know whether for every \(k\) the limit exists.

ii. For \(F \in C^1(\mathbb{R}^d)\) the function \(t \mapsto F(X_t)\) has continuous quadratic variation and

$$\langle F(X) \rangle_t = \sum_{k,l=1}^d \int_0^t \frac{\partial F}{\partial x_k}(X_s) \frac{\partial F}{\partial x_l}(X_s) \, d\langle X^k, X^l \rangle_s.$$

Proof. By Taylor

$$\sum_{(l(n), l_i(n)) \leq t} \left(F \left(X_{l(n)}^{t_i(n)} \right) - F \left(X_{l_i(n)}^{t_i(n)} \right) \right)^2$$

$$= \sum_{k,l=1}^d \sum_{(l(n), l_i(n)) \leq t} \frac{\partial F}{\partial x_k} \left(X_{l(n)}^{t_i(n)} \right) \frac{\partial F}{\partial x_l} \left(X_{l_i(n)}^{t_i(n)} \right) \left(X_{l(n)}^{t_i(n)} - X_{l_i(n)}^{t_i(n)} \right)$$

$$- \frac{1}{2} \sum_{k,l=1}^d \int_0^t \frac{\partial F}{\partial x_k} \left(X_s \right) \frac{\partial F}{\partial x_l} \left(X_s \right) d\langle X^k, X^l \rangle_s \text{ by polarization}$$

$$+ \sum_{k,l=1}^d \sum_{(l(n), l_i(n)) \leq t} \left(\frac{\partial F}{\partial x_k} \left(X_{l(n)}^{t_i(n)} + \theta^n \left(X_{l(n)}^{t_i(n)} - X_{l_i(n)}^{t_i(n)} \right) \right) \frac{\partial F}{\partial x_l} \left(X_{l(n)}^{t_i(n)} \right) \left(X_{l(n)}^{t_i(n)} - X_{l_i(n)}^{t_i(n)} \right)$$

$$\leq \varepsilon \text{ uniformly in } t \text{ for } n \text{ big enough}$$

$$+ \sum_{k,l=1}^d \sum_{(l(n), l_i(n)) \leq t} \left(\frac{\partial F}{\partial x_k} \left(X_{l(n)}^{t_i(n)} \right) \left(X_{l(n)}^{t_i(n)} - X_{l_i(n)}^{t_i(n)} \right) \right)$$

$$+ 2 \sum_{k,l=1}^d \sum_{(l(n), l_i(n)) \leq t} \left(\frac{\partial F}{\partial x_k} \left(X_{l(n)}^{t_i(n)} + \theta^n \left(X_{l(n)}^{t_i(n)} - X_{l_i(n)}^{t_i(n)} \right) \right) \frac{\partial F}{\partial x_l} \left(X_{l(n)}^{t_i(n)} \right) \left(X_{l(n)}^{t_i(n)} - X_{l_i(n)}^{t_i(n)} \right)$$

$$\cdot \sum_{k,l=1}^d \frac{\partial F}{\partial x_l} \left(X_{l_i(n)}^{t_i(n)} \right) \left(X_{l_i(n)}^{t_i(n)} - X_{l_i(n)}^{t_i(n)} \right).$$

By Cauchy-Schwartz the last two double sums converge to 0 as \(n\) goes to \(\infty\). \(\square\)

iii. Since

$$\frac{1}{2} \int_0^t \sum_{k,l=1}^d \frac{\partial^2 F}{\partial x_k \partial x_l}(X_s) \, d\langle X^k, X^l \rangle_s$$

is of bounded variation, its quadratic variation is 0. But then, by 1.3.8 and 1.2.9 (ii), we can conclude that

$$\left\langle \int_0^t (\nabla F(X_s), dX_s) \right\rangle_t = \langle F(X) - F(X_0) \rangle_t = \langle F(X) \rangle_t \overset{(ii)}{=} \sum_{k,l=1}^d \int_0^t \frac{\partial F}{\partial x_k}(X_s) \frac{\partial F}{\partial x_l}(X_s) \, d\langle X^k, X^l \rangle_s.$$
1.3.1. Important special cases

Itô’s product rule in d dimensions

Let X, Y be continuous with existing continuous $\langle X \rangle, \langle Y \rangle, \langle X, Y \rangle$. Then

$$X_tX_t = X_0Y_0 + \int_0^t X_s \, dY_s + \int_0^t Y_s \, dX_s + \langle X, Y \rangle_t.$$

Proof. Applying Itô’s formula with $F(X, Y) = X \cdot Y$ is completely wrong since by (2-dimensional) Itô-formula

$$\int_0^t X_s \, dY_s + \int_0^t Y_s \, dX_s$$

only exists as a sum, whereas single components don’t need to exist. But this proof holds if X, Y are (semi)-martingales. \hfill \Box

Brownian motion in \mathbb{R}^d and Laplace-operator Δ

The components of a d-dimensional Brownian motion are independent, hence, (by 1.3.4(i))

$$\langle X^k, X^l \rangle_t(\omega) = \delta_{kl} \cdot t \quad \text{("covariation reflects independence")},$$

which implies by Itô for $F \in C^2(\mathbb{R})$

$$F(X_t) - F(X_0) = \int_0^t (\nabla F(X_s), dX_s) + \frac{1}{2} \int_0^t \Delta F(X_s) \, ds.$$

In particular, if F is harmonic (i.e. $\Delta F = 0$), then

$$F(X_t) = F(0) + \int_0^t (\nabla F(X_s), dX_s),$$

which is an Itô-integral of a Brownian motion. Hence, a harmonic function preserves the martingale property since the Itô-integral again is a martingale (see Section 1.4 below).

Itô-formula for time dependent functions

Proposition 1.3.10. Let $F \in C^2(\mathbb{R}^2)$ and $X : [0, \infty) \to \mathbb{R}$ be continuous with continuous $\langle X \rangle$ (along $(\tau_n)_{n \in \mathbb{N}}$). Then

$$F(X_t, \langle X \rangle_t) = F(X_0, 0) + \int_0^t \frac{\partial F}{\partial x}(X_s, \langle X \rangle_s) \, dX_s + \int_0^t \left(\frac{1}{2} \frac{\partial^2 F}{\partial x^2}(X_s, \langle X \rangle_s) + \frac{\partial F}{\partial y}(X_s, \langle X \rangle_s) \right) d\langle X \rangle_s.$$

Proof. Apply Itô for $d = 2$ with $(X_t, \langle X \rangle_t)$ to get

$$F(X_t, \langle X \rangle_t) - F(X_0, 0)$$

$$= \int_0^t \frac{\partial F}{\partial x}(X_s, \langle X \rangle_s) \, dX_s + \int_0^t \frac{\partial F}{\partial y}(X_s, \langle X \rangle_s) \, d\langle X \rangle_s + \frac{1}{2} \int_0^t \frac{\partial^2 F}{\partial x^2}(X_s, \langle X \rangle_s) \, d\langle X \rangle_s$$

$$+ \frac{1}{2} \int_0^t \frac{\partial^2 F}{\partial y^2}(X_s, \langle X \rangle_s) \, d\langle X \rangle_s + \frac{1}{2} \int_0^t \frac{\partial^2 F}{\partial x \partial y}(X_s, \langle X \rangle_s) \, d\langle X \rangle_s.$$

$$= S = 0$$

since $\langle X \rangle_s$ is of bounded variation and by 1.3.7

The second summand of S exists since $\langle X \rangle_t$ is of bounded variation (along $(\tau_n)_{n \in \mathbb{N}}$). As the whole sum S exists by Itô ($d = 2$), so does the first summand. \hfill \Box
1. Introduction to Pathwise Itô-Calculus

Remark 1.3.11.
i. If X_t is a Brownian motion, then $\langle X \rangle_t$ represents the time, i.e.

$$F(X_t, \langle X \rangle_t) = F(X_t, t).$$

Therefore, in this respect $\langle X \rangle_t$ is also called inner clock of X_t.

ii. If F is a solution to the backward heat equation, i.e.

$$\frac{1}{2} \frac{\partial^2 F}{\partial x^2} + \frac{\partial F}{\partial t} = 0,$$

then we have by above (for certain X as above)

$$F(X_t, \langle X \rangle_t) = F(X_0, 0) + \int_0^t \frac{\partial F}{\partial x}(X_s, \langle X \rangle_s) \, dX_s = F(X_0, 0) + \text{“Itô-integral”}.$$

Later we shall see that the Itô-integral is a local martingale, if X is one. Therefore, every solution to the backward heat equation provides a local martingale!

Example 1.3.12.
i. Let $F(x, t) := \exp(\alpha x - \frac{1}{2} \alpha^2 t)$. Then F solves the backward heat equation. Thus, if $X_0 = 0$, then

$$G_t := F(X_t, \langle X \rangle_t) = \exp(\alpha X_t - \frac{1}{2} \alpha^2 \langle X \rangle_t)$$

solves the differential equation

$$G_0 = 1,$$

$$dG = \alpha G \, dX,$$

i.e.

$$G_t = 1 + \int_0^t \alpha G_s \, dX_s.$$

Recall, if $\langle X \rangle \equiv 0$, then $G_t = \exp(\alpha X_t)$. Hence, in the Itô-calculus G_t as above is the right analog to the exponential function $\exp(\alpha t)$ in the usual case.

Application to Brownian motion:
For X with $\langle X \rangle_t = t$

$$G_t(\omega) := G_0 e^{\beta t} \exp(\alpha X_t(\omega) - \frac{1}{2} \alpha^2 t), \quad t \geq 0,$$

solves the linear SDE

$$dG = \alpha G \, dX + \beta G \, dt$$

because of Itô’s product rule.

Classical ($\alpha = 0$):

$$dG = \beta G \, dt \quad \Rightarrow \quad G_t = G_0 e^{\beta t}.$$

Here, for $\beta > 0$ G_t tends to ∞ as $t \to \infty$.

Stochastic ($\alpha \neq 0$):

$$G_t = G_0 \exp(\alpha X_t + \left(\beta - \frac{1}{2} \alpha^2\right) t).$$

By law of iterated logarithm

$$\frac{X_t}{t} \xrightarrow{t \to \infty} 0, \ a.s.,$$
1.3. d-Dimensional Itô-Formula and Covariation

hence, for large t

$$\left| \frac{X_t}{t} \right| < \frac{1}{2} \left(\frac{1}{2} \alpha^2 - \beta \right).$$

Thus, for $\beta < \frac{1}{2} \alpha^2$

$$G_t \leq G_0 e^{-\left(\frac{1}{2} \alpha^2 - \beta\right) t} \overset{t \to \infty}{\longrightarrow} 0, \quad (a.s. \text{ pathwise stable}).$$

But G_t is not uniformly integrable, since by the Residue theorem

$$E[e^{\alpha X_t}] = e^{\frac{1}{2} \alpha^2 t},$$

and therefore,

$$E[G_t] = G_0 e^{\beta t} E[e^{\alpha X_t}] e^{-\frac{1}{2} \alpha^2 t} = G_0 e^{\beta t} \to \infty, \quad \text{if } \beta > 0 \quad (\text{unstable in the mean}).$$

ii. “Hermite- polynomials” (cf. Example 1.2.5):

Define $h_n(x,t)$ by

$$e^{-\alpha x - \frac{1}{2} \alpha^2 t} = \sum_{n=0}^\infty \frac{\alpha^n}{n!} h_n(x,t), \quad (1.3.11)$$

where the left hand side is analytic in α, i.e.

$$h_n(x,t) = \frac{\partial^n}{\partial \alpha^n} \left(e^{\alpha x - \frac{1}{2} \alpha^2 t} \right) \bigg|_{\alpha = 0} = e^{\alpha x} \sum_{k=0}^n \binom{n}{k} x^k \frac{\partial^{n-k}}{\partial \alpha^{n-k}} \left(e^{-\frac{1}{2} \alpha^2 t} \right). \quad (1.3.12)$$

Recall, that for all $n \in \mathbb{N}$

$$H_n(\cdot,t) := \frac{1}{\sqrt{n!}} h_n(\cdot,t)$$

is an orthonormal basis of $L^2(\mathbb{R}, N(0,t))$.

Proof. Clearly, (by monotone classes) $\text{span}\{H_n, n \in \mathbb{N}\}$ is a dense subset of $L^2(\mathbb{R}, N(0,t))$.

Hence, it is sufficient to show that it is an ONS:

$$\sum_{n,m} \frac{\alpha^n}{n!} h_n(x,t) \frac{\beta^m}{m!} h_m(x,t) = e^{(\alpha + \beta)x - \frac{1}{2}(\alpha^2 + \beta^2)t} = \exp((\alpha + \beta)x) e^{-\frac{1}{2}(\alpha + \beta)^2 t} e^{\alpha \beta t}. \quad (1.3.11)$$

By integration with $N(0,t)$ in X, since sums interchange with integration and

$$\int e^{(\alpha + \beta)x} N(0,t) \, dx = e^{\frac{1}{2}(\alpha + \beta)^2 t},$$

we get by (1.3.12) that

$$\sum_{n,m} \alpha^n \beta^m \int \frac{1}{n!} h_n(x,t) \frac{1}{m!} h_m(x,t) N(0,t) \, dx = e^{\alpha \beta t} = \sum_n \frac{\alpha^n \beta^n}{n!}, \quad \forall \alpha, \beta.$$
1. Introduction to Pathwise Itô-Calculus

Additionally, for $n \geq 1$ we have

$$\frac{\partial}{\partial x} h_n(\cdot, t) \overset{(1.3.11)}{=} n \cdot h_{n-1}(\cdot, t).$$

Therefore, if $X, \langle X \rangle$ are continuous and $X_0 = 0$, (since $h_n(0, 0) = 0$), we get

$$h_n(X_t, \langle X \rangle_t) = \int_0^t \frac{\partial}{\partial x} h_n(X_{t_1}, \langle X \rangle_{t_2}) \, dX_{t_1} = \int_0^t h_{n-1}(X_{t_1}, \langle X \rangle_{t_2}) \, dX_{t_1}$$

$$= \ldots = n! \int_0^t dX_{t_1} \int_0^{t_1} dX_{t_2} \ldots \int_0^{t_{n-1}} dX_{t_n}.$$
1.4. Itô-Integrals as (Local) Martingales

Recall: If \((\mathcal{F}_t)_{t \geq 0}\) is not right-continuous, then define

\[
\mathcal{F}_{t+} := \bigcap_{s > t} \mathcal{F}_s, \quad t \geq 0.
\]

Then \((\mathcal{F}_{t+})_{t \geq 0}\) is right-continuous.

\(X\) is called \textit{continuous local martingale} (up to \(T\)) if there exist a localising sequence \(T_1 \leq T_2 \leq \ldots \leq T\) on \(\{T > 0\}\), i.e. they are \((\mathcal{F}_t)\)-stopping times such that

1. \((X_{t \wedge T_n})_{t \geq 0}\) is a martingale for all \(n \in \mathbb{N}\),
2. \(\sup_{n \in \mathbb{N}} T_n = T\) \(P\text{-a.s.}\).

Let \(X_t(\omega), 0 \leq t \leq T(\omega)\) (on \(\{T > 0\}\)), be a stochastic process on \((\Omega, \mathcal{F}, \mathbb{P})\) with continuous paths, adapted to a right-continuous filtration \((\mathcal{F}_t)_{t \geq 0}\), i.e.

\[
\mathcal{F}_t = \bigcap_{s > t} \mathcal{F}_s.
\]

Assume in addition, that \(X\) has a continuous quadratic variation \(\langle X \rangle_t \) along \((\tau_n)\) for \(P\text{-a.e. } \omega \in \Omega\).

Remark 1.4.1. Later we shall see that for any \((\tau_n)\) there exists \((\tau_{n_k})\) such that \(X\) has continuous quadratic variation \(\langle X \rangle_t \) along \((\tau_{n_k})\) for \(P\text{-a.e. } \omega \in \Omega\).

Proposition 1.4.2. Let \(f \in C^2(G \times \mathbb{R}_+), G \subset \mathbb{R}^1\) open (or \(f \in C^1(G)\)). Assume there exists a compact set \(K \subset G\) such that \(X_0(\omega) \subset K\) for \(P\text{-a.e. } \omega \in \Omega\).

Then the Itô-integral

\[
M_t := \int_0^t f(X_s(\omega), \langle X \rangle_s(\omega)) \, dX_s(\omega), \quad 0 \leq t < T(\omega) \text{ on } \{T > 0\}
\]

is a continuous local martingale up to

\[
S := \inf\{t > 0 | X_t \not\in G\} \wedge T.
\]

Proof. Step 1: Assume that \(T = \infty\), \(X_t\) is a bounded martingale, \(G = \mathbb{R}^1\) and \(f\) is bounded. Then \(M_t(\omega)\) is defined for all \(t\), since \(S = +\infty\).

Claim: \((M_t)_{t \geq 0}\) is a continuous martingale.

To see this define for \(n \in \mathbb{N}\) fixed

\[
M^{(n)}_t := \sum_{\substack{t^{(n)}_i \leq t < t^{(n)}_{i+1} \in \tau_n \quad \text{such that} \quad t^{(n)}_k \leq t \leq t^{(n)}_{k+1}, \quad t^{(n)}_i \leq s \leq t^{(n)}_{i+1} \text{. Then, we have} \quad M^{(n)}_t = M^{(n)}_{t_k} \quad \text{and}}}
\]

\[
M^{(n)}_{t_k} := \sum_{l^{(n)}_j \in \tau_n \quad \text{such that} \quad l^{(n)}_i \leq s \leq l^{(n)}_{i+1}} f \left(X^{(n)}_{l^{(n)}_i}, X^{(n)}_{l^{(n)}_{i+1}} \right) \left(X^{(n)}_{l^{(n)}_{i+1}} - X^{(n)}_{l^{(n)}_i} \right).
\]
1. Introduction to Pathwise Itô-Calculus

\[M_s^{(n)} = M_t^{(n)} \] and therefore,

\[E[M_t^{(n)} - M_s^{(n)} | \mathcal{F}_s] = E[M_t^{(n)} - M_t^{(n)} | \mathcal{F}_s] \]

\[= \sum_{i=t+1}^k E \left[f \left(X_{t_i}^{(n)}, \langle X \rangle_{t_i}^{(n)} \right) \left(X_{t_i+1}^{(n)} - X_{t_i}^{(n)} \right) | \mathcal{F}_{t_i}^{(n)} \right] | \mathcal{F}_s \]

\[= \sum_{i=t+1}^k f \left(X_{t_i}^{(n)}, \langle X \rangle_{t_i}^{(n)} \right) E \left[\left(X_{t_i+1}^{(n)} - X_{t_i}^{(n)} \right) | \mathcal{F}_{t_i}^{(n)} \right] | \mathcal{F}_s \]

\[= 0 \text{ since } X_t \text{ is a martingale} \]

By Proposition 2.1.4 below it is sufficient to show that \(M_t^{(n)} \to M_t \) in \(L^1 \). We know that by definition,

\[M_t^{(n)} \to M_t, \quad P\text{-a.s. } \forall t \geq 0. \]

Furthermore, for all \(t \geq 0 \),

\[E \left[\left(M_t^{(n)} \right)^2 \right] = \sum_{i \in \tau_n, t_i^{(n)} \leq t} E \left[f^2 \left(X_{t_i}^{(n)}, \langle X \rangle_{t_i}^{(n)} \right) \left(X_{t_i+1}^{(n)} - X_{t_i}^{(n)} \right)^2 \right], \]

since all terms, which are not on the diagonal, vanish by martingale property of \(X_t \). Furthermore,

\[E \left[\left(M_t^{(n)} \right)^2 \right] \leq \sup \frac{1}{r^2} \sum_{i \in \tau_n, t_i^{(n)} \leq t} E \left[X_{t_i+1}^{2} - 2X_{t_i}^{(n)}X_{t_i}^{(n)} + X_{t_i}^{2} | \mathcal{F}_{t_i}^{(n)} \right] \]

\[= \sup \frac{1}{r^2} \sum_{i \in \tau_n, t_i^{(n)} \leq t} E \left[X_{t_i+1}^{2} - X_{t_i}^{2} \right] \]

\[= \sup_r \frac{1}{r^2} E \left[\frac{X_{t_i}^{2}}{r^2} - X_0^2 \right]. \]

Hence, \(\sup_n E \left[\left(M_t^{(n)} \right)^2 \right] < \infty \) and \(\left(M_t^{(n)} \right) \) \(n \in \mathbb{N} \) is uniformly integrable. By the generalized Lebesgue dominated convergence theorem the claim follows, i.e. \((M_t)_{t \geq 0} \) is a martingale.

It still remains to show that \(M_t \) has \(P\text{-a.s.} \) continuous sample paths:

In order to see that consider

\[\tilde{M}_t^{(n)} := \sum_{i=0}^n f \left(X_{t_i}^{(n)}, \langle X \rangle_{t_i}^{(n)} \right) \left(X_{t_i+1}^{(n)} - X_{t_i}^{(n)} \right). \]

Then as above one shows that \(\tilde{M}_t(\omega) \) is a martingale. Note that \(\left(\tilde{M}_t^{(n)} \right) \) \(n \in \mathbb{N} \) has \(P\text{-a.s.} \) continuous sample paths and that

\[M_t^{(n)} - \tilde{M}_t^{(n)} \nrightarrow 0 \quad P\text{-a.s.} \]

and in \(L^q \) (by the same argument as above). Hence, \(\tilde{M}_t^{(n)} \nrightarrow M_t \) in \(L^q \) for all \(q \in [1, 2) \). Then by Doob’s maximal inequality one can show that \(\left(M_t \right)_{t \geq 0} \) has \(P\text{-a.s.} \) continuous sample paths.
1.4. Itô-Integrals as (Local) Martingales

(cf. below Proposition 2.1.4).

Step 2 ("Localization by stopping times"): Let \((T_n) \) be a localizing sequence for \(X \). For \(n \in \mathbb{N} \) define

\[
\bar{T}_n := \inf\{t > 0 | \langle X \rangle_t > n\} \land T
\]

and

\[
S_n := T_n \land \sigma_{G_n} \land \bar{T}_n,
\]

where \(G_n \not\subset G, G_n \) relatively compact and open and \(G_n \subset G_{n+1} \) for all \(n \in \mathbb{N} \). Without loss of generality assume that \(K \subset G_n \). Then \(\sup_n \sigma_{G_n} = \sigma_G \) and \(S_n \) are stopping times. Furthermore, \(\bar{T}_n \not\subset T \), hence, \(S_n \not\subset T \land \sigma_G \). By optional stopping \((X_{t \land S_n})_{t \geq 0} \) is a continuous martingale taking values in \(G_n \), because for \(n \geq N(K) \), where \(N(K) \in \mathbb{N} \) such that \(G_n \supset K \) for all \(n \geq N(K) \), hence, \((X_{t \land S_n})_{t \geq 0} \) is bounded in \((t, \omega)\). Furthermore, (exercise)

\[
M_{t \land S_n}(\omega) = \int_0^t f(X_{s\land S_n}(\omega), \langle X \rangle_{s\land S_n}(\omega)) \, dX_{s\land S_n}(\omega)(\omega). \quad (1.4.13)
\]

Hence, we can take \(\chi_n \in C^2_0(G \times \mathbb{R}_+) \) such that

\[
\chi_n = 1 \text{ on } G_n \times [0,n].
\]

Then we can replace \(f \) in (1.4.13) by \(\chi_n f \in C^2_0(G \times \mathbb{R}_+) \). Therefore, the representation for \((M_{t \land S_n})_{t \geq 0} \) in (1.4.13) and Step 1 imply that \((M_{t \land S_n})_{t \geq 0} \) is a continuous martingale.

Corollary 1.4.3. Let \(X \) be a continuous local martingale up to \(T \) with continuous quadratic variation (later proved to always be the case). Then

i. \(X^2 - \langle X \rangle \) is a continuous local martingale up to \(T \).

ii. If \(\langle X \rangle = 0 \) (which is particularly true if \(X \) has bounded variation), then for \(P \)-a.s. \(\omega \in \Omega \)

\[
X_t(\omega) = X_0(\omega) \quad \forall t \in [0, T(\omega)]. \quad (1.4.14)
\]

Proof. Without loss of generality assume that \(X_0 \equiv 0 \). (Otherwise consider \(X_t - X_0, t \leq T \).)

i. By Itô

\[
X_t^2 = 2 \cdot \int_0^t X_s \, dX_s + \langle X \rangle_t \quad \text{on } \{t < T\}.
\]

But the first term on the right hand side is a continuous martingale up to \(T \) by Proposition 1.4.2.

ii. By (i) it also follows that \(X^2 \) is a continuous local martingale up to \(T \) if \(\langle X \rangle = 0 \). Hence, if \(T_n \not\subset T \) is a localising sequence, then

\[
E[X^2_{t\land T_n}] = 0 \quad \forall t \geq 0.
\]

Therefore, \(1_{\{t < T\}}X_t = 0 \) \(P \)-a.s. \(\forall t \geq 0 \), (with zero set depending on \(t \)). Hence, \(P[X_{t\land T} = 0 \land \forall t \in \mathbb{Q}] = 1 \), and by \(P \)-a.s. continuity in \(t \) it follows that \(X_t = 0 \) on \(\{t < T\} \) for all \(t \geq 0 \) \(P \)-a.s.

Therefore, the interesting cases are of type \(\langle X \rangle \neq 0 \), where the Itô integral occurs.
1. Introduction to Pathwise Itô-Calculus

Proposition 1.4.4 (d-dimensional version of Proposition 1.4.2). Let \(X = (X^1, \ldots, X^d) \) with \(X^1, \ldots, X^d \) continuous local martingales up to \(T \) such that \((X_i, X_j)\) exist for all \(1 \leq i, j \leq d \) and are continuous up to \(T \). Let \(F \in C^2(D), D \subset \mathbb{R}^d \), open, with \(X_0(\omega) \subset K \) for \(\mathbb{P}\)-a.e. \(\omega \in \Omega \) for some compact \(K \subset \mathbb{R}^d \). Then

\[
M_t := \int_0^t (\nabla F(X_s), dX_s)_{\mathbb{R}^d} \quad \text{(d-dimensional Itô-integral)}
\]
is a continuous local martingale up to

\[
T \wedge \inf\{t > 0|X_t \notin D\}.
\]

Proof. Exercise (Proceed as for Proposition 1.4.2).

Remark 1.4.5. By Remark 1.3.9 (iii) for \(M \) as in Proposition 1.4.4 we have

\[
\langle M \rangle_t = \sum_{k,j=1}^d \int_0^t \frac{\partial^2 F}{\partial x_k \partial x_l}(X_s) \frac{\partial F}{\partial x_l}(X_s) \, d\langle X^k, X^l \rangle_s \quad \text{on} \{t < \bar{T}\}.
\]

Hence, if \(\bar{T} \equiv \infty \), then \(M \) is a Brownian motion. This is a consequence of Corollary 1.4.7 below.

Proposition 1.4.6. Let \(M \) be a continuous martingale up to \(T \) (with continuous \(\langle M \rangle \)) and let \(T_0 < T \) be a stopping time such that

\[
E[\langle M \rangle_{T_0}] < \infty.
\]

Then

\[
E[M_{T_0}] = E[M_0]
\]
and \((M_{T_0 \wedge T_{n \wedge t}})_{t \geq 0} \) is a square integrable martingale.

Note that \(T_0 \) doesn’t need to be bounded.

Proof. Without loss of generality assume \(M_0 \equiv 0 \). (Otherwise consider \(M_t - M_0 \).) Let \(T_n \nearrow T \) be a localising sequence for \(M \) and \(\int_0^T M_s \, dM_s \). We may assume \(T_n \leq n \). (Otherwise we replace it by \(T \wedge n \).) Then \((M_{T_0 \wedge T_n \wedge t})_{t \geq 0} \) is a martingale such that

\[
M_{T_0 \wedge T_n \wedge t} \to M_{T_0 \wedge t} \quad \text{P-a.s.} \forall t \geq 0
\]
and

\[
E \left[M_{T_0 \wedge T_n \wedge t}^2 \right] \overset{\text{Cor. 1.4.3}}{=} E[\langle M \rangle_{T_0 \wedge T_n \wedge t}] \leq E[\langle M \rangle_{T_0}] < \infty.
\]

Hence, \(\{M_{T_0 \wedge T_n \wedge t} | n \in \mathbb{N}, t \geq 0\} \) is uniformly integrable. In particular, by Lebesgue

\[
M_{T_0 \wedge T_n \wedge t} \to M_{T_0 \wedge t} \quad \text{in} \mathcal{L}^1 \forall t \geq 0.
\]

Therefore, \((M_{T_0 \wedge t})_{t \geq 0} \) is a martingale. In addition,

\[
E \left[M_{T_0 \wedge t}^2 \right] \leq \liminf_{n \to \infty} E \left[M_{T_0 \wedge T_n \wedge t}^2 \right] \leq E[\langle M \rangle_{T_0}] < \infty \quad \forall t \geq 0.
\]

So, \((M_{T_0 \wedge t})_{t \geq 0} \) is square integrable (with uniformly integrable bounded \(\mathcal{L}^2 \)-norm). Furthermore, it is easy to show that

\[
E[M_{T_0}] = \lim_{n \to \infty} E \left[M_{T_0 \wedge T_n} \right] = 0 = E[M_0].
\]
Corollary 1.4.7. Let M be a continuous local martingale up to $T \equiv \infty$ (with continuous $\langle M \rangle$) such that

$$E[\langle M \rangle_t] < \infty \quad \forall t \geq 0.$$

Then M is a square integrable martingale.

Finally, we want to investigate the following proposition, which can be considered as the core statement of the Itô formula.

Proposition 1.4.8. Let T be a stopping time and X,A continuous processes with continuous $\langle X \rangle$ and $\langle A \rangle = 0$ up to T. Assume $A_0 = 0$. Then the following are equivalent:

i. X is a local martingale up to T with $\langle X \rangle = A$.

ii. For all $\alpha \geq 0$ is

$$G_t^\alpha := \exp[\alpha X_t - \frac{1}{2} \alpha^2 A_t] \quad \text{for} \quad t \text{ up to } T$$

a local martingale up to T.

Proof. (i) \Rightarrow (ii): Without loss of generality $X_0 \equiv 0$. Then by Itô-formula for time independent functions (cf. Proposition 1.3.11)

$$G_t^\alpha = G_0^\alpha + \int_0^t \alpha G_s^\alpha \, dX_s + 0$$

is a local martingale up to T by Proposition 1.4.2 for $f(X_t, \langle X \rangle_t) = \exp(\alpha X_t - \frac{1}{2} \alpha^2 \langle X \rangle_t)$. In the general case consider $e^{-\alpha X_0} G_t^\alpha$ and apply above to get that $(e^{-\alpha X_0} G_t^\alpha)_{t \geq 0}$ is a local martingale up to T. Multiplying by $e^{\alpha X_0}$ implies the assertion.

(ii) \Rightarrow (i): Without loss of generality assume $X_0 = 0$. (Otherwise consider $e^{-\alpha X_0} G_t$ for $t \leq T$. This is a local martingale up to T since $e^{-\alpha X_0}$ is \mathcal{F}_t-measurable. Therefore, in the special case ($X_0 = 0$) we get that $X_t - X_0$ is a local martingale up to T, hence, so is X.) By Itô-formula we get

$$X_t = \frac{1}{\alpha} \left(\log G_t^\alpha - \log G_0^\alpha \right) + \frac{1}{2} \alpha A_t$$

$$= \lim_{\alpha \to 0} \left(\int_0^t \frac{1}{G_s^\alpha} \, dG_s^\alpha - \frac{1}{2} \int_0^t \frac{1}{(G_s^\alpha)^2} \, d\langle G^\alpha \rangle_s \right) + \frac{1}{2} \alpha A_t$$

$$\overset{1.3.9(ii)}{=} \lim_{\alpha \to 0} \left(\int_0^t \frac{1}{G_s^\alpha} \, dG_s^\alpha - \frac{1}{2} \int_0^t \frac{1}{(G_s^\alpha)^2} (\alpha G_s^\alpha)^2 \, d\langle G \rangle_s \right) + \frac{1}{2} \alpha A_t$$

$$= \frac{1}{\alpha} \int_0^t \frac{1}{G_s^\alpha} \, dG_s^\alpha + \frac{\alpha}{2} (A_t - \langle X \rangle_t) \quad \forall \alpha \in \mathbb{R} \setminus \{0\}.$$

Here, $\frac{1}{\alpha} \int_0^t \frac{1}{G_s^\alpha} \, dG_s^\alpha$ is a local martingale up to T by Proposition 1.4.2 with $G \in (0, \infty)$. Consider $\alpha \neq \alpha'$ and take the difference of the two corresponding equalities to get

$$0 = M + \frac{\alpha - \alpha'}{2} (A_t - \langle X \rangle_t),$$

where M is a local martingale up to T. By assumption and by Corollary 1.4.3(ii) $A_t - \langle X \rangle_t = A_0 - \langle X \rangle_0 = 0$ on \{ $t < T$ \} P-a.s. \qed
1. Introduction to Pathwise Itô-Calculus

1.5. Levy’s Characterization of Brownian Motion

Let $X = (X_t)_{t \geq 0}$ be a stochastic process on (Ω, \mathcal{F}, P) with continuous sample paths (and continuous quadratic variation (X)).

Proposition 1.5.1 (Levy). Assume that X is a continuous local martingale up to ∞ with respect to some filtration $(\mathcal{F}_t)_{t \geq 0}$ such that X is (\mathcal{F}_t)-adapted. If $\langle X \rangle_t = t$ holds for all $t \geq 0$, then X is a Brownian motion.

Remark 1.5.2. Every continuous martingale can be transferred by time change into a Brownian motion provided its quadratic variation is strictly increasing (see later). Therefore, Brownian motion is the only local martingale, where the quadratic variation can be considered as “proper time”.

Proof of 1.5.1. By Corollary 1.4.7 X is already a martingale. We apply Itô-formula to

$$F(x) = e^{iuX} = \cos(ux) + is(ux), \forall x \in \mathbb{R}, \forall u \in \mathbb{R}.$$

Then, for all $s < t$

$$e^{iuX_{t \wedge T_n}} - e^{iuX_{s \wedge T_n}} = \int_0^{t \wedge T_n} iue^{iuX_r} \, dX_r - \int_0^{s \wedge T_n} iue^{iuX_r} \, dX_r + \frac{1}{2} \int_{s \wedge T_n}^{t \wedge T_n} (-u^2)e^{iuX_r} \, d\langle X \rangle_r,$$

where $T_n \nearrow \infty$ are stopping times such that

$$\left(\int_0^{t \wedge T_n} iue^{iuX_r} \, dX_r\right)_{t \geq 0}$$

is a martingale for all n. Now take $E[\cdot | \mathcal{F}_s]$ of the equality above:

$$E[e^{iuX_{t \wedge T_n}} - e^{iuX_{s \wedge T_n}} | \mathcal{F}_s] = \frac{1}{2} E\left[\int_{s \wedge T_n}^{t \wedge T_n} (-u^2)e^{iuX_r} \, dr | \mathcal{F}_s\right].$$

Hence, letting $n \to \infty$ by path-continuity we obtain

$$E\left[\int_s^t (-u^2)e^{iuX_r} \, dr | \mathcal{F}_s\right] = E[e^{iuX_t} - e^{iuX_s} | \mathcal{F}_s].$$

Multiplication by e^{-iuX_s} yields

$$E[e^{iu(X_t - X_s)} | \mathcal{F}_s] - 1 = \frac{1}{2} E\left[\int_s^t (-u^2)e^{iu(X_r - X_s)} \, dr | \mathcal{F}_s\right].$$

Therefore, for all $A \in \mathcal{F}_s$

$$E[e^{iu(X_t - X_s)}, A] = P(A) \overset{\text{Fubini}}{=} -\frac{1}{2} u^2 \int_s^t E[e^{iu(X_r - X_s)}, A] \, dr.$$

Thus, $\varphi \in C^1$ (since the right hand side is C^1) and by differentiation

$$\dot{\varphi}(t) = \frac{1}{2} u^2 \varphi(t) \quad \forall t \geq s.$$

Solving this equation we get

$$\varphi(t) = C \cdot e^{\frac{1}{2} u^2 t}.$$
Substituting t by s yields

$$P(A) = \varphi(s),$$

which implies

$$C = P(A)e^{-\frac{1}{2}u^2 s},$$

hence,

$$E[e^{iu(X_t - X_s)}; A] = e^{-\frac{1}{2}u^2(t-s)}P(A) \quad \forall A \in \mathcal{F}_s, \quad (1.5.15)$$

Taking $A := \Omega$ implies that $X_t - X_s$ is $N(0, (t - s))$ distributed by uniqueness of the Fourier-transformation. By monotone class argument, (1.5.15) implies that $X_t - X_s$ is independent of \mathcal{F}_s (Exercise). In particular,

$$X_{t_n} - X_{t_{n-1}}, \ldots, X_{t_2} - X_{t_1}$$

are independent for all $0 \leq t_1 < t_2 < \ldots < t_n < \infty$. \qed
1. Introduction to Pathwise Itô-Calculus
2. (Semi-)Martingales and Stochastic Integration

In this chapter we want to define
\[\int g(t, \cdot) \, dM_t, \]
where \(g \) is defined “more general” and \(M_t \) is an arbitrary semimartingale. This is more general than so far, since we could only define
\[\int f(t, \mu_t) \, dM_t, \quad \forall f \in C^1. \]

2.1. Review of Some Facts from Martingale Theory

Fix a probability space \((\Omega, \mathcal{F}, P)\) and let \((\mathcal{F}_t)_{t \geq 0}\) be a right-continuous filtration. (Sometimes assume in addition that \(N \in \mathcal{F} \), \(P(N) = 0 \Rightarrow N \in \mathcal{F}_0 \).) These conditions are also called “usual conditions”.

Proposition 2.1.1. Let \((M_t)_{t \geq 0}\) be a martingale. Then there exists a version
\[(\tilde{M}_t)_{t \geq 0} \]
(i.e. \(M_t = \tilde{M}_t \) on \(N(t)^c \) such that \(P(N(t)) = 0 \)), such that \(t \mapsto \tilde{M}_t(\omega) \) is càdlàg (i.e. is right-continuous and has left limits) for all \(\omega \in \Omega \).

Proof. Doob’s upcrossing lemma (cf. [vWW90]).

Proposition 2.1.2 (Optional stopping theorem). Let \((M_t)_{t \geq 0}\) be a martingale and \(T \) be a stopping time. Then \((M_{t \wedge T})_{t \geq 0}\) is a martingale.

Proof. See [Rôc06, Proposition VIII.4.2, Corollary VIII.4.3].

Proposition 2.1.3 (Doob’s inequality). Let \(p > 1 \). Then
\[\left\| \sup_{s \leq t} |M_s| \right\|_p \leq \frac{p}{p-1} \|M_t\|_p, \]

where \(\| \cdot \|_p = \| \cdot \|_{L^p} \). In particular, if
\[M^* := \sup_{t \geq 0} |M_t|, \]

then
\[\|M^*\|_p \leq \frac{p}{p-1} \sup_{t \geq 0} \|M_t\|_p. \]

Proposition 2.1.4. Let \(\left(M^{(n)}_t \right)_{t \geq 0}, n \in \mathbb{N}, \) be a sequence of martingales such that
\[M^{(n)}_t \xrightarrow{n \to \infty} M_t \quad \text{in } L^p, \forall t \geq 0, \forall p \geq 1. \]

Then
2. (Semi-)Martingales and Stochastic Integration

i. \((M_t)_{t \geq 0}\) is again a martingale in \(L^p\).

ii. If \(p > 1\) and \((\mathcal{F}_t)_{t \geq 0}\) such that all \(P\)-zero sets in \(\mathcal{F}_t\) are in \(\mathcal{F}_0\) and each \(\left(M^{(n)}_t \right)_{t \geq 0}\) has \(P\)-a.s. (right-) continuous ((càdlàg)) sample paths, then \((M_t)_{t \geq 0}\) has a (right-) continuous ((càdlàg)) \((\mathcal{F}_t\))-adapted version and

\[
M^{(n)}_t \xrightarrow{n \to \infty} M_t
\]

locally uniformly in \(t\) and in \(L^p\) and has a locally uniformly in \(t\) \(P\)-a.s. convergent subsequence.

Proof. i. Obvious.

ii. Fix \(t > 0\). Since \(M^n - M^m\) is a martingale, we have by Doob

\[
\left\| \sup_{s \leq t} |M^{(n)}_s - M^{(m)}_s| \right\|_p \leq \frac{p}{p-1} \left\| M^{(n)}_t - M^{(m)}_t \right\|_p.
\]

Since they are \(L^p\)-convergent, for some subsequence \((n_k)_{k \in \mathbb{N}}\)

\[
\sum_{k=1}^\infty \left\| \sup_{s \leq t} |M^{(n_{k+1})}_s - M^{(n_k)}_s| \right\|_p \leq \frac{p}{p-1} \sum_{k=1}^\infty \left\| M^{(n_{k+1})}_t - M^{(n_k)}_t \right\|_p < \infty.
\]

Therefore,

\[
P\left(\sum_{k=1}^\infty \sup_{s \leq t} \left| M^{(n_{k+1})}_s - M^{(n_k)}_s \right| < \infty \right) = 1.
\]

Hence, \(M^{(n_k)}_{t} \xrightarrow{k \to \infty} M_t\) uniformly on \([0,t]\) \(P\)-a.s. (cf. Proof of Riesz-Fischer!). Then up to a \(P\)-zero set \(M_s\) is \(\mathcal{F}_s\)-measurable, since so is each \(M^{(n_k)}_s\). But \(\mathcal{F}_s\) contains all \(P\)-zero sets in \(\mathcal{F}_0\). Therefore, \(M_s\) is \(\mathcal{F}_s\)-measurable.

\[\square\]

Alternative proof. Fix \(t \geq 0\). Consider the maps

\[
\Omega \ni \omega \mapsto \left(M^{(n)}_t(\omega) \right) \in (\mathcal{C}([0,t],[\mathbb{R}]),\|\cdot\|_\infty)
\]

and

\[
\int \left\| M^{(n)}(\omega) \right\|_\infty^p P(d\omega) < \infty.
\]

So, by assumption and Doob \(M^{(n)}\) is a Cauchy sequence in \(L^p(\Omega,\mathcal{F},P;\mathcal{C}([0,t],[\mathbb{R}]))\). Hence, \(M^{(n)} \to M_t\) in \(L^p(\Omega,\mathcal{F},P;\mathcal{C}([0,t],[\mathbb{R}]))\) by Riesz Fischer. But then also for all \(t M^{(n)}_t \to M_t\) in \(L^p\), hence, \(M_t = M_t\) \(P\)-a.s. So \(N\) is the required continuous version of \(M\).

\[\square\]

Remark 2.1.5 (Localization). Let \((M_t)_{t \geq 0}\) be a continuous local martingale (up to \(\infty\)) such that \(M_0 = 0\). Set

\[
R_n(\omega) := \inf \{ t > 0 | |M_t(\omega)| > n \} \xrightarrow{n \to \infty} \infty.
\]

Claim: For all \(n \in \mathbb{N}\) \((M_t \wedge R_n)_{t \geq 0}\) is a continuous bounded martingale.
2.2. Quadratic Variation and Covariation for Continuous Local Martingales

Proof. Let \((T_k)_{k \in \mathbb{N}}\) be a localizing sequence for \(M\), such that \(T_k \leq k\). (Otherwise consider \(T_k \wedge k\).) Then for \(s \leq t\) and \(n\) fixed

\[
E[M_{t \wedge R_n \wedge T_k} \wedge A_s] = E[M_{s \wedge R_n \wedge T_k} \wedge A_s] \quad \forall A_s \in \mathcal{F}_s.
\]

By Lebesgue, for all \(A_s \in \mathcal{F}_s\),

\[
E[M_{t \wedge R_n \wedge T_k} \wedge A_s] \xrightarrow{k \to \infty} E[M_{t \wedge R_n} \wedge A_s]
\]

and, since \(|M_{t \wedge R_n \wedge T_k}| \leq n\) for fixed \(n\),

\[
E[M_{s \wedge R_n \wedge T_k} \wedge A_s] \xrightarrow{k \to \infty} E[M_{s \wedge R_n} \wedge A_s].
\]

So, we get

\[
E[M_{t \wedge R_n} \wedge A_s] = E[M_{s \wedge R_n} \wedge A_s].
\]

\(\square\)

2.2. Quadratic Variation and Covariation for Continuous Local Martingales

Let \((M_t)_{t \geq 0}\) be a càdlàg martingale.

(a) First possible approach to stochastic integration:

Assume initially \(M_t \in L^2\) for all \(t \geq 0\). (If \(M_t \not\in L^2\), then localize.) By Jensen’s inequality \((M_t^2)_{t \geq 0}\) is a submartingale. Then we can show (cf. Doob-Meyer decomposition) that there exists a unique adapted process \(\langle M \rangle_t\) with \(\langle M \rangle_0 = 0\), increasing, right-continuous, predictable (see below) such that

\[
\langle M_t^2 - \langle M \rangle_t \rangle_{t \geq 0} \tag{*}
\]

is a martingale. Then, \(\langle M \rangle\) is the variance process of \(M\), i.e.

\[
E[(M_t - M_s - E[M_t - M_s])^2 | \mathcal{F}_s] \quad \text{(conditioned variance of } M_t - M_s \text{ given } \mathcal{F}_s)
\]

\[
= E[M_t^2 - M_s^2 | \mathcal{F}_s] \tag{*} \xrightarrow{=} E[\langle M \rangle_t - \langle M \rangle_s | \mathcal{F}_s].
\]

In [Röc06] we proved Doob-Meyer decomposition in discrete time. In continuous time for càdlàg martingales this is difficult (cf. [Kry]).

We are going to take an alternative approach that we prove Doob-Meyer decomposition for continuous martingales. In the stochastic integration theory below, we shall, however, allow càdlàg martingales simply assuming Doob-Meyer without proof.

(b) Our approach:

Let \(M\) be a continuous martingale. We will construct the process \(\langle M \rangle\) such that it pathwise coincides \(P\)-a.s. with the quadratic variation of \(M\) along \((\tau_n)_{n \in \mathbb{N}}\) of the previous chapter.

(This is only possible for continuous \(M\)!

Let \(M\) be a continuous local martingale and let \((\tau_n)_{n \in \mathbb{N}}\) be a sequence of partitions of \([0, \infty)\) such that

\[
|\tau_n| \xrightarrow{n \to \infty} 0
\]

and

\[
t^{(n)}_{N_n} \xrightarrow{n \to \infty} \infty.
\]

27
2. (Semi-)Martingales and Stochastic Integration

Definition 2.2.1. Let

\[V_t^n := \sum_{s \leq \tau_n} (M_{s'} - M_s)^2, \quad n \in \mathbb{N}, \ t \geq 0 \]

be the quadratic variation of \(M\) along \(\tau_n\) on \([0,t]\). Here, \(s'\) denotes the successor of \(s\) in \(\tau_n\).

Note that \(t \mapsto V_t^n\) is \(P\)-a.s. continuous for all \(n \in \mathbb{N}\).

Remark 2.2.2. Since \((a - b)^2 = a^2 - 2ab - b^2\),

\[V_t^{(n)} = M_t^2 - M_0^2 - 2 \sum_{s \in \tau_n} \left(M_{s'} - M_s\right)
\]

\[= M_t^2 - M_0^2 - 2 \sum_{s \in \tau_n, s \leq t} \left(M_{s'} - M_s\right). \]

is local martingale

Proposition 2.2.3. Assume that \(\mathcal{F}_0\) contains all \(P\)-zero sets. Let \(M\) be a continuous (for all \(\omega \in \Omega\), local martingale (up to \(\infty\)). Then there exists a (unique) continuous increasing \(\mathcal{F}_t\)-adapted process \(\langle M \rangle\) with \(\langle M\rangle_0 = 0\) such that

i. \(\langle M \rangle_t = \lim_{n \to \infty} V_t^{(n)}\) in \(P\)-measure locally uniformly in \(t \geq 0\),

(Convergence is even in \(L^2(\Omega, \mathcal{F}, P; \mathbb{C}([0,t], \mathbb{R}))\) for all \(t \geq 0\), if \(M\) is bounded.)

ii. \(M^2 - \langle M \rangle\) is a continuous local martingale,

iii. if \(M_t \in L^2\) for all \(t \geq 0\) and if \(M_t\) is a martingale, then \(M_t^2 - \langle M \rangle_t\) is a martingale. In particular,

\[E[M_t^2] = E[M_0^2] + E[\langle M \rangle_t] \quad \forall t \geq 0. \]

Proof.

i. Case 1: \(M\) is bounded (i.e. \(\sup_{t \geq 0, \omega \in \Omega} |M_t(\omega)| < \infty\).

Claim: \((V_t^{(n)})_{n \in \mathbb{N}}\) is a Cauchy sequence in \(L^2\) for all \(t \geq 0\).

Proof. Take \(m, n\) large so that \(t \leq t_{N_n}^{(n)}, t \leq t_{N_m}^{(m)}\). Define

\[V_t^{(m,n)} := M_t^2 - M_0^2 - 2 \sum_{s \in \tau_n \cup \tau_m} \left(M_{s'} - M_s\right) \]

\[= V_t^{(n,m)}. \]

Here, \(s'\) denotes the successor of \(s\) in \(\tau_n \cup \tau_m\). Then for \(V_t^{(n)}\) as in Remark 2.2.2

\[V_t^{(m,n)} - V_t^{(n)} = -2 \sum_{s \in \tau_n} \left(\left(\sum_{u \leq s < u'} M_u (M_{s'} - M_u) - M_u (M_{u'} - M_u) \right) - \left(M_{s'} - M_s \right) \right), \]

where \(u'\) is the successor in \(\tau_n\) and \(s'\) the one in \(\tau_n \cup \tau_m\). Using the fact that

\[M_{u'} - M_u = \sum_{u \leq s < u'} (M_{s'} - M_s), \]

we conclude that

\[V_t^{(m,n)} - V_t^{(n)} = -2 \sum_{u \in \tau_n} \sum_{u \leq s < u'} (M_u - M_s)(M_{s'} - M_s). \]
2.2. Quadratic Variation and Covariation for Continuous Local Martingales

Hence,

\[
E \left[\left(V_{t}^{(m,n)} - V_{t}^{(m)} \right)^2 \right] = 4 E \left[\sum_{u \in \tau_n} \sum_{u' \leq s < u} (M_s - M_u)^2 (M_{s' \wedge t} - M_{s \wedge t})^2 \right]
\]

Note that all occurring mixed terms are zero by the martingale property (exercise!). Furthermore,

\[
E \left[\left(V_{t}^{(m,n)} - V_{t}^{(m)} \right)^2 \right] \leq 4 E \left[\Delta_m \sum_{s \in \tau_n \cup \tau_m} (M_{s' \wedge t} - M_{s \wedge t})^2 \right],
\]

where

\[
\Delta_m := \sup_n \sup_{s,u} \left\{ (M_s - M_u)^2 \bigg| s \in \tau_n \cup \tau_m, u \in \tau_n, u \leq s \leq u', s, u \leq t \right\}
\]

is bounded in \(\omega \), since \(M(\omega) \) is bounded. Then, by Cauchy-Schwarz

\[
E \left[\left(V_{t}^{(m,n)} - V_{t}^{(m)} \right)^2 \right] \leq 4 \left(E \left[\Delta^2_m \right] \right)^{1/2} \left\| \sum_{s \in \tau_n \cup \tau_m} (M_{s' \wedge t} - M_{s \wedge t})^2 \right\|_2.
\]

By Lebesgue’s dominated convergence theorem,

\[
\left(E \left[\Delta^2_m \right] \right)^{1/2} = \|\Delta_m\|^2_m \xrightarrow{m \to \infty} 0,
\]

since \(M(\omega) \) is uniformly continuous on \([0,t]\) for all \(t \) and \((M_t)_{t \geq 0} \) is bounded in \((\omega, t)\). But for \(c := \sup_{t,\omega} |M_t(\omega)| \) and for all \(n, m \in \mathbb{N} \)

\[
E \left[\left(\sum_{s \in \tau_n \cup \tau_m} (M_{s' \wedge t} - M_{s \wedge t})^2 \right)^2 \right] = E \left[\sum_{s \in \tau_n \cup \tau_m} (M_{s' \wedge t} - M_{s \wedge t})^4 \right]
\]

\[
+ 2 E \left[\sum_{s \in \tau_n \cup \tau_m} \sum_{u \in \tau_n \cup \tau_m} (M_{s' \wedge t} - M_{s \wedge t})^2 (M_{u' \wedge t} - M_{u \wedge t})^2 \right]
\]

\[
\leq 4 c^2 E \left[\sum_{s \in \tau_n \cup \tau_m} (M_{s' \wedge t} - M_{s \wedge t})^2 \right] \quad \overset{=: S_1}{=} \\
+ 2 \sum_{s \in \tau_n \cup \tau_m} \sum_{u \in \tau_n \cup \tau_m} E \left[(M_{s' \wedge t} - M_{s \wedge t})^2 \cdot E[(M_{u' \wedge t} - M_{u \wedge t})^2 | \mathcal{F}_{u \wedge t}] \right] \quad \overset{=: S_2}{=}
\]

29
2. (Semi-)Martingales and Stochastic Integration

and

\[S_1 = \sum_{s \in \tau_n \cup \tau_m} E[M_{s'}^2 - 2M_{s'}M_{s\wedge t} + M_{s\wedge t}^2] \]
\[= \sum_{s \in \tau_n \cup \tau_m} E[M_{s'}^2 + M_{s\wedge t}^2 - 2E[M_{s'}M_{s\wedge t}|\mathcal{F}_t]] \]
\[= \sum_{s \in \tau_n \cup \tau_m} E[M_{s'}^2 + M_{s\wedge t}^2 - 2E[M_{s'}M_{s\wedge t}|\mathcal{F}_t]] \]
\[= \sum_{s \in \tau_n \cup \tau_m} E[M_{s'}^2 - M_{s\wedge t}^2] = E[M_t^2 - M_0^2] \]

In addition,

\[S_2 = \sum_{u \in \tau_n \cup \tau_m} \sum_{s \leq u} E[(M_{s'} - M_{s\wedge t})^2], \]
\[= \sum_{u \in \tau_n \cup \tau_m} \sum_{s \leq u} E[(M_{s'} - M_{s\wedge t})^2] \cdot E[M_{s'}^2 - M_{s\wedge t}^2]|_{\mathcal{F}_u \wedge t} \]
\[\leq \sum_{u \in \tau_n \cup \tau_m} \sum_{s \leq u} E[(M_{s'} - M_{s\wedge t})^2] \cdot (M_{s'}^2 - M_{s\wedge t}^2) \]
\[= E[(M_{s'} - M_{s\wedge t})^2] \cdot (M_{s'}^2 - M_{s\wedge t}^2) \)
\[\leq 2c^2 E[(M_{s'} - M_{s\wedge t})^2|\mathcal{F}_{s\wedge t}]] = 2c^2 E[M_{s'}^2 - M_{s\wedge t}^2]. \]

Thus,

\[E \left(\sum_{s \in \tau_n \cup \tau_m} (M_{s'} - M_{s\wedge t})^2 \right)^2 \]
\[\leq 4c^2 \sum_{s \in \tau_n \cup \tau_m} E[(M_{s'} - M_{s\wedge t})^2] + 4c^2 \sum_{s \in \tau_n \cup \tau_m} E[M_{s'}^2 - M_{s\wedge t}^2] \]
\[\leq 8c^2 E[M_t^2 - M_0^2] \leq 16c^4. \]

Alltogether, we obtain for all \(n, m \) large enough

\[\left(E \left[(V_t^{(n)} - V_t^{(m)})^2 \right] \right)^{1/2} \leq E \left[(V_t^{(n)} - V_t^{(m)})^2 \right]^{1/2} + \left(V_t^{(m,n)} - V_t^{(m)} \right)^2 \]
\[\leq 2 \| \Delta_n \|_{1/2} 4c^2 + 2 \| \Delta_m \|_{1/2} 4c^2 n,m \rightarrow \infty 0 \]

and the claim is proved. \(\square \)

Let \(V_t := L^2|_{n \rightarrow \infty} V_t^{(n)} \), \(t \geq 0 \). Define

\[Y_t^{(n)} := 2 \sum_{s \in \tau_n} M_s(M_{s'} - M_{s\wedge t}). \]

Then

\[Y_t^{(n)} = M_t^2 - M_0^2 - V_t^{(n)} \xrightarrow{n \rightarrow \infty} M_t^2 - M_0^2 - V_t :=: Y_t \quad (\text{locally uniformly in } t \text{ in } L^2). \]

Hence, by Proposition 2.1.4 \(Y_t^{(n)} \) is a local martingale (cf. 2.2.2) and \(Y_t \) has a \(P \)-a.s. continuous version and, therefore, \(V_t \) has a continuous version \(\langle M \rangle \) and \(\langle M \rangle \) is \((\mathcal{F}_t) \)-adapted since all \(P \)-zero sets in \(\mathcal{F} \) are in \(\mathcal{F}_0 \), hence, every \(\mathcal{F}_t \). Finally, we get

\[E \left[\sup_{s \leq t} \left| V_s^{(n)} - \langle M \rangle_s \right|^2 \right] \xrightarrow{n \rightarrow \infty} 0. \]
2.2. Quadratic Variation and Covariation for Continuous Local Martingales

Case 2: \(M \) as in the assertion.
Without loss of generality \(M_0 \equiv 0 \). (Otherwise consider \((M_t - M_0)_{t \geq 0} \).) Let \(R_k \) be as in 2.1.5, i.e.
\[
R_k := \inf \{ t > 0 \mid |M_t| > k \}
\]
and therefore, \(R_k \) is a stopping time. Define
\[
M_t^k := M_{t \wedge R_k}, \quad t \geq 0.
\]
\(M_t^k \) is a bounded martingale. Hence, by case 1 there exists \(V_t^k := \langle M^k \rangle_t \). Let \((V_t^k)^{(n)}, t > 0 \), be the corresponding approximations along \((\tau_n) \), then there exists a subsequence \((n_l)_{l \in \mathbb{N}} \) and \(\Omega_0 \in \mathcal{F}, P(\Omega_0) = 1 \) such that for all \(k \in \mathbb{N} \) (cf. Proposition 2.1.4(ii))
\[
(V_s^k)^{(n_l)}(\omega) \xrightarrow{l \to \infty} \langle M^k \rangle_s(\omega)
\]
locally uniformly for \(s \in [0, t] \) and for \(P\)-a.e. \(\omega \in \Omega_0 \). But
\[
1_{\{t \leq R_k\}} V_{t}^{(n_l)} = 1_{\{t \leq R_k\}} V_{t \wedge R_k}^{(n_l)} = 1_{\{t \leq R_k\}} (V_t^{k})^{(n_l)} \xrightarrow{l \to \infty} 1_{\{t < R_k\}} \langle M^k \rangle_t.
\]
Hence, we can (well-)define
\[
\langle M \rangle_t := \begin{cases}
\langle M^k \rangle_t(\omega), & \text{with } k \in \mathbb{N} \text{ such that } \omega \in \{t \leq R_k\} \cap \Omega_0, \\
0, & \text{otherwise}
\end{cases}
\]
and is independent of \(k! \) Then \(\langle M \rangle \) is \(P\)-a.s. continuous and \((\mathcal{F}_t) \)-adapted.
Furthermore, we fix \(k = k(\delta) \) large enough, such that
\[
P[\{R_k \geq t\}] = P[R_k < t] \leq \delta.
\]
Then
\[
P \left(\sup_{0 \leq s \leq t} \left| V_s^{(n)} - \langle M \rangle_s \right| \geq \varepsilon \right) \]
\[
= P \left(\sup_{0 \leq s \leq t} \left| V_s^{(n)} - \langle M \rangle_s \right| \geq \varepsilon, R_k \leq t \right) + P \left(\sup_{0 \leq s \leq t} \left| V_s^{(n)} - \langle M \rangle_s \right| \geq \varepsilon, R_k > t \right)
\]
\[
\leq P(\langle M^k \rangle_t \leq t) + P \left(\sup_{0 \leq s \leq t} \left| (V_s^k)^{(n_l)} - \langle M^k \rangle_s \right| \geq \varepsilon, R_k > t \right)
\]
\[
\leq P(\langle M^k \rangle_t \leq t) + P \left(\sup_{0 \leq s \leq t} \left| (V_s^k)^{(n_l)} - \langle M^k \rangle_s \right| \geq \varepsilon \right).
\]
But by the first part of the proof
\[
P \left(\sup_{0 \leq s \leq t} \left| (V_s^k)^{(n_l)} - \langle M^k \rangle_s \right| \geq \varepsilon \right) \xrightarrow{n \to \infty} 0.
\]
Therefore,
\[
\lim_{n \to \infty} P \left(\sup_{0 \leq s \leq t} \left| V_s^{(n)} - \langle M \rangle_s \right| \geq \varepsilon \right) \leq P[R_k \leq t] < \delta.
\]
It remains to show that \(t \mapsto \langle M \rangle_t \) is increasing \(P\)-a.s.. But for fixed \(t \geq 0 \) we have that
\[
V_t^{(n)} = \sum_{s \in \tau_n, s \leq t} (M_s - M_s')^2 + N_t^{(n)} \xrightarrow{n \to \infty} \langle M \rangle_t,
\]
2. (Semi-)Martingales and Stochastic Integration

where the sum is increasing in \(t \) and

\[
N_t^{(n)} := (M_t - M_{\delta_t^{(n)}})^2 \xrightarrow{n \to \infty} 0
\]

and

\[
\delta_t^{(n)} := \sup\{s \in \tau_n | s \leq t\}.
\]

Hence, (i) is completely proved.

ii. Continuity is clear. We know, that \(P \)-a.s.

\[
M_t^2 - \langle M \rangle_t = (M_t^k)^2 - \langle M^k \rangle_t = Y_t + M_0^2
\]

is a martingale. Hence, \(M_t^2 - \langle M \rangle_t \) is a local martingale for \(T \) up to \(\bar{\infty} \).

(Alternative proof by using 1.4.3 (i).)

iii. Without loss of generality \(M_0 = 0 \). We have to show that

\[
E[\langle M \rangle_T] = E[M_T^2]
\]

for all bounded stopping times \(T \). By the monotone convergence theorem, we get that

\[
E[\langle M \rangle_T] = \lim_{n \to \infty} E[(\langle M \rangle_{T \wedge R_n})^2] = \lim_{n \to \infty} E[M_{T \wedge R_n}^2] \leq \lim_{n \to \infty} E[M_{T \wedge R_n}].
\]

On the other hand, by the submartingale property, \(\lim_{n \to \infty} E[M_{T \wedge R_n}^2] \leq E[M_T^2] \), so

\[
E[\langle M \rangle_T] = E[M_T^2].
\]

Finally, by assumption,

\[
E[M_T^2] \leq \left[M_{\sup_{\omega \in \Omega} T(\omega)}^2 \right] < \infty,
\]

so that

\[
E[M_T^2 - \langle M \rangle_T] = 0.
\]

\(\Box \)

Remark 2.2.4.

i. One can drop the assumption that “all \(P \)-zero sets in \(\mathcal{F} \) are in \(\mathcal{F}_0 \)”, but one only gets that the particular version of \(\langle M \rangle \) of \(V \) is only right-continuous and adapted. But it is continuous only for \(\omega \in N^c \), with a \(P \)-zero set \(N \in \mathcal{F}_0 \).

ii. Since convergence in probability implies \(P \)-a.s. convergence of a subsequence, it follows by Proposition 2.2.3(i) that for some subsequence \((n_k)_k \in \mathbb{N} \)

\[
P(V_{s}^{(n_k)} \xrightarrow{k \to \infty} \langle M \rangle_s \text{ locally uniformly on } [0, t], \forall t \geq 0) = 1.
\]

iii. Since \(\langle M \rangle \) is exactly the pathwisely defined continuous quadratic variation process of \(M \) in Chapter I, we can apply all results form Chapter I for \(P \)-a.e. \(\omega \in \Omega \) fixed, i.e.

\[
\langle M(\omega) \rangle = \langle M \rangle(\omega).
\]

Corollary 2.2.5. Assume \(M_0 \equiv 0 \). Then

\[
M_t^2 - \langle M \rangle_t = 2 \int_0^t M_s \, dM_s.
\]

Hence, the continuous local martingale \(M_t^2 - \langle M \rangle_t \) is an \(\text{Itô-integral} \) (cf. Corollary 1.4.3(i)).
2.2. Quadratic Variation and Covariation for Continuous Local Martingales

Corollary 2.2.6. P-a.s. the paths of a continuous local martingale are either constant or of unbounded variation.

Proof. Apply Corollary 1.4.3(ii).

Corollary 2.2.7. (M) is the unique increasing continuous adapted process such that $(M)_0 = 0$ and $M^2 - (M)$ is a continuous local martingale. In particular, (M) is (up to a P-zero set in \mathcal{F}) independent of the chosen sequence of partitions (τ_n) in 2.2.1.

Proof. Let A, B be two such processes. Then $M^2 - A, M^2 - B$ are continuous local martingales. Hence, $B - A$ is a continuous local martingale (with respect to (\mathcal{F}_t) since A, B are (\mathcal{F}_t)-adapted) of bounded variation. Therefore, by Corollary 2.2.6

$$B - A = c = B_0 - A_0 = 0 \quad P\text{-a.s..}$$

Definition 2.2.8. (cf. 1.3.1, 1.3.2) Let M, N be continuous local martingales. Then define the covariation process of M, N by

$$\langle M, N \rangle_t := \frac{1}{2} ((\langle M \rangle_t + \langle N \rangle_t) - \langle M \rangle_t - \langle N \rangle_t).$$

Remark 2.2.9. Since $M + N$ is a continuous local martingale, $(M + N)$ exists as a continuous process by Chapter I and polarization. Therefore,

$$\langle M, N \rangle = \lim_{n \to \infty} \sum_{s \in \tau_n} (M_{s^\land t} - M_{s^\land t})(N_{s^\land t} - N_{s^\land t}).$$

Proposition 2.2.10. Let M, N be continuous local martingales. (M, N) is uniquely determined by the following:

i. Its paths are (P-a.s.) continuous and of bounded variation and $(M, N)_0 = 0$.

ii. $M \cdot N - (M, N)$ is a continuous local martingale. In particular, $(M, N) \equiv 0$ if and only if $M \cdot N$ is a local martingale.

Proof. Analogous to the case $M = N$ in Corollary 2.2.7 (or use polarization.).

Lemma 2.2.11. Let M, N be a continuous local martingale. Let $G(= G_s(\omega), s \geq 0, \omega \in \Omega)$ and H be $\mathcal{B}(\mathbb{R}_+) \otimes \mathcal{F}$-measurable. Then

$$\left| \int_0^t H_s(\omega) G_s(\omega) d\langle M, N \rangle_s(\omega) \right| \leq \left(\int_0^t H_s^2 d\langle M \rangle_s(\omega) \right)^{\frac{1}{2}} \left(\int_0^t G_s^2 d\langle N \rangle_s(\omega) \right)^{\frac{1}{2}}.$$

In particular, we obtain (by Cauchy) the Kunita-Watanabe inequality

$$E \left[\left| \int_0^t H_s(\omega) G_s(\omega) d\langle M, N \rangle_s \right| \right] \leq E \left[\int_0^t H_s^2 d\langle M \rangle_s \right]^{\frac{1}{2}} E \left[\int_0^t G_s^2 d\langle N \rangle_s(\omega) \right]^{\frac{1}{2}}.$$

Proof. Exercise (cf. [RW87, Vol II, p.50]).
2. (Semi-)Martingales and Stochastic Integration

2.3. Construction of stochastic integrals on Hilbert space

Fix a probability space \((\Omega, \mathcal{F}, P)\) with right-continuous filtration \((\mathcal{F}_t)\) such that all \(P\)-zero sets in \(\mathcal{F}_t\) are in \(\mathcal{F}_0\). We want to define

\[H \cdot M := \int_0^H M_s \, ds \text{ as a martingale} \]

for càdlàg \((\mathcal{F}_t)\)-martingales and most general \(H\), where càdlàg means right-continuous for all \(\omega \in \Omega\) with left limits \(P\)-a.s. (The latter is automatic by [vWW90, p. 47, 3.25, 3.26].) \(M_s\) is called \textit{integrator process} and \(H_s\) \textit{integrand process}.

"Admissible integrators" are given by

\[\mathcal{M}^2 := \mathcal{M}^2(\Omega, \mathcal{F}, P) := \left\{ M \mid M \text{ is a càdlàg martingale, } M_0 = 0, \|M\|^2 := \sup_{t > 0} E[M_t^2] < \infty \right\}. \]

By Proposition 2.2.3 we know that the Doob-Meyer decomposition holds, that is: For all \(M \in \mathcal{M}^2\) there exists a process \(\langle M \rangle\) such that it is the unique predictable, right-continuous increasing, adapted process and that \(M_0 \equiv 0\) and \(M^2 - \langle M \rangle\) is a martingale. We proved that this \(\langle M \rangle\) exists and is unique if \(M \in \mathcal{M}^2_c\). For the general case see [Kry] or [vWW90, p. 130, Cor. 6.6.3].

Remark 2.3.1. i. Define \(\mathcal{F}_\infty := \sigma(\bigcup_{t \geq 0} \mathcal{F}_t)\). Clearly, \(M_t \in \mathcal{L}^2(\Omega, \mathcal{F}_\infty, P)\) for all \(M \in \mathcal{M}^2\) and by the \(\mathcal{L}^2\)-martingale convergence theorem we have for any càdlàg martingale such that \(M_0 = 0\):

\[M \in \mathcal{M}^2 \iff M \text{ is uniformly integrable and } \exists M_\infty := \lim_{t \to \infty} M_t \in \mathcal{L}^2(\Omega, \mathcal{F}_\infty, P). \]

In this case

\[M_t = E[M_\infty | \mathcal{F}_\infty], \quad t > 0. \]

So \((M_t)_{t \in [0, \infty]}\) is a martingale.

ii. Define with norm \(\|\cdot\|\) an inner product on \(\mathcal{M}^2\) by polarization:

\[(M, N) := \frac{1}{4}(\|M + N\|^2 - \|M - N\|^2), \quad \forall M, N \in \mathcal{M}. \]

It remains to check that it is really an inner product. (This could be done by checking that \(\|\cdot\|\) on \(\mathcal{M}^2\) satisfies

\[\|M + N\|^2 + \|M - N\|^2 = 2\|M\|^2 + 2\|N\|^2 \quad \text{(parallelogram identity)} \]

and using J. von Neumann’s theorem.)

iii. Let \(M \in \mathcal{M}^2\). Since \(\mathcal{M}^2\) is a submartingale and because of (i) we have

\[E[M_\infty^2] = \lim_{t \to \infty} E[M_t^2] = \sup_{t \geq 0} E[M_t^2] = \|M\|^2. \]

Hence, for \(N \in \mathcal{M}^2\), by polarization

\[E[M_\infty N_\infty] = \frac{1}{4} (E[M_\infty + N_\infty]^2 - E[M_\infty - N_\infty]^2) \]

\[= \frac{1}{4} (\|M + N\|^2 - \|M - N\|^2) = (M, N). \]

Therefore, \((\cdot, \cdot)\) is really an inner product with corresponding norm \(\|\cdot\|\).
2.3. Construction of stochastic integrals on Hilbert space

Proposition 2.3.2.
i. \(\mathcal{M}^2 \) is a Hilbert space and
\[
\langle M, N \rangle = E[M_\infty N_\infty] = E[(M, N)_\infty],
\]
where
\[
(M, N)_\infty := \lim_{t \to \infty} (M, N)_t.
\]

ii. \(\mathcal{M}_c^2 \) is a closed subspace of \(\mathcal{M}^2 \).

Proof.
i. \((\mathcal{M}^2, \| \cdot \|)\) is an inner product space (Pre-Hilbert space) by Remark 2.3.1. Furthermore, it is complete by Proposition 2.1.4(ii) and because the norm is complete in
\(L^2(\Omega, \mathcal{F}, P; C([0, T], \mathbb{R})) \).

Finally,
\[
\|M\|_2 = E[M_\infty^2] = \lim_{t \to \infty} E[M_t^2] = \lim_{t \to \infty} E[(M)_t] \overset{BL}\approx E[\lim_{t \to \infty} (M)_t] =: (M)_\infty.
\]

So, by polarization the last assertion follows.

ii. Apply Proposition 2.1.4(ii).

Now we define stochastic integrals with \(M \in \mathcal{M}^2 \) as integrators, but first for elementary functions:

Definition 2.3.3. Define \(\mathcal{E} \) to be the set of all processes \(H \) which are of the following form:
For \(t \geq 0, \omega \in \Omega \)
\[
H_t(\omega) := \sum_{i=0}^{n-1} h_{t_i}(\omega) 1_{[t_i, t_{i+1})}(t),
\]
where \(n \in \mathbb{N}, 0 = t_0 < t_1 < \ldots < t_n < \infty \) and \(h_{t_i} \) are \(\mathcal{F}_{t_i} \)-measurable bounded “elementary (predictable) adapted processes”. For \(M \in \mathcal{M}^2 \) and \(H \) as above define
\[
\int_0^t H_s \, dM_s := \sum_{i=0}^{n-1} h_{t_i}(M_{t_{i+1} \wedge t} - M_{t_i \wedge t}).
\]

An easy exercise shows that this is independent of the representation of \(H \)! Set
\[
(H \cdot M)_t := \int_0^t H_s \, dM_s, \quad t \geq 0.
\]

Then \(H \cdot M \) is called the **stochastic integral** of \(H \) with respect to \(M \).

Lemma 2.3.4. Let \(H \in \mathcal{E} \).

i. \(H \cdot M \in \mathcal{M}^2 \) and if \(M \in \mathcal{M}_c^2 \), then \(H \cdot M \in \mathcal{M}_c^2 \).

ii.
\[
\langle H \cdot M \rangle_t = \int_0^t H_s^2 \, d\langle M \rangle_s \quad \forall t \geq 0
\]
\[
= \sum_{i=0}^{n-1} h_{t_i}^2 \langle (M)_{t_{i+1} \wedge t} - (M)_{t_i \wedge t} \rangle.
\]

In particular,
\[
\|H \cdot M\|^2 = E \left[\int_0^\infty H_s^2 \, d\langle M \rangle_s \right].
\]
2. (Semi-)Martingales and Stochastic Integration

Note that in this respect we always set
\[\int_0^t H_s^2 \, d\langle M \rangle_s := \int_{[0,t]} H_s^2 \, d\langle M \rangle_s. \]

Proof.

i. By definition

- if \(M \) is a cadlag (continuous) martingale, then \(H \cdot M \) is càdlàg (continuous),
- \(H \cdot M \) is adapted,
- \((H \cdot M)_0 = 0 \).

Furthermore, since \(M \) is a martingale,
\[
\sup_{t \geq 0} E[(H \cdot M)^2_t] = \sup_{t \geq 0} E \left[\sum_{i=0}^{n-1} h_{t_i}^2 (M_{t_{i+1} \wedge t} - M_{t_i \wedge t})^2 \right] \\
= \sup_{t \geq 0} \sum_{i=0}^{n-1} E \left[h_{t_i}^2 (M_{t_{i+1} \wedge t} - M_{t_i \wedge t})^2 \right] \\
\leq 2 \sum_{i=0}^{n-1} \sup_{1 \leq i \leq n} \|h_{t_i}\| \sup_{t \geq 0} E \left[h_{t_i}^2 \left(M_{t_{i+1} \wedge t}^2 + M_{t_i \wedge t}^2 \right) \right] \\
\leq 2 \sum_{i=0}^{n-1} 2 \| M \| < \infty.
\]

It remains to show the martingale property of \(H \cdot M \):
Let \(T \) be a bounded stopping time. Then,
\[
E[(H \cdot M)_T] = \sum_{i} E \left[h_{t_i} 1_{\{t_i < T\}} \left(M_{t_{i+1} \wedge T} - M_{t_i} \right) \right] \\
= \sum_{i} E \left[h_{t_i} 1_{\{t_i < T\}} E \left| M_{t_{i+1} \wedge T} - M_{t_i} \right| \bigg| F_{t_i} \right] \\
= 0.
\]

Thus, \(H \cdot M \) is a martingale.

ii. By uniqueness of the Doob-Meyer decomposition it is enough to show that
\[
(H \cdot M)^2_t - \int_0^t H_s^2 \, d\langle M \rangle_s
\]
is a martingale. (Then \((H \cdot M)_t = \int_0^t H_s^2 \, d\langle M \rangle_s \).) Let \(T \) be a bounded stopping time. Then, by defining
\[
\Delta_t M := M_{t+1 \wedge T} - M_t
\]
and since all mixed terms disappear, we get that

\[
E[(H \cdot M)^2] = \sum_{i,j} E \left[h_{t_i} 1_{\{t_i < T\}} h_{t_j} 1_{\{t_j < T\}} (\Delta_i M)(\Delta_j M) \right] \\
= \sum_i E \left[h_{t_i}^2 1_{\{t_i < T\}} E[(\Delta_i M)^2|\mathcal{F}_{t_i}] \right] \\
= \sum_i E \left[h_{t_i}^2 1_{\{t_i < T\}} E[M_{t_{i+1}\wedge T}^2 - M_{t_i\wedge T}^2|\mathcal{F}_{t_i}] \right] \text{ on } \{t_i < T\} \\
= \sum_i E \left[h_{t_i}^2 1_{\{t_i < T\}} E[(M)_{t_{i+1}\wedge T} - (M)_{t_i\wedge T}|\mathcal{F}_{t_i}] \right] \text{ on } \{t_i < T\} \\
= E \left[\int_0^T H_s^2 \, d\langle M \rangle_s \right].
\]

In particular,

\[
\|H \cdot M\|^2 = \sup_t E[(H \cdot M)^2] = \sup_{t} E \left[\left(\int_0^t H_s^2 \, d\langle M \rangle_s \right)^{B_{Levi}} \right] = E \left(\int_0^\infty H_s^2 \, d\langle M \rangle_s \right).
\]

We now want to consider the “Isometry property”:

Let \(\bar{\Omega} = \Omega \times (0, \infty) \), \(\bar{\omega} := (\omega, t) \), \(\bar{\mathcal{F}} = \mathcal{F} \otimes \mathcal{B}((0, \infty)) \). \(\omega \mapsto (M)_t(\omega) \) is \(\mathcal{F} \)-measurable for fixed \(t \) and for all \(\omega \in \Omega \) \(t \mapsto (M)_t(\omega) \) is right-continuous, positive, increasing, \((M)_0(\omega) = 0 \). Therefore, there exists a unique, positive measure

\[
d\langle M \rangle(\omega)dt = (M)(\omega, dt).
\]

Thus, \((M)(\omega, dt) \) defines a transition kernel on \(\bar{\Omega} = \Omega \times (0, \infty) \) and it induces a measure

\[P_M(d\bar{\omega}) := P(d\omega) \otimes (M)(\omega, dt) \]

on \((\bar{\Omega}, \bar{\mathcal{F}}) \). Explicitly,

\[
P_M(A) = E \left[\int_0^\infty 1_A(\cdot, t) \, d\langle M \rangle_t(\cdot) \right], \quad A \in \bar{\mathcal{F}}.
\]

Note that this is not a probability measure, but finite since \(M \in \mathcal{M}_c^2 \). In particular, if we denote

\[
E_M[\cdot] = \int \cdot \, dP_M,
\]

then

\[
E_M[H^2] = E \left[\int_0^\infty H_s^2 \, d\langle M \rangle_s \right], \quad (2.3.1)
\]

which is the \(L^2(\bar{\Omega}, \bar{\mathcal{F}}, P_M) \)-norm of \(H \in \mathcal{E} \). (\(H : \bar{\Omega} \to \mathbb{R}, H(\omega, t) = H_t(\omega) \).) Note that the map

\[
\mathcal{E} \to \mathcal{M}_c^2,
\]

\[
H \mapsto H \cdot M
\]

is obviously linear and by Lemmas 2.3.4(ii) and (2.3.1), an isometry from \(\mathcal{E} \subset L^2(\bar{\Omega}, \bar{\mathcal{F}}, P_M) \) to \(\mathcal{M}_c^2, \| \cdot \| \)). Therefore, there exists a unique isometric extension on the closure of \(\mathcal{E} \) in \(L^2(\bar{\Omega}, \bar{\mathcal{F}}, P_M) \) denoted by

\[
\bar{\mathcal{E}} := \mathcal{E}^M
\]

(which depends on \(M \)).
2. (Semi-)Martingales and Stochastic Integration

Definition 2.3.5. For \(H \in \bar{\mathcal{E}}^M \), let \(H.M \) define the uniquely determined element in \(\mathcal{M}^2_{(c)} \) with

\[
\lim_{n \to \infty} \| H^n M - H.M \| = 0
\]

for every sequence \((H^n)_{n \in \mathbb{N}} \subset \mathcal{E} \) which converges in \(L^2(\bar{\Omega}, \bar{\mathcal{F}}, P_M) \) against \(H \).

Automatically, we have

\[
\| H.M \|^2 = EP_M[H^2].
\]

But we also have the analogon of 2.3.4(ii), namely:

Proposition 2.3.6. Let \(H \in \bar{\mathcal{E}}^M, M \in \mathcal{M}^2_{(c)} \), and therefore, \(H.M \in \mathcal{M}^2_{(c)} \). Then

\[
\langle H.M \rangle_t = \int_0^t H^2_s \, d\langle M \rangle_s, \quad t \geq 0.
\]

Proof. Let \(T \) be a bounded stopping time. Then

\[
E[(H.M)_T^2] = \lim_{n \to \infty} E[(H^n M)_T^2],
\]

since

\[
E[(H.M)_T - (H^n M)_T]^2 \leq E \left[\sup_t (H.M - H^n M)_t^2 \right] \leq 4 \| H.M - H^n M \|^2 \to 0.
\]

Hence,

\[
E[(H.M)_T^2] = \lim_{n \to \infty} E[(H^n M)_T^2] = \lim_{n \to \infty} E \left[\int_0^T (H^n)_s^2 \, d\langle M \rangle_s \right] = E \left[\int_0^T H^2_s \, d\langle M \rangle_s \right],
\]

since \(H^n \to H \) in \(L^2(P_M) \), so, \(1_{[0,T]} H^n \to 1_{[0,T]} H \). Therefore, \((H.M)_T^2 - \int_0^T H^2_s \, d\langle M \rangle_s \) is a martingale and the assertion follows by the uniqueness of the Doob-Meyer decomposition.

In our next step we want to determine the size of \(\bar{\mathcal{E}}^M \). We want to characterize admissible integrands in dependence of \(M \).

Definition 2.3.7.

\[
\mathcal{P} := \sigma(H = (H_t)_{t \geq 0} \mid H \text{ is a left-continuous, adapted process})
\]

\[
\mathcal{P}_{exercise} := \sigma(H = (H_t)_{t \geq 0} \mid H \text{ is a continuous, adapted process})
\]

is called \(\sigma \)-algebra (on \(\Omega \times [0, \infty) \)) of predictable sets. A process \(H = (H_t)_{t \geq 0} \) is called predictable, if it is \(\mathcal{P} \)-measurable.

Let \(\mathcal{P}_M := \text{the completion of } \mathcal{P} \text{ with respect to } P_M \).
2.3. Construction of stochastic integrals on Hilbert space

Remark 2.3.8. Let \(\tau_n \) be a subdivision of \((0, \infty)\) and

\[
P_n := \sigma(A_t \times [t, t^{'}) \mid t \in \tau_n, t' \text{ is the successor of } t \text{ in } \tau_n, \text{ and } A_t \text{ is } \mathcal{F}_t \text{-measurable})
\]

\(P_n \) is called the \(\sigma \)-algebra of predictable rectangles (with respect to \(\tau_n \)).

i. If \(|\tau_n| \xrightarrow{n \to \infty} 0 \) and \(t_N n \xrightarrow{n \to \infty} \infty \), then

\[
P = \sigma\left(\bigcup_n P_n \right).
\]

ii. If \(H \in \mathcal{P}_n \)-measurable and bounded if and only if

\[
H_t(\omega) = \sum_{t_i \in \tau_n} h_{t_i}(\omega) 1_{[t_i, t_{i+1})}(t),
\]

where \(h_{t_i} \) is \(\mathcal{F}_{t_i} \)-measurable and bounded.

Proof. i. By definition we have \(P_n \subset \mathcal{P} \). Hence, \(\sigma\left(\bigcup_n P_n \right) \subset \mathcal{P} \). To show that \(\mathcal{P} \subset \sigma\left(\bigcup_n P_n \right) \), let \((H_t)_{t > 0}\) be a left-continuous adapted process. It suffices to show that \(H \) is \(\sigma\left(\bigcup_n P_n \right) \)-measurable. \(H \) is adapted and left-continuous. Therefore, for \(H \in \mathcal{P} \)

\[
H_t(\omega) = \lim_{n \to \infty} \sum_{s \in \tau_n} H_s(\omega) 1_{[s, s')}(t) \text{, where } H_s \text{ is } \mathcal{F}_s \text{-measurable and bounded.}
\]

Hence,

\[
P = \sigma\left(\bigcup_n P_n \right).
\]

ii. Obvious by a monotone class argument.

\(\square \)

Proposition 2.3.9.

\[
\mathcal{E}^M = \mathcal{L}^2(\Omega, \mathcal{P}_M, P_M).
\]

In particular, for all \(H \in \mathcal{L}^2(\Omega, \mathcal{P}_M, P_M) \) there exists

\[
H.M = \int H \, dM.
\]

(Note that any predictable process is adapted.)

In particular,

\[
\mathcal{M}^2_M := \{H.M \mid H \in \mathcal{L}^2(\Omega, \mathcal{P}_M, P_M)\}
\]

is a closed subspace of \(\mathcal{M}^2 \).

Proof. Clearly, \(\mathcal{E}^M \subset \mathcal{L}^2(\Omega, \mathcal{P}_M, P_M) \). To prove the dual inclusion, let \(H \in \mathcal{L}^2(\Omega, \mathcal{P}_M, P_M) \). Without loss of generality \(H \geq 0 \). (Otherwise consider \(H^+ \) and \(H^- \).) Since for \(m \in \mathbb{N} \)

\[
H^{(m)} := (m \wedge H) \cdot 1_{\Omega \times [0, m]} \xrightarrow{m \to \infty} H,
\]

hence, \(H^{(m)} \) is in \(\mathcal{L}^2(\Omega, \mathcal{P}_M, P_M) \). So we may assume \(H \geq 0 \), bounded and \(H \) as \(H \cdot 1_{\Omega \times [0, m]} \) for some \(m \in \mathbb{N} \). Now let \(\tau_n \) be a sequence of partitions as in Remark 2.3.8(i). Then by the \(\mathcal{L}^p \)-martingale convergence theorem

\[
H_n := E_{P_M|\Omega \times [0, m]}[H|P_n] \xrightarrow{n \to \infty} E_{P_M|\Omega \times [0, m]} \left[H \mid \sigma\left(\bigcup_n P_n \right) \right].
\]
2. (Semi-)Martingales and Stochastic Integration

By Remark 2.3.8(i) we get

\[
\lim_{n \to \infty} E_{P_M}[H|P_n] = E_{P_M|\Omega \times [0,m]}[H|\mathcal{P}] = E_{P_M|\Omega \times [0,m]}[H|P_M] = H.
\]

Since \(H_n \) is \(P_n \)-measurable, we have by Remark 2.3.8(ii), that

\[
H_n \in \mathcal{E}.
\]

Proposition 2.3.10. i. Let \(M \in \mathcal{M}_c^2 \) and, therefore, \(t \mapsto \langle M \rangle_t \) is continuous. Then

\[
\bar{\mathcal{E}} = L^2(\bar{\Omega}, \mathcal{O}_M, P_M) \quad \text{(2.3.9)}
\]

where the optional \(\sigma \)-algebra \(\mathcal{O} \) is defined by

\[
\mathcal{O} := \sigma(\{H \mid H \text{ is an adapted càdlàg process on } \Omega \times [0,\infty]\})
\]

and \(\mathcal{O}_M \) its completion with respect to \(P_M \).

ii. If \(M \in \mathcal{M}_c^2 \) and \(d\langle M \rangle \) is absolutely continuous with respect to Lebesgue measure \(dt \), then

\[
\bar{\mathcal{E}}^M = \{L^2(\Omega, \bar{\mathcal{F}}, P_M) \mid H \text{ has an adapted version}\}.
\]

Proof. i. We have that \(\mathcal{O} \supset \mathcal{P} \) (see exercises). Hence, also \(\mathcal{O}_M \supset \mathcal{P}_M \). It remains to prove \(\mathcal{O}_M \subset \mathcal{P}_M \), let \(H \) be càdlàg and adapted. Consider for \(\omega \in \Omega \)

\[
U_\omega := \{t \mid s \mapsto H_s(\omega) \text{ is discontinuous in } t\}.
\]

Then \(U_\omega \) is countable, since \(H \) is càdlàg (exercise). Define for \(\omega \in \Omega \)

\[
H_t^-(\omega) := \lim_{s \uparrow t} H_s(\omega) =: H_{t^-}(\omega).
\]

Then \(H^- \) is left-continuous. Hence, it is \(\mathcal{P} \)-measurable and

\[
U_\omega = \{t > 0 \mid H_t(\omega) \neq H_t^-(\omega)\}.
\]

Note that \(\{(\omega, t) \in \Omega \times [0,\infty) \mid H_t(\omega) \neq H_t^-(\omega)\} \in \mathcal{O} \subset \bar{\mathcal{F}} \). Since \(\langle M \rangle \) is continuous, we have

\[
\int_0^\infty 1_{U_\omega}(t) \, d\langle M \rangle_t = 0 \quad \text{for } P\text{-a.e. } \omega \in \Omega.
\]

But then by Fubini

\[
E_{P_M}[1_{\{H \neq H^\pm\}}] = \int \int_{[0,\infty]} 1_{u(\omega)}(t) \, d\langle M \rangle_t(\omega) P(d\omega) = 0.
\]

Hence, \(H \) is \(P\)-a.e. equal to a predictable process, therefore, \(H \) is \(\mathcal{P}_M \)-measurable and (i) is proved.

ii. One has to prove that \(\bar{\mathcal{F}} \subset \mathcal{P}_M \) (cf. [CW90, p.60] or [vWW90, p.124]).

\qed
Remark 2.3.11 (Extending stochastic integration via localization). Note that, if M is a Brownian motion, then $M \notin \mathcal{M}^2$. Therefore, we have to stop. Define

$$\mathcal{M}^2_{\text{loc}} := \{ M | \exists \text{ a sequence } T_n \not\to \infty \text{ of stopping times such that } M^{T_n} := M_{T_n \land \cdot} \in \mathcal{M}^2 \forall n \in \mathbb{N} \}.$$

Then for all $H \in L^2(\bar{\Omega}, \mathcal{F}, P)$

$$H.M = \int H \, dM$$

is defined via localization. We have to check that

- the definition is consistent on $\{ T_n = T_{n+1} \}$,

- $H.M \in \mathcal{M}^2_{\text{loc}}$ (We need Lemma 2.4.3 below).

Remark 2.3.12 (Semi-martingales as integrals). If A is predictable and of bounded variation and $M \in \mathcal{M}^2_{\text{loc}}$ we can define for $H \in L^2(\bar{\Omega}, \mathcal{F}, P)$

$$\int H \, d(M + A) := \int H \, dM + \int H \, dA,$$

where $M + A$ is a semi-martingale and $\int H \, dA$ is a pathwise defined Lebesgue-Stieltjes-integral. Axiomatic considerations show that, if $\int H \, d(M + A)$ is required to have reasonable properties, then this cannot be generalized. As a conclusion, reasonable stochastic integrators are semi-martingales (Dellacherie-Mokobodzki-Bichteler) (cf. [vWW90]).
2. (Semi-)Martingales and Stochastic Integration

2.4. Characterization of $H \cdot M$ in \mathcal{M}^2

Fix $M \in \mathcal{M}^2$, $H \in \mathcal{L}^2(\bar{\Omega}, \mathcal{P}_M, \mathcal{P}_M)$.

Proposition 2.4.1. $H \cdot M$ is the unique element $L \in \mathcal{M}^2$ such that

i. $d(L, N) = H \ d(M, N)$ $\forall N \in \mathcal{M}^2$,

that is

$$\langle L, N \rangle_t = \int_0^t H_s \ d\langle M, N \rangle_s := \int_{[0,t]} H_s \ d\langle M, N \rangle_s, \quad \forall M, N \in \mathcal{M}^2, \forall t > 0,$$

respectively, such that the following weaker property holds:

ii. $E[L_{\infty} N_{\infty}] = E\left[\int_0^\infty H_s \ d\langle M, N \rangle_s \right] = E\left[\int_{1}^{\infty} H_s \ d\langle M, N \rangle_s \right]$ for all $N \in \mathcal{M}^2$ (i.e., $N_{\infty} \in \mathcal{L}^2(\bar{\Omega}, \mathcal{F}_\infty, \mathcal{P})$).

Remark 2.4.2.

i. Because of $E[L_{\infty} N_{\infty}] = E[(L, N)_{\infty}]$ (cf. 2.3.2(i)), it follows that in 2.4.1, (i) implies (ii).

ii. By 2.4.1(i) particularly we have

$$d(H \cdot M, M) = H \ d(M, M) = H \ d(M),$$

hence,

$$d(H \cdot M) = d(H \cdot M, H \cdot M) = H \ d(M, H \cdot M) = H \ d(H \cdot M, M) = H^2 \ d(M).$$

That is (cf. 2.3.6)

$$\langle H \cdot M \rangle_t = \int_0^t H_s^2 \ d\langle M \rangle_s.$$

Proof of 2.4.1. (a) Uniqueness if (ii) holds:

Let $L, L' \in \mathcal{M}^2$ such that both satisfy 2.4.1(ii). Then

$$E[(L_{\infty} - L'_{\infty}) N_{\infty}] = 0 \quad \forall N_{\infty} \in \mathcal{L}^2(\bar{\Omega}, \mathcal{F}_\infty, \mathcal{P}).$$

Hence, $L_{\infty} - L'_{\infty} \perp N_{\infty}$ in \mathcal{L}^2, so $L_{\infty} = L'_{\infty}$ P-a.s.. Therefore,

$$L_t = E[L_{\infty}|\mathcal{F}_t] = L'_t \quad P$-a.s..$$

(b) $L := H \cdot M$ satisfies (ii):

Step 1: Assume for fixed $s > 0$ that

$$H_t(\omega) := h_s(\omega)1_{[s,\infty)}(t),$$

where h_s is bounded and \mathcal{F}_s -measurable. Note that $H \in \mathcal{L}^2(\bar{\Omega}, \mathcal{P}_M, \mathcal{P}_M)$. Therefore, by isometry there exists an $L = H \cdot M$ and we have

$$L_{\infty} = (H \cdot M)_{\infty} = \int_0^\infty h_s 1_{[s,\infty)}(t) \ dM_t$$

$$= \lim_{N \to \infty} \int_0^N h_s 1_{[s,\infty)}(t) \ dM_t$$

$$= \lim_{N \to \infty} h_s (M_N - M_s) = h_s (M_{\infty} - M_s)$$

42
Thus, for all $N_\infty \in \mathcal{L}^2(\Omega, \mathcal{F}_\infty, P)$,
\[
E[L_\infty N_\infty] = E[h_s(M_\infty - M_s)N_\infty]
\]
by Step 2:
\[
\lim_{n \to \infty} E[(H^{(n)})_\infty N_\infty] = E[H_\infty N_\infty] = E[h_s(M_\infty - M_s)N_\infty]
\]
by Step 2.

Step 2: Let $H \in \mathcal{E}$. Then (ii) is clear by Step 1 and linearity.

Step 3: (ii) holds for all $H \in \mathcal{L}^2(\bar{\Omega}, \mathcal{P}_M, P_M)$:

Let $H^{(n)} \in \mathcal{E}$, $n \in \mathbb{N}$, $H^{(n)} \to H$ in $\mathcal{L}^2(\bar{\Omega}, \mathcal{P}_M, P_M)$ ($= \bar{\mathcal{E})}$. Then $H^{(n)} \cdot M \to H \cdot M$ in $(\mathcal{M}^2, ||.||)$.

Therefore, by 2.3.1(iii) for all $N \in \mathcal{M}^2$
\[
E[(H \cdot M)_\infty N_\infty] = \lim_{n \to \infty} E[(H^{(n)} \cdot M)_\infty N_\infty]
\]
\[
\leq E\left[\int_0^\infty H_s \cdot d\langle M, N \rangle_s\right],
\]
because by Kunita-Watanabe-inequality (cf. 2.2.11) we have
\[
E\left[\int_0^\infty (H^{(n)} - H) \cdot 1 \; d\langle M, N \rangle_s\right] \leq \left(E\left[\int_0^\infty (H^{(n)} - H)^2 \; d\langle M \rangle_s\right]\right)^{\frac{1}{2}} \cdot \left(E[\langle N \rangle_\infty]\right)^{\frac{1}{2}} \quad n \to \infty.
\]
This proves (ii).

(c) $L := H \cdot M$ satisfies (i):

By Proposition 2.2.10 we have to show that $L_t N_t - \int_0^t H_s \cdot d\langle M, N \rangle_s$, $t \geq 0$, is a martingale.

Let T be a bounded stopping time. Then, since $(L_t)_{t \in [0, \infty]}$ is a martingale, for $N^T_T := N_{T/\lambda}$
\[
\]
by (ii)
\[
\leq E\left[\int_0^\infty H_s \cdot d\langle M, N^T \rangle_s\right],
\]
2.4.3 below $\leq E\left[\int_0^T H_s \cdot d\langle M, N \rangle_s\right]$.

\[\square\]

Lemma 2.4.3. Let $M, N \in \mathcal{M}^2$ and T be a stopping time. Then
\[
\langle M, N^T \rangle_t = \langle M, N \rangle_{T/\lambda} \quad \forall t \geq 0.
\]

Proof. Exercise. \[\square\]
2. (Semi-)Martingales and Stochastic Integration

Corollary 2.4.4. Let $M \in \mathcal{M}^2$, $H_1, H_2 \in \mathcal{L}^2(\Omega, \mathcal{P}_M, \mathcal{P}_M)$ such that $H_1 \cdot H_2 \in \mathcal{L}^2(\Omega, \mathcal{P}_M, \mathcal{P}_M)$. Then

\[H_1(H_2 \cdot M) = (H_1 \cdot H_2) \cdot M, \]

i.e.

\[\int_0^\infty H_1(s) \, dH_2 \cdot M_s = \int_0^\infty H_1(s) \, d\left(\int_0^s H_2(r) \, dM_r \right) = \int_0^\infty H_1 H_2 \, dM. \]

Proof. Let $L := H_1(H_2 \cdot M)$. Then by 2.4.1 for all $N \in \mathcal{M}^2$

\[d\langle L, N \rangle = H_1 \, d\langle H_2 \cdot M, N \rangle = H_1 H_2 \, d\langle M, N \rangle, \]

and again by 2.4.1,

\[H_1(H_2 \cdot M) = L = (H_1 \cdot H_2) \cdot M. \]

Corollary 2.4.5. Let T be a stopping time. Then $(H \cdot M)^T = H^{1[0,T]} \cdot M$, i.e.

\[(H \cdot M)^T = \int_0^T H_s \cdot 1_{[0,T]}(s) \, dM_s. \]

In particular $(H \cdot M)^T \in \mathcal{M}_M^2$, hence, \mathcal{M}_M^2 is “stopping stable”, that is, $N \in \mathcal{M}_M^2$ implies $N^T \in \mathcal{M}_M^2$ for all stopping times T.

Proof. Let $N \in \mathcal{M}^2$. Then

\[
E \left[\left((H \cdot M)^T \right)_\infty \right]^{2.3.2(i)} = E \left[\left((H \cdot M)^T \right)_\infty \right]^{2.4.3} = E \left[(H \cdot M)_T \right]^{2.4.1(i)} = E \left[\int_0^\infty H_s \cdot 1_{[0,T]}(s) \, d\langle M, N \rangle_s \right].
\]

Hence, this assumption follows by 2.4.1(ii).

2.4.1. Orthogonality in \mathcal{M}^2

Definition 2.4.6. Let $M, N \in \mathcal{M}^2$.

i. M, N are called weakly orthogonal if $E[M_\infty N_\infty] = 0$ (i.e. orthogonal in $(\mathcal{M}^2, \| \cdot \|)$).

ii. M, N are called strongly orthogonal, denoted by $M \perp N$, if $\langle M, N \rangle = 0$.

Remark 2.4.7.

i. $M \perp N \Leftrightarrow M \cdot N$ is a martingale $\Leftrightarrow E[M_T N_T] = 0$ for all bounded stopping times T. If $M_t \xrightarrow{t \to \infty} M_\infty$ and $N_T \xrightarrow{T \to \infty} N_\infty$, then

\[E[M_\infty N_\infty] = 0, \]

i.e. M, N are weakly orthogonal.

ii. $M \perp N \Leftrightarrow \mathcal{M}_M^2 \perp \mathcal{M}_N^2$ (since by 2.4.1 $d\langle H \cdot M, \tilde{H} \cdot N \rangle = H \tilde{H} \, d\langle M, N \rangle$).

iii. Weak orthogonality in $\mathcal{M}^2 (\subseteq \mathcal{L}^2(\Omega, \mathcal{F}_\infty, P))$ is just orthogonality in $\mathcal{L}^2(\Omega, \mathcal{F}_\infty, P)$.
iv. Since \((\mathcal{M}^2, \|\cdot\|)\) is a Hilbert space and \(\mathcal{M}_M^2\) is a closed linear subspace of \(\mathcal{M}^2\), for all \(N \in \mathcal{M}^2\) there exists an \(H \in \mathcal{L}^2(\bar{\Omega}, \mathcal{P}_M, \mathcal{P}_M)\) and \(L \in \mathcal{M}^2\) such that

\[
N = H \cdot M + \underbrace{L}_{\in \mathcal{M}^2_M} \quad \in \mathcal{M}^2 \quad \text{and } L \text{ is weakly orthogonal to } \mathcal{M}_M^2.
\]

But in (iv) we have more because of the following proposition.

Proposition 2.4.8. Let \(M, L \in \mathcal{M}^2\), \(L\) weakly orthogonal to \(\mathcal{M}_M^2\). Then \(L \perp \mathcal{M}_M^2\) (since \(\mathcal{M}_M^2\) is stopping stable). Hence, \(L\) is weakly orthogonal to \(\mathcal{M}_M^2\) if and only if \(L \perp \mathcal{M}_M^2\).

Proof. Because of 2.4.7(i), it remains to show that \(E[L_TM_T^\infty] = 0\) for all bounded stopping times \(T\). But by 2.4.5 (stopping stability) we have \(M^T \in \mathcal{M}_M^2\). Hence,

\[
0 = E[L_\infty M^T_\infty] = E[L_\infty M_T^\infty] = E[L_TM_T^\infty].
\]

\(\square\)

Corollary 2.4.9 (Kunita-Watanabe-decomposition). i. Let \(M, N \in \mathcal{M}^2\). Then there exist an unique \(L \in \mathcal{M}^2\) and an unique \(H \in \mathcal{L}^2(\bar{\Omega}, \mathcal{P}_M, \mathcal{P}_M)\) such that \(L \perp \mathcal{M}_M^2\) and \(N = H \cdot M + L\).

ii. Suppose \(\mathcal{L}^2(\Omega, \mathcal{F}_\infty, P)\) separable (e.g. true, if \(\mathcal{F}_\infty\) is countably generated). Then there exist \(M_i \in \mathcal{M}_C^2\), \(i \in \mathbb{N}\), such that

\[
M_i \perp M_j, \quad i \neq j,
\]

and for all \(N \in \mathcal{M}^2\) there exist \(H^i \in \mathcal{L}^2(\bar{\Omega}, \mathcal{P}, \mathcal{P}_M)\), \(i \in \mathbb{N}\), (uniquely determined by \(M_i\)) such that

\[
N = \sum_{i=1}^{\infty} H^i M_i,
\]

that is,

\[
\mathcal{M}^2 = \bigoplus_{i=1}^{\infty} \mathcal{M}_M^2 M_i
\]

and

\[
\mathcal{M}_M^2 M_i \perp \mathcal{M}_M^2 M_j, \quad \text{for } i \neq j.
\]

Proof. i. 2.4.7(iv) and 2.4.8.

ii. By assumption and 2.4.7(iii) \((\mathcal{M}^2, \|\cdot\|)\) is separable. So, we can apply (i) and Gram-Schmidt orthogonalization procedure (cf. [Wei87],[RS80]).

\(\square\)

Corollary 2.4.10. Let \(F \in \mathcal{L}^2(\Omega, \mathcal{F}_\infty, P)\), \(M \in \mathcal{M}^2\). Then there exist uniquely determined \(H \in \mathcal{L}^2(\bar{\Omega}, \mathcal{P}_M, \mathcal{P}_M)\) and \(L \in \mathcal{M}^2\), \(L \perp M\), such that, if \(\mathcal{F}_0 = \{\emptyset, \Omega\},\)

\[
F = E[F|\mathcal{F}_0] + \int_0^\infty H_s \, dM_s + L_\infty = E[F] + \int_0^\infty H_s \, dM_s + L_\infty.
\]

Here, \(\int_0^\infty H_s \, dM_s\) denotes the stochastic integral with respect to \(M\).
2. (Semi-)Martingales and Stochastic Integration

Proof. Let $F_t := E[F | F_t] - E[F | F_0]$. Since F_t is a martingale, by 2.1.1 there exists a càdlàg version $(\tilde{F}_t)_{t \geq 0}$ of $(F_t)_{t \geq 0}$ (i.e. $P[\{F_t = \tilde{F}_t\}] = 1 \forall t \geq 0$). Then $(\tilde{F}_t) \in \mathcal{M}^2$. Hence, by 2.4.9(i) there exist unique $L \in \mathcal{M}^2$, $L \perp M$, and $H \in L^2(\Omega, \mathcal{F}_t, P_M)$ such that

$$\tilde{F}_t = (H \cdot M)_t + L_t, \ t \geq 0.$$

In particular, (since $\tilde{F}_\infty = F - E[F | F_0]$) we have

$$F = E[F | F_0] + \int_0^\infty H_s \, dM_s + L_\infty.$$

\qed
2.5. Itô’s Representation Theorem

Let \((\Omega, \mathcal{F}, P)\) be a probability space with filtration \((\mathcal{F}_t)\) and let \((W_t)_{t \geq 0}\) be a (real-valued) Wiener process on \((\Omega, \mathcal{F}, (\mathcal{F}_t), P)\), that is, \((W_t)\) is a continuous \((\mathcal{F}_t)\)-adapted process such that, for all \(s \leq t\), \(W_t - W_s\) is independent of \(\mathcal{F}_s\) and \(N(0, t - s)\) distributed. Let

\[F_t^W := \sigma\{W_s | 0 \leq s \leq t\} \]

and \(F_{t+}^W\) the right-continuous version of \(F_t^W\).

Remark 2.5.1. Compared with our definition of Brownian motion for a Wiener process the increment \(W_t - W_s\) is independent of the larger \(\sigma\)-algebra \(\mathcal{F}_s \supseteq F_t^W\). In this space of \((\mathcal{F}_t)\)-martingales belonging to \(L^2(\Omega, \mathcal{F}, P)\) the Kunita-Watanabe decomposition (cf. 4.9(i) with \(M = W\)) has a particularly simple form:

Theorem 2.5.2 (Itô’s representation theorem). Let \(M = (M_t)_{t \geq 0} \subseteq L^2(\Omega, \mathcal{F}, P)\) be a right-continuous martingale with respect to \((F_{t+}^W)\) (hence, with respect to \(\sigma(F_{t+}^W, \sigma\{N \in \mathcal{F} | P(N) = 0\})\), \(t \geq 0\)). Then

\[M_t = M_0 + \int_0^t H_s \, dW_s, \quad t \geq 0, P\cdot a.s., \]

where \(H\) is \((\mathcal{F}_t)\)-adapted and \(H \cdot 1_{[0,\tau]} \in L^2(\Omega, \tilde{\mathcal{F}}, P_W)\) for all \(\tau > 0\) (and through this it is uniquely determined). In particular, \(M\) has \(P\cdot a.s.\) continuous sample paths and \(M^2 = M^2_W\) (where \(M^2\) is defined as in the previous section with respect to \(\mathcal{F}_t = (F_{t+}^W)^P, t \geq 0\)) and

\[M^2_W := \left\{ \left(\int_0^t H_s \, dW_s \right)_{t \geq 0} \bigg| H \cdot 1_{[0,\tau]} \in L^2(\Omega, \tilde{\mathcal{F}}, P_W) \quad \forall \tau \geq 0, \sup_{t \geq 0} \left\| \int_0^t H_s \, dW_s \right\|_{L^2} < \infty \right\}. \]

Proof. Without loss of generality \(M_0 = 0\). Fix \(k \in \mathbb{N}\) and set

\[F_{k+}^W := (F_{k+}^W)^P, \quad M_t^{(k)} := M_{t \wedge k}, \quad W_t^{(k+1)} := W_{t \wedge (k+1)}, \quad t \geq 0. \]

Let \((M^n)_{n \in \mathbb{N}} \subseteq L^2(\Omega, \mathcal{F}_{k+}^W, P)\), such that

\[\lim_{n \to \infty} M^n = M_k = M_{k}^{(k)} \quad \text{in} \quad L^2(\Omega, \mathcal{F}_{k+}^W, P), \]

and let \((M^n_t)_{t \geq 0}\) be a right-continuous modification of \((E[M^n_t | F_{t+}^W])_{t \geq 0}\) for fixed \(t\), (which always exists by 2.1.4) such that

\[\|M_t^n\|_{L^2} \left(= \sup_{t, \omega} |M_t^n(\omega)| \right) \leq \sup_{\omega} |M^n(\omega)| < \infty. \]

In particular, \(M^n \in \mathcal{M}^2\) for all \(n\). Hence, by Kunita-Watanabe decomposition (cf. 2.4.9(i)) there exist \(H^n \in L^2(\Omega, \tilde{\mathcal{F}}, F_{m+}^{(n+1)}(W))\) adapted and \(N^n \in \mathcal{M}^2\), \(N^n \perp \mathcal{M}^2_{W^{(k+1)}}\), such that

\[M^n = H^n W^{(k+1)} + N^n, \quad \forall n \in \mathbb{N}. \]

We would like to prove that \(N^n = 0\) for all \(n \in \mathbb{N}\). Fix \(n_0 \in \mathbb{N}\) and set \(N := N_{n_0}\).

Step 1: **Claim:** Let \(N \in \mathcal{M}^2\), \(N \perp W^{(k+1)}\). If \(N\) is bounded, then \(N_t = 0\) for all \(t < k + 1\).

Proof of Claim. Let \(c := \sup_{t, \omega} |N_t(\omega)| < \infty\). Define

\[D := 1 + \frac{N_{\infty}}{2c}. \]
2. (Semi-)Martingales and Stochastic Integration

Then $D \geq \frac{1}{2}$ and

$$E[D] = 1 + \frac{1}{2c} E[N_{\infty}] = 1 + \frac{1}{2c} E[N_0] = 1.$$

Thus, $\tilde{P} := DP$ is a probability measure equivalent to P.

Claim’: $(W_t)_{t \leq k+1}$ is a Brownian motion under \tilde{P}.

Suppose claim is true. Then the finite dimensional distributions of $(W_t)_{t \leq k+1}$ under P and \tilde{P} are the same. Hence, by Radon-Nikodym,

$$P = \tilde{P} \text{ on } \mathcal{F}_{k+1}^W.$$

Therefore, $P = \tilde{P}$ on \mathcal{F}_{t}^W for all $t < k+1$. Thus, $E[D|\mathcal{F}_{t}^W] = 1$ for all $t < k+1$. Hence,

$$N_t = E[N_{\infty}|\mathcal{F}_{t}^W] = 0, \quad \forall t < k+1.$$

Proof of Claim’:

i. $(W_t^{(k+1)})$ is a martingale under \tilde{P}, because for all bounded stopping times T we have

$$E_{\tilde{P}}[W_T^{(k+1)}] = E_P[W_T^{(k+1)}D] = E_P[W_T^{(k+1)}] + \frac{1}{2c} E_P[W_T^{(k+1)}N_\infty].$$

By 2.4.7 $W_T^{k+1}N_T$ is a martingale, since $W^{k+1} \perp N$. Hence,

$$A = E_P[W_T^{k+1}N_T] = E_P[W_0^{(k+1)}N_0] = 0.$$

Thus,

$$E_{\tilde{P}}[W_T^{(k+1)}] = 0.$$

ii. For P-a.e. $\omega \in \Omega$ we have

$$\langle W \rangle_T(\omega) = t \quad \forall t \geq 0.$$

Hence, for \tilde{P}-a.e. $\omega \in \Omega$

$$\langle W \rangle_T(\omega) = t \quad \forall t \geq 0.$$

Thus,

$$\langle W_t^{(k+1)} \rangle = t \wedge (k + 1) \quad \forall t \geq 0.$$

Therefore, by (i), (ii) and Levy’s characterization (cf. Proposition 1.5.1) $(W_t)_{t \geq k+1}$ is a Brownian motion under $P = DP$ (up to $k+1$).

Step 2: Define

$$T_n := \inf \left\{ t > 0 \quad \left| \int_0^t H_s^{n_0} dW_s^{(n+1)} \right| > n \right\} \wedge (k + 1).$$

Then T_n are (\mathcal{F}_{t}^N)-stopping times such that $T_n \not\nearrow (k + 1)$ as $n \to \infty$. We know that $N_{T_n} (= N_{\Lambda T_n}) \perp M_{W^{(k+1)}}^2$ (cf. 2.4.3, 2.4.7(i) and (ii)). $(N_{\Lambda T_n} = \int_0^t 1_{[0,T_n]}(s) dN_s \overset{2.4.3}{=} \int_0^{t\wedge T_n} dN_s)$

Furthermore,

$$|N_t^{T_n}| = |N_{t\wedge T_n}| \leq |M_t^{n_0}| + \left| \int_0^{t\wedge T_n} H_s^{n_0} dW_s^{(k+1)} \right| \leq \|M^{n_0}\|_{\infty} + n.$$
Hence,
\[
\sup_{t, \omega} |N_t^n(\omega)| \leq \|M^n_0\|_\infty + n.
\]

So, we can apply Step 1 to conclude that \(N_t^n = 0 \), for all \(t < k + 1 \) and for all \(n \in \mathbb{N} \). Letting \(n \to \infty \), we get \(N_t = 0 \) for all \(t < k + 1 \) \(\mathbb{P} \)-a.s. (since \(N \) is right-continuous and the zero set does not depend on \(t \)). Therefore, \(N^n = 0 \) for all \(n \) and \(t < k + 1 \). But for all \(n, m \in \mathbb{N} \)

\[
E_{P_{W^{k+1}}} \left[(H^n \cdot 1_{[0,t]} - H^m \cdot 1_{[0,t]})^2 \right] = E_P \left[\left((H^nW^{k+1})_{k+1} - (H^mW^{k+1})_{k+1} \right)^2 \right] \\
= E \left(\int_0^{k+1} (H^n_s - H^m_s)^2 \, ds \right) \\
= E \left[(M^n_{k+1} - M^m_{k+1})^2 \right] \\
= E \left[(M^n_k - M^m_k)^2 \right] \xrightarrow{n,m \to \infty} 0.
\]

This is true, since \(P \)-a.e.

\[
M^n_k = E \left[M^n |\mathcal{F}^W_{k+1} \right] = M^n \xrightarrow{n \to \infty} M_k \quad \text{in} \quad \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P}).
\]

Therefore, \((H^n)_{n \in \mathbb{N}} \) is a Cauchy sequence in \(\mathcal{L}^2(\bar{\Omega}, \bar{\mathcal{F}}, P_{W^{k+1}}) \).

Hence, there exists \(H \in \mathcal{L}^2(\bar{\Omega}, \bar{\mathcal{F}}, P_{W^{k+1}}) \) such that \(H^n \to H \) in \(\mathcal{L}^2(\bar{\Omega}, \bar{\mathcal{F}}, \mathbb{P}) \). In particular, we can assume \(H \) to be adapted. Furthermore, for \(0 \leq t \leq k + 1 \),

\[
M_t = \lim_{n \to \infty} M^n_t = \lim_{n \to \infty} (H^nW^{k+1})_t = (HW^{k+1})_t = \int_0^t H_s \, dW^{(k+1)}_s \quad \text{\(P \)-a.s.}\.
\]

Since \(M \) is a right-continuous \((\mathcal{F}^W_{t+}) \)-martingale, by the following Lemma \(M \) has \(P \)-a.s. continuous sample paths.

Lemma 2.5.3. Every \((\mathcal{F}^W_{t+}) \)-adapted local martingale \((M_t) \in \mathcal{M}^2_{\text{loc}} \) is \(P \)-a.s. continuous.

Proof. Without loss of generality \(M \in \mathcal{M}^2 \) (localization). It suffices to consider the case

\[
M_t := E[F|\mathcal{F}^W_{t+}], \quad t \geq 0,
\]

where

\[
F := \prod_{i=1}^n f_i(W_{t_i}), \quad f_i \in \mathcal{C}_b(\mathbb{R}) \text{ uniformly continuous, } 0 \leq t_1 < \ldots < t_n < \infty \quad (\star)
\]

and to prove that \((M_t) \) has a continuous modification. This is enough because \(M_t = E[M_\infty|\mathcal{F}^W_{t+}] \) (since \(M \in \mathcal{M}^2 \)) and \(F \) of type \((\star) \) are dense in \(\mathcal{L}^2(\Omega, \mathcal{F}^\infty, \mathbb{P}) \).

(Exercise, by a monotone class argument: By 2.1.4 \(M \) has a continuous \((\mathcal{F}^W_{t+})P \)-adapted version. Define

\[
V := \{ G \in \mathcal{L}^2(\Omega, \mathcal{F}^W, \mathbb{P}) | \exists F_n \text{ of type } (\star) \text{ such that } F_n \to G \text{ in } \mathcal{F}^W, \mathbb{P} \}
\]

and prove that \(V = \mathcal{L}^\infty(\Omega, \mathcal{F}^W, \mathbb{P}) \).)

49
2. (Semi-)Martingales and Stochastic Integration

Let \(t \geq 0 \) and \(i \in \{1, \ldots, n\} \) such that \(t \in [t_i, t_{i+1}] \) where \(t_{n+1} := +\infty \). Then (cf. section of Markov property of Brownian motion),

\[
M_t = E[F|\mathcal{F}_{t+}^W] = \prod_{j \leq i} f_j(W_{t_j}) E\left[\prod_{j > i} f_j(W_{t_j}) | \mathcal{F}_{t+}^W \right] = \prod_{j \leq i} f_j(W_{t_j}) E_{W_t} \left[\prod_{j > i} f_j(W_{t_j-I}) \right] = \prod_{j \leq i} f_j(W_{t_j}) p_{t_{i+1}-} (f_{i+2}(p_{t_{i+1}-t_{i+2}} f_{i+2} \cdots p_{t_{n-1}-f_n}) \cdots)(\omega_t) \quad \text{P-a.s.,}
\]

where

\[
p_s f(x) := \frac{1}{\sqrt{2\pi s}} \int f(y) e^{-\frac{1}{2s}(x-y)^2} \, dy.
\]

So, we have to prove that \(p_{t_{i+1}-t} g(\omega_t) \) is P-a.s. continuous in \(t \). Set

\[
C_{b,u}(\mathbb{R}) := \{ \varphi \in C_b(\mathbb{R}) | \varphi \text{ uniformly continuous} \}.
\]

i. Let \(f \in C_{b,u}(\mathbb{R}) \). Take \(x, y \in \mathbb{R} \). Then

\[
|p_t f(x) - p_t f(y)| \leq \frac{1}{\sqrt{2\pi s}} \int |f(x+z) - f(y+z)| e^{-\frac{|z|^2}{2s}} \, dz.
\]

Let \(\varepsilon > 0 \). Then there exists \(\delta = \delta(\varepsilon) > 0 \) such that \(|x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon \). So, \(|p_t f(x) - p_t f(y)| \leq \varepsilon \) and \(p_s f \in C_{b,u}(\mathbb{R}) \).

ii. Let \(f \in C_{b,u}(\mathbb{R}) \). Then

\[
\lim_{s \to 0} \|p_s f - f\|_\infty = 0.
\]

Proof. Let \(\varepsilon > 0 \) and \(\delta > 0 \) such that \(|x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon \). Since

\[
f(x) = \frac{1}{\sqrt{2\pi s}} \int f(x) e^{-\frac{|y|^2}{2s}} \, dy
\]

we have

\[
|p_s f(x) - f(x)| \\
\leq \frac{1}{\sqrt{2\pi s}} \int |f(x+y) - f(y)| e^{-\frac{|y|^2}{2s}} \, dy \\
\leq \frac{1}{\sqrt{2\pi s}} \int_{|y| < \delta} |f(x+y) - f(x)| e^{-\frac{|y|^2}{2s}} \, dy + \frac{1}{\sqrt{2\pi s}} \int_{|y| > \delta} |f(x+y) - f(x)| e^{-\frac{|y|^2}{2s}} \, dy \\
\leq \varepsilon + 2 \|f\|_\infty \frac{1}{\sqrt{2\pi s}} \int_{|y| > \delta} e^{-\frac{|y|^2}{2s}} \, dy.
\]

Therefore,

\[
\limsup_{s \to 0} \|p_s f - f\|_\infty \leq \varepsilon + 2 \|f\|_\infty \limsup_{s \to 0} \frac{1}{\sqrt{2\pi s}} \int_{|y| > \delta} e^{-\frac{|y|^2}{2s}} \, dy \overset{y' = \frac{y}{\sqrt{s}}}{=} \varepsilon.
\]
2.5. Itô’s Representation Theorem

iii.
\[p_t(p_s f) = p_{t+s} f, \]
in short,
\[p_t p_s = p_{t+s}. \]

Proof. Exercise (by Fourier transform and by use of
\[p_s f(x) = (g_s * f)(x), \]
where \(g_s(z) = \frac{1}{\sqrt{2\pi s}} e^{-|z|^2/2s} \) and recall \(\hat{g}_s(\xi) = e^{-s\xi^2/2} \).

iv. For \(t < t_{i+1} \) we have
\[\lim_{s \searrow t} \| p_{t_{i+1} - s} g - p_{t_{i+1} - t} g \|_\infty = 0 \] (right-continuity).

Proof. Let \(h > 0 \) such that \(s := t + h < t_{i+1} \). Then
\[
\| p_{t_{i+1} - t - h} g - p_{t_{i+1} - t} g \|_\infty \overset{(iii)}{=} \| p_{t_{i+1} - t - h} (g - p_h g) \|_\infty \\
\leq \| p_{t_{i+1} - t - h} \|_\infty \cdot \| g - p_h g \|_\infty \\
\overset{p_{t_{i+1}} = 1}{\leq} \| g - p_h g \|_\infty \overset{s \to t}{\longrightarrow} 0 \quad \text{by (ii)}. \]

v. Assume \(t_i < t \) and let \(h > 0 \) such that \(s := t - h > t_i \). Then
\[\lim_{s \searrow t} \| p_{t_{i+1} - s} g - p_{t_{i+1} - t} g \|_\infty = 0. \]

Proof. Let \(h > 0 \) such that \(s := t - h > t_i \). Then
\[
\| p_{t_{i+1} - t + h} g - p_{t_{i+1} - t} g \|_\infty \overset{(iii)}{=} \| p_{t_{i+1} - t} (p_h g - g) \|_\infty \leq \| p_h g - g \|_\infty \overset{h \to 0}{\longrightarrow} 0. \]

vi. Consider \(t := t_i \):
Let \(h > 0 \)
\[
p_{t_i - (t_i - h)}(f_{i}p_{t_{i+1} - t_i}f_{i+1} \cdots p_{t_n - t_{n-1}}f_{n}) = p_h(f_{i}p_{t_{i+1} - t_i}f_{i+1} \cdots p_{t_n - t_{n-1}}f_{n}) \overset{h \to 0}{\longrightarrow} \tilde{g} \]
unequally in \(x \). Hence, also continuous in \(t = t_i \) from the left uniformly in \(x \).

Summary: The function \(G \) defined by
\[G_t(x) := \prod_{j \leq i} \int f_j(x)p_{t_{i+1} - t}(f_{i+1}p_{t_{i+2} - t_{i+1}}f_{i+2} \cdots p_{t_n - t_{n-1}}f_{n}(x) \ldots) \quad \text{for } t \in [t_i, t_{i+1}] \]
is continuous in \(t \geq 0 \) uniformly in \(x \).

vii. \(t \mapsto G(t, \omega_t) \) is continuous \(P \)-a.s..
2. (Semi-)Martingales and Stochastic Integration

Proof. Take $|G(t, \omega_t) - G(s, \omega_s)| \leq |G(t, \omega_t) - G(s, \omega_t)| + |G(s, \omega_s) - G(s, \omega_s)|$. Fix $s > 0$. Then the right hand side is dominated by

$$\lim_{t \to s} \|G(t, \cdot) - G(s, \cdot)\|_\infty + \lim_{t \to s} \|G(s, \omega_t) - G(s, \omega_s)\|_\infty,$$

because $t \mapsto \omega_t$ is continuous and G is continuous in x.

Corollary 2.5.4 (cf. 2.5.2). Let $F \in \mathcal{L}^2(\Omega, \mathcal{F}^{W}_{t_0+}, P)$, $t_0 > 0$ fixed. Such F are sometimes called “Wiener functional”. Then there exists an $H \in \mathcal{L}^2(\Omega, \mathcal{F}, P_{W^{t_0+1}})$, (\mathcal{F}^W_t)-adapted, such that

$$F - E[F] = \int_0^{t_0} H_s \, dW_s.$$

Proof. (cf. 2.4.10) Let F^W_t be a càdlàg version of $E[F \mid \mathcal{F}^{W}_{t_0+}] - E[F \mid \mathcal{F}^{W}_{0+}]$, $t \geq 0$.

Then $(\mathcal{F}_t) \in \mathcal{M}^2$. Hence, by 2.5.2,

$$F - E[F \mid \mathcal{F}^{W}_{t_0+}] = E[F \mid \mathcal{F}^{W}_{t_0+}] - E[F \mid \mathcal{F}^{W}_{0+}] = F^W_{t_0} = \int_0^{t_0} H_s \, dW_s.$$

The uniqueness is also clear by martingale property.

Example 2.5.5 (Special case: the canonical Model). Let (Ω, \mathcal{F}, P) be the (classical) Wiener space, i.e. $\Omega = C([0,1], \mathbb{R})$, \mathcal{F} its Borel σ-algebra and P the Wiener measure. Define $X_t(\omega) := \omega(t)$, $t \in [0,1]$, $\omega \in \Omega$, hence X is Brownian motion,

$$\mathcal{F}_t := \sigma(\{X_r \mid r \leq s \leq 1\}) P\text{-zero sets in } \mathcal{F},$$

and

$$\mathcal{F} = \bigcup_{0 < t \leq 1} \mathcal{F}_t.$$

Then, by 2.5.4

$$F \in \mathcal{L}^2(\Omega, \mathcal{F}, P) \Rightarrow F = E[F] + \int_0^1 H_s \, dX_s.$$

Example 2.5.6. Consider the situation of 2.5.5 the Wiener functional

$$F := \int_0^1 X_t \, dt.$$

Because of $E[F] = \int_0^1 E(X_t) \, dt = 0$,

$$F = \int_0^1 H_s \, dX_s$$

for some $H \in \mathcal{L}^2(\Omega, \mathcal{F}, P_W)$.

Identification of H:

Let

$$M_t := E[F \mid \mathcal{F}_t] = \int_0^t E[X_s \mid \mathcal{F}_t] \, ds + \int_t^1 E[X_s \mid \mathcal{F}_t] \, ds = \int_0^t X_s \, ds + X_t(1-t) \in \mathcal{M}^2.$$

Claim: $H_t = 1 - t$.

52
2.5. Itô’s Representation Theorem

Proof. In view of 2.4.1(i) it is enough to show
\[\langle M, X \rangle = \int_0^t H_s \, d\langle X \rangle_s = \int_0^t (1 - s) \, ds, \]
since then, by \(M^2 \overset{2.5.2}{=} M^2 X \), we have \(M = H \cdot X \), in particular,
\[M_1 = \int_0^1 X_t \, dt = F. \]
All processes are continuous with continuous \(\langle \cdot \rangle \). Therefore, we can consider everything pathwise and use the results of chapter 1. We have
\[\langle M, X \rangle = \frac{1}{2} (\langle M + X \rangle - \langle M \rangle - \langle X \rangle). \]
Since
\[
M + X = \int_0^1 X_s \, ds + X \cdot A \\
= \int_0^1 X_s \, ds + X_t(1 - t) + X_s \\
= \int_0^1 X_s \, ds + X_t \cdot A_t,
\]
where \(A_t := (2 - t) \) is of bounded variation, it follows by Itô’s product rule
\[X A = \int X \, dA + \int A \, dX. \]
Therefore,
\[
\langle XA \rangle_t = \left\langle \int_0^t A \, dX \right\rangle_t = \int_0^t A^2_s \, d\langle X \rangle_s = \int_0^t (2 - s)^2 \, ds.
\]
Thus,
\[\langle M + X \rangle = \langle X \cdot A \rangle_t = \int_0^t (2 - s)^2 \, ds. \]
Likewise,
\[\langle M \rangle = \langle X(1 - \cdot) \rangle_t = \int_0^t (1 - s)^2 \, d\langle X \rangle_s = \int_0^t (1 - s)^2 \, ds, \]
so,
\[\langle M, X \rangle = \frac{1}{2} \left(\int_0^t (2 - s)^2 \, ds - \int_0^t (1 - s)^2 \, ds - t \right) = \int_0^t (1 - s) \, ds. \]
\[\square \]
2. (Semi-)Martingales and Stochastic Integration
Chapter 3: Markov Processes

3.1. Markov Processes and Semigroups

Definition 3.1.1. A family \((p_t)_{t \geq 0}\) of transition kernels on a measurable space \((S, \mathcal{S})\) is called a semigroup of kernels if

\[p_{t+s} = p_t p_s \quad \forall t, s \geq 0 \quad (\text{Chapman-Kolmogorov equation}), \]

i.e.

\[p_t p_s(x, A) = \int p_t(x, dy) p_s(y, A). \]

If \(p_t : s \times S \to [0, 1]\), \(p_t(x, \cdot)\) is a measure on \(S\), \(x \mapsto p_t(x, A)\) is \(\mathcal{S}\)-measurable for all \(A \in \mathcal{S}\) and \(p_t(x, S) = 1\), \((p_t)_{t \geq 0}\) is called markovian and, if \(p_t(x, S) \leq 1\) for all \(x, t\), sub-markovian, respectively.

Definition 3.1.2. Let \((S, \mathcal{S})\) be a measurable space. A family of stochastic processes

\[(\Omega, \mathcal{F}, (X_t)_{t \geq 0}, (P_x)_{x \in S}) \]

with state space \((S, \mathcal{S})\) is called a Markov process, if

(M1) \(x \mapsto P_x(\Gamma)\) is \(\mathcal{S}\)-measurable for all \(\Gamma \in \mathcal{F}\),

(M2) there exists a filtration \((\mathcal{F}_t)_{t \geq 0}\) such that \((X_t)_{t \geq 0}\) is \(\mathcal{F}_t\)-adapted and

\[P_x(X_{s+t} \in B | \mathcal{F}_s) = P_{X_s}(X_t \in B) \quad P_x\text{-a.e.} \quad \forall s, t \geq 0, B \in \mathcal{S}, x \in S \]

(Markov property with respect to \((\mathcal{F}_t)_{t \geq 0}\)).

The following theorem shows, at least if \((S, \mathcal{S})\) is polish, that Markovian semigroups and Markov processes are in correspondence to each other.

Theorem 3.1.3. i. Let \((S, \mathcal{S})\) be a measurable space and \(\mathcal{M} = (\Omega, \mathcal{F}, (X_t)_{t \geq 0}, (P_x)_{x \in S})\) be a family of stochastic processes with state space \((S, \mathcal{S})\) and \(\mathcal{F} = \sigma((X_t)_{t \geq 0})\).

a) Suppose there exists a Markovian semigroup of kernels \((p_t)_{t \geq 0}\), such that, for all \(0 \leq t_0 < t_1 < \ldots < t_n\), \(f\) bounded and \(\mathcal{S}^{n+1}\) measurable, for all \(x \in S\),

\[E_x[f(X_{t_0}, \ldots, X_{t_n})] = \int_S p_{t_0}(x, dx_0) \cdot \int_p p_{t_n-t_{n-1}}(x_{n-1}, dx_{n-1}) f(x_0, \ldots, x_n) \quad (3.1.1) \]

Then \(M\) is a Markov process with respect to \(\mathcal{F}_t = \sigma(X_s | s \leq t), t \geq 0\).

b) Suppose \(\mathcal{M}\) is a Markov process and set

\[p_t f(x) := E_x(f(X_t)) \quad x \in S, f \text{ bounded, } S \text{-measurable, } t \geq 0. \quad (3.1.2) \]

Then \((p_t)_{t \geq 0}\) is a Markovian semigroup of kernels on \((S, \mathcal{S})\) and we have (3.1.1).

ii. If \((S, \mathcal{S})\) is Polish and \((p_t)_{t \geq 0}\) is a Markovian semigroup of kernels on \((S, \mathcal{S})\). Then there exists a Markov process \(\mathcal{M}\) with (3.1.2) and \(\Omega = S^{[0, \infty)}\).
3. Markov Processes

Proof.

i.

(a) (M1) follows by “monotone classes” from (3.1.1), since \(\mathcal{F} = \sigma(\{X_t | t \geq 0\}) \). For (M2) we show a stronger fact:

\[
E_x[f(X_{t_1}, \ldots, X_{t_n + s}), \Gamma] = E_x[E_{X_s}[f(X_{t_1}, \ldots, X_{t_m})], \Gamma]
\]

(3.1.3)

for all \(x \in S \), bounded and \(S^n \)-measurable \(f \), \(0 \leq s_0 < s_1 < \ldots < s_m = s \) and \(\Gamma \in \mathcal{F}, s \geq 0 \). By monotone classes (applied to \(\Gamma \)) this follows from

\[
E_x[f(X_{t_1}, \ldots, X_{t_m})g(X_{s_0}, \ldots, X_{s_m})] = E_x[E_{X_s}[f(X_{t_1}, \ldots, X_{t_m})]g(X_{s_0}, \ldots, X_{s_m})]
\]

for all bounded \(S^{m+1} \)-measurable \(g \), \(0 \leq s_0 < s_1 < \ldots < s_m = s \). By (3.1.1) the left hand side is equal to

\[
\int p_{s_0}(x, dx_0) \int p_{s_m-s_m-1}(x_{m-1}, dx_m) \ldots \int p_{t_1}(x_1, dy_1) f(y_1, \ldots, y_n) f(x_0, x_1, \ldots, x_m) = E_x[E_{X_{s_0}}[f(X_{t_1}, \ldots, X_{t_m})]g(X_{s_0}, X_{s_1}, \ldots, X_{s_m})].
\]

ii. It is clear that (3.1.2) defines a Markov kernel for all \(t \geq 0 \). Furthermore,

\[
p_{t+s} f(x) = E_x[f(X_{t+s})] = E_x[E_x[f(X_{t+s})|\mathcal{F}_t]]
\]

\[
\overset{M.P.}{=} E_x[E_{X_t}[f(X_t)]] = E_x[p_t(f)(X_t)] = p_s(p_t) f(x)
\]

Let \(f = f_0 \otimes f_1 \otimes \ldots \otimes f_n \), \(f_i \) bounded and \(\mathcal{S} \)-measurable. Then

\[
E_x[f_0(X_{t_0}) f_1(X_{t_1}) \ldots f_n(X_{t_n})] = E_x[f_0(X_{t_0}) f_1(X_{t_1}) \ldots f_{n-1}(X_{t_{n-1}}) E_x[f_n(X_{t_{n-1}+t_n})|\mathcal{F}_{t_{n-1}}]] \overset{M.P.}{=} E_x[f_0(X_{t_0}) f_1(X_{t_1}) \ldots f_{n-1}(X_{t_{n-1}}) E_{X_{t_{n-1}}}[f_n(X_{t_{n-1}+t_n})]]
\]

(3.1.2)

\[
\overset{\text{Ind.Hyp.}}{=} \int \ldots \int p_{t_0}(x, dx_0) p_{t_1-t_0}(x_0, dx_1) p_{t_2-t_1-t_0}(x_{n-2}, dx_{n-1}) f_0(x_0) f_1(x_1) \ldots f_{n-1}(x_{n-2}) f_n(x_{n-1})
\]

By monotone classes this equality extends to all \(f : S^n \to \mathbb{R} \) bounded, measurable. Hence, (3.1.1) holds.

\[\square\]

Remark 3.1.4. The Markov property is the core argument for the proof above, i.e. for \(f = 1_A, A \in \mathcal{S} \)

\[
E_x[1_A(X_{t+s})] = P_x[X_{t+s} \in A] \overset{M.P.}{=} E_x[1_A(X_t)]P_x(d\omega) = \int P_{X_{t+s}}(\omega)[X_t \in A]P_x(d\omega).
\]
Now consider the “canonical model”:
Let S be a topological space, S the Borel-σ-algebra and $\Omega \subset S^{[0, \infty]}$ (e.g. $\Omega = S^{[0, \infty]}$ or $\Omega = C([0, \infty[, S)$ or Ω are all bounded continuous paths in S, hence, $S^{[0, \infty]} = \{ f : [0, \infty[\to S$ and continuous $\}$) and define

$$X_t(\omega) := \omega(t), \quad t \geq 0, \ \omega \in \Omega,$$

$$\mathcal{F} := \sigma(X_t|t \geq 0),$$

$$\mathcal{F}_t^0 := \sigma(X_s|s \leq t) \quad \text{("past")},$$

$$\hat{\mathcal{F}}_t^0 := \sigma(X_s|s \geq t) \quad \text{("future")}.$$

Let $M = (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, (X_t)_{t \geq 0}, (P_x)_{x \in S})$ be a Markov process. Then M is called the canonical model.

Definition 3.1.5. Define the shift operator $\vartheta_t : \Omega \to \Omega$ for $t \geq 0$ by

$$\vartheta_t(\omega)(s) := \omega(s + t),$$

i.e.

$$\vartheta_t(\omega) = \omega(\cdot + t).$$

It is obvious that $\vartheta : \Omega \to \Omega$ is $\mathcal{F}_t^0/\mathcal{F}$-measurable and moreover, (exercise)

$$\vartheta_t^{-1}(\mathcal{F}) = \hat{\mathcal{F}}_t^0 \ \forall t \geq 0.$$

Lemma 3.1.6.

i. ψ is $\hat{\mathcal{F}}_t^0$-measurable if and only if there exists an \mathcal{F}-measurable φ such that

$$\psi = \varphi \circ \vartheta_t.$$

ii. Suppose $P_x, x \in S$, are given and

$$M := (\Omega, \mathcal{F}, (\mathcal{F}_t^0)_{t \geq 0}, (X_t)_{t \geq 0}, (P_x)_{x \in S})$$

defined such that (M1) is fulfilled. Then (M2) holds if and only if

$$E_x[\varphi \circ \vartheta_t|\mathcal{F}_t^0] = E_{X_t}[\varphi] \quad P\text{-a.s.} \forall x \in S, \forall \varphi \text{ bounded and } \mathcal{F}\text{-measurable.} \quad (3.1.4)$$

Proof.

i. Exercise (Factorization lemma).

ii. “\Rightarrow” is clear. (Consider $\varphi = 1_{B(x)}, B \in S$.)

“\Leftarrow”: By 3.1.3 (i)(b) we know that (3.1.1) holds. By use of (3.1.1) we have shown (3.1.3).

Now Lemma 3.1.6 follows by “monotone classes”.

It is clear that (3.1.4) implies (elementary Markov processes)

$$E_x[\varphi \circ \vartheta_t|\mathcal{F}_t^0] = E_x[\varphi \circ \vartheta_t|\sigma(X_t)] \quad \forall t \geq 0. \quad (3.1.5)$$

Interpretation of (3.1.5): The conditional expectation of a future observable, given the past, only depends on the present at time t. The equivalent formulations of (3.1.5) in the following lemma have corresponding interpretations:

Lemma 3.1.7. Fix $x \in S$. Then the following statements are equivalent to (3.1.5):

i.

$$E_x[\varphi_t^0|\hat{\mathcal{F}}_t^0] = E_x[\varphi_t^0|\sigma(X_t)] \quad P\text{-a.s.}, \forall t \geq 0, \forall \varphi_t^0 \text{ bounded and } \hat{\mathcal{F}}_t^0\text{-measurable.}$$
3. Markov Processes

\[ii. \quad E_x[\varphi_0^0 \varphi_0^0 | \sigma(X_t)] = E_x[\varphi_0^0 | \sigma(X_t)]E_x[\varphi_0^0 | \sigma(X_t)] \quad P_x \text{-a.s.,} \]

for all \(t \geq 0 \) and for all \(\varphi_0^0, \varphi_0^0 \) bounded, \(\varphi_0^0 \mathcal{F}_t^0 \)-measurable and \(\varphi_0^0 \mathcal{F}_t^0 \)-measurable.

Proof. (3.1.5) \(\Rightarrow \) (i):

\[
E_x[\varphi_0^0 \varphi_0^0] = E_x[\varphi_0^0 | \sigma(X_t)]E_x[\varphi_0^0 | \sigma(X_t)] = E_x[\varphi_0^0 E_x[\varphi_0^0 | \sigma(X_t)]] = E_x[\varphi_0^0 | \sigma(X_t)].
\]

Therefore, \(E_x[\varphi_0^0 | \sigma(X_t)] \) is a \(P_x \)-version of \(E_x[\varphi_0^0 | \mathcal{F}_t^0] \). Hence, (i) holds.

(i) \(\Rightarrow \) (ii):

Let \(f \) be bounded and \(S \)-measurable and \(\varphi_0^0 \) be \(\mathcal{F}_t^0 \)-measurable. Then

\[
E_x[\varphi_0^0 \varphi_0^0 f(X_t)] = E_x[E_x[\varphi_0^0 | \mathcal{F}_t^0] \varphi_0^0 f(X_t)] \overset{(i)}{=} E_x[E_x[\varphi_0^0 | \sigma(X_t)] \varphi_0^0 f(X_t)] = E_x[E_x[\varphi_0^0 | \sigma(X_t)] E_x[\varphi_0^0 | \sigma(X_t)] f(X_t)].
\]

(ii) \(\Rightarrow \) (3.1.6):

\[
E_x[\varphi_0^0] = E_x[E_x[\varphi_0^0 | \sigma(X_t)] E[\varphi_0^0 | \sigma(X_t)]] = E_x[\varphi_0^0 E_x[\varphi_0^0 | \sigma(X_t)]].
\]

Hence,

\[
E_x[\varphi_0^0 | \sigma(X_t)] = E_x[\varphi_0^0 | \mathcal{F}_t^0].
\]

\[\square \]

Remark 3.1.8. Consider the situation of 3.1.3(ii). Then \(P_x(X_0 = 0) = 1 \) if and only if \(p_0(x, \cdot) = \sigma_x \) (Dirac-measure in \(x \)). If this holds for every \(x \in S \), then \(M \) is called normal. In this case, \(p_t(x, A) = P_x(X_t \in A) \), which is the probability to be at time \(t \) in \(A \) starting in \(x \) (transition probability).

3.2. The Strong Markov Property

Consider the “canonical model”.

Recall: Let \(\mathcal{F}_t \) be some filtration and \(T \) an \((\mathcal{F}_t) \)-stopping time. Define the \(\sigma \)-field of the \(T \)-past by

\[
\mathcal{F}_T := \{ A \in \mathcal{F} | A \cap \{ T \leq t \} \in \mathcal{F}_t \ \forall t \geq 0 \}.
\]

Definition 3.2.1. Let \(M = (\Omega, \mathcal{F}, (X_t)_{t \geq 0}, (P_x)_{x \in S}, (\vartheta_t)_{t \geq 0}) \) be a canonical Markov process. Then \(M \) satisfies the strong Markov property (SMP), if there exists a right-continuous filtration \((\mathcal{F}_t)_{t \geq 0} \) on \((\Omega, \mathcal{F}) \) (i.e. \(\mathcal{F}_t = \bigcap_{t>0} \mathcal{F}_{t+t} \)) such that for all \((\mathcal{F}_t) \)-stopping times \(T \) we have (SMP)

\[
E_x[1_{\{T < \infty\}} \varphi \circ \vartheta_T | \mathcal{F}_T] = 1_{\{T < \infty\}} E_{X_T}[\varphi] \quad P\text{-a.s.} \quad \forall \varphi \text{ bounded, } \mathcal{F}\text{-measurable and } \forall x \in S.
\]

Remark 3.2.2. \(\quad i. \) It is clear that (SMP) implies the Markov property with respect to \((\mathcal{F}_t) \) and therefore, with respect to \(\mathcal{F}_T^0 \) by (3.1.6). In general, the converse is false.

\(\quad ii. \) (SMP) holds if and only if for all \((\mathcal{F}_t) \)-stopping times \(T \) we have

\[
E_x[\varphi \circ \vartheta_t; T < \infty] = E_x[E_x(\varphi); T < \infty] \quad P_x\text{-a.s.} \tag{3.2.6}
\]

for all \(\varphi \) bounded and \(\mathcal{F} \)-measurable and for all \(x \in S \).
3.2. The Strong Markov Property

Proof. “⇒” is clear, since \(\{ T < \infty \} \in \mathcal{F}_T \).

“⇐”: Let \(A \subset \mathcal{F}_T \) and \(\tilde{T} := T \cdot 1_A + \infty \cdot 1_{A^c} \). Then \(\tilde{T} \) is a \((\mathcal{F}_t)\)-stopping time because \(\{ \tilde{T} \leq t \} = \{ A \cap \{ T \leq t \} \} \in \mathcal{F}_t \).

Hence
\[E_x[\varphi \circ \vartheta_T; A \cap \{ T < \infty \}] = E_x[\varphi \circ \vartheta_{\tilde{T}}; \tilde{T} < \infty] \]

(3.2.6)
\[= E_x[E_{X_T}(\varphi); A \cap \{ T < \infty \}] \]

Proposition 3.2.3. Suppose \(\varphi \in \mathcal{S} = \sigma (\mathcal{C}_b(S)) \). Let \(M = (\Omega, \mathcal{F}, ((X_t)_{t \geq 0})_{t \geq 0}, (P_x)_{x \in S}, (\vartheta_t)) \) be a (canonical) Markov process with

i. right-continuous paths,

ii. \(p_t(\mathcal{C}_b(S)) \subset \mathcal{C}_b(S) \) (“Feller property”),

where \(p_t \) is the corresponding semigroup, then \(M \) fulfills the (SMP) with respect to \(\mathcal{F}_t := \bigcap_{\epsilon > 0} \mathcal{F}_{t+\epsilon} \) (right-continuous).

Proof. Let \(T \) be an \((\mathcal{F}_t)\)-stopping time. Define
\[T_n := \sum_{k=1}^{\infty} \frac{1}{2^n} 1_{\{ \frac{k-1}{2^n} \leq T < \frac{k}{2^n} \}} + \infty \cdot 1_{\{ T = \infty \}}. \]

Then \(T_n \searrow T \). We have to show that (3.2.6) holds:
Without loss of generality
\[\varphi = f_0(X_{t_0})f_1(X_{t_1}) \ldots f_n(X_{t_n}), \quad f_i \in \mathcal{C}_b(S), \quad t_0 \leq t_1 \leq \ldots \leq t_n. \]

Then
\[E_x[\varphi \circ \vartheta_T; T < \infty] \overset{(i)}{=} \lim_{n \to \infty} E_x[\varphi \circ \vartheta_{T_n}, T < \infty] \]
\[= \lim_{n \to \infty} \sum_{k=1}^{\infty} E_x \left[\varphi \circ \vartheta_T \cdot \frac{k-1}{2^n} \leq T \leq \frac{k}{2^n} \right] \]
\[= \lim_{n \to \infty} \sum_{k=1}^{\infty} E_x \left[E_{X_{T_{2^{-n}}}^{T_{2^{-n}}}}[\varphi]; (k-1)2^{-n} \leq T < \frac{k}{2^n} \right] \]
\[\overset{M.P.}{=} \lim_{n \to \infty} E_x[E_{X_{T_{2^{-n}}}^{T_{2^{-n}}}}[\varphi], T < \infty] \]
\[= E_x[E_{X_T}[\varphi]; T < \infty] \quad \text{(Lebesgue)}, \]

since \(X_{T_n} \to X_T \) on \([T < \infty] \) and
\[x \mapsto E_x[\varphi] = E_x[f_0(X_{t_0}), \ldots, f_n(X_{t_n})] = p_{t_0}(f_0p_{t_1-t_0}f_1p_{t_2-t_1}f_2 \ldots p_{t_n-t_{n-1}}f_n)(x) \]
are continuous on \(S \).

Remark 3.2.4 (Blumenthal’s 0–1 law). Let \(M \) be a canonical normal Markov process with respect to \(\mathcal{F}_t := \bigcap_{s \geq t} \mathcal{F}_s^0 \), \(t \geq 0 \) (on measurable state space \((S, \mathcal{S})) \). Then \(P_x = 0 \) or \(P_x = 1 \) on \(\mathcal{F}_0 \).

Proof. Let \(\varphi \) be \(\mathcal{F}_0 \)-measurable and bounded. Then for all \(x \in S \) we have
\[\varphi = E_x[\varphi|\mathcal{F}_0] = E_x[\varphi \circ \vartheta_0|\mathcal{F}_0] \overset{M.P.}{=} E_{X_0}[\varphi] = E_x[\varphi] \quad P_x \text{-a.s.}. \]

Hence, \(\varphi \) is constant \(P_x \)-a.e.
3. Markov Processes

3.3. Application to Brownian Motion

Let $S = \mathbb{R}^d$, $S = \mathcal{B}(\mathbb{R}^d)$ and

$$p_t(x, A) = \int_A \frac{1}{(2\pi t)^{d/2}} e^{-\frac{|y-x|^2}{2t}} \, dy, \quad x \in \mathbb{R}^d, \ t > 0, \ A \in \mathcal{B}(\mathbb{R}^d),$$

$p_0(x, \cdot) = \delta_x$.

Lemma 3.3.1. For all $t, x \geq 0$, we have

$$p_t p_s = p_{t+s}.$$

Proof. Exercise (by Fourier transform). \qed

Let $\Omega := \mathcal{C}([0, \infty[, \mathbb{R}^d)$, $X_t(\omega) := \omega(t)$, $P_0 := P$ be the Wiener measure on Ω, $\mathcal{F} := \sigma(X_t| t \geq 0)$ and P_x the image of P_0 under $\omega \mapsto \omega + x$. Then we have (cf. [Röc06])

$$E_x[f(X_{t_0}, \ldots, X_{t_p})] = \int p_0(x, dx_0)p_{t_1-t_0}p_{t_2-t_1-\ldots-t_{n-1}}(x_{n-1}, dx_n)f(x_0, \ldots, x_n),$$

for all $x \in \mathbb{R}^d$, for all $\mathcal{B}(\mathbb{R}^d)\text{-}\text{measurable, bounded functions } f \text{ and for } 0 \leq t_0 \leq t_1 \leq \ldots \leq t_n$.

Hence,

$$\mathcal{M} := (\Omega, \mathcal{F}, (X_t)_{t \geq 0}, (P_x)_{x \in \mathbb{R}^d})$$

is by Proposition 3.1.3(i)(a) a Markov Process on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. \mathcal{M} has continuous sample paths and is normal. In particular, Remark 3.2.4 is fulfilled. But also, by Proposition 3.2.3 \mathcal{M} has SMP with respect to

$$\mathcal{F}_t = \bigcap_{s > t} \mathcal{F}_s, \ t \geq 0,$$

because of the following Proposition.

Proposition 3.3.2. $(p_t)_{t \geq 0}$ is strong Feller, that is,

$$p_t f \in \mathcal{C}_b(\mathbb{R}^d) \ \forall f \in \mathcal{B}_b(\mathbb{R}^d).$$

(Moreover, we have $p_t f \in \mathcal{C}^\infty$ for all $t > 0$ and $f \in \mathcal{B}_b(\mathbb{R}^d).$)

Proof. Let $x \in \mathbb{R}^d$ and $x_n \to x$. We have to show that $p_t f(x_n) \to p_t f(x)$. Let $\varepsilon > 0$ and n_0 such that $x_n \in B_1(x)$ for all $n \geq n_0$, there exists $h \in \mathcal{L}^1(\mathbb{R})$ such that $\frac{e^{-(y-x')^2}}{2t} \leq h(y)$ for all $y, x' \in \mathbb{R}$ such that $|x'-x| \leq 1$.

Define $g(x_1, \ldots, x_d) = h(x_1) \cdots h(x_d)$, then

$$\frac{e^{-(y-x')^2}}{2t} \leq g(y) \ \forall x' \in B_1(x) \ \forall y \in \mathbb{R}^d.$$

Hence

$$\lim_{n \to \infty} p_t f(x_n) = \frac{1}{\sqrt{(2\pi t)^d}} \lim_{n \to \infty} \int f(y) e^{-\frac{|y-x_n|^2}{2t}} \, dy = \frac{1}{\sqrt{(2\pi t)^d}} \int f(y) e^{-\frac{|y-x|^2}{2t}} \, dy = p_t f(x)$$

by Lebesgue’s dominated convergence theorem since f is bounded and $\frac{e^{-(y-x')^2}}{2t} \leq g(y) \in \mathcal{L}^1$ for all $n \geq n_0$. \qed
3.3. Application to Brownian Motion

Corollary 3.3.3. i. Let \(M \) be a normal (canonical) Markov-Process with respect to \(\mathcal{F}_t := \bigcap_{s \geq t} \mathcal{F}_s \), \(t \geq 0 \). Then, by Blumenthal for \(t \) not fixed,
\[
P_x[\limsup_{t \to 0} 1_{\{X_t = x\}} = 1] \in \{0, 1\}.
\]
For Brownian motion this probability is equal to 1 because of the law of iterated logarithm.

ii. Let \(X \) be Brownian motion starting at \(x = 0 \) and let
\[
N(\omega) := \{0 \leq s \leq 1 | X_s(\omega) = 0\}.
\]
Then for \(P_0 \)-a.e. \(\omega \) we have that
a) \(N(\omega) \) is closed,
b) \(N(\omega) \) has Lebesgue-measure zero,
c) \(N(\omega) \) has no isolated points,
that is \(N(\omega) \) is a Cantor set for \(P_0 \)-a.e. \(\omega \), i.e. every point of \(N(\omega) \) is a cluster point of \(N(\omega) \).

iii. Let \(U \subset \mathbb{R}^d \), \(U \) open and bounded and \(X \) Brownian motion on \(\mathbb{R}^d \). Define the first exit time of \(U \)
\[
T := \inf\{t > 0 | X \not\in U\} = \sigma_U^c.
\]
\(T \) is an (\(\mathcal{F}_t \))-stopping time. Then there exists \(\varepsilon > 0 \) such that
\[
\sup_{x \in U} E_x[e^{\varepsilon T}] < \infty.
\]

Proof. i. Clear.

ii. a) \(X \) is \(P \)-a.s. continuous.
b) By Fubini, we get
\[
E \left[\int_0^1 1_{N(\omega)}(s) \, ds \right] = \int_0^1 E_0[1_{N(\omega)}(s)] \, ds
= \int_0^1 P_0[X_s = 0] \, ds
= \int_0^1 p_s(0, \{0\}) \, ds = 0.
\]
c) According to our intuition, by law of (local) iterated logarithm \(t = 0 \) is not an isolated point of \(N(\omega) \). By (SMP) this is true for any \(s \in \mathbb{N}(\omega) \). Define
\[
J := \{\omega | N(\omega) \text{ has isolated points}\} = \bigcup_{r, s \in \mathbb{Q}, r < s} \{\omega | N(\omega) \cap [r, s] \text{ contains exactly one (isolated) point} \}.
\]
Let \(T_{\{0\}} := \inf\{t > 0 | X_t = 0\} \). Then \(T_{\{0\}} \) is an (\(\mathcal{F}_t \)) (\(= \bigcap_{s > t} \mathcal{F}_s \))-stopping time (exercise). Therefore, for \(T := T_{\{0\}} \circ \vartheta_r + r \) (\(\mathcal{F}_t \))-stopping time
\[
P_0[A, r, s] \leq P_0[r + T_{\{0\}} \circ \vartheta_r < s, T_{\{0\}} \circ \vartheta_r + T_{\{0\}} \circ \vartheta_r > 0]
= E_0[1_{\{T_{\{0\}} > 0\}} \circ \vartheta_T; T < s]
= E_0[E_{X_T}[1_{\{T_{\{0\}} > 0\}} \circ \vartheta_T | \mathcal{F}_T]; T < s]
= E_0[E_{X_T}[1_{\{T_{\{0\}} > 0\}}]; T < s]
= E_0[P_0[T_{\{0\}} > 0]; T < s] = 0,
\]
3. Markov Processes

by (i).

iii. Let \(R > 0 \) such that \(U \subset B_R \) (closed ball with \(R \) around 0). Define

\[
T_R := \inf \{ t > 0 \mid |X_t| > R \} = \sigma_{B_R^c}.
\]

By Doob-Meyer, \(|X_t|^2 - d \cdot t \) is a martingale under \(P_x \). Hence,

\[
0 \leq |x|^2 = E_x[|X_0|^2 - d \cdot 0] = E_x[|X_{T_R \wedge n}|^2 - d \cdot T_R \wedge n]
\leq E_x[|X_{T_R \wedge n}|^2] - d \cdot E_x[T_R \wedge n] \leq R^2 - d \cdot E_x[T_R \wedge n], \quad \forall x \in U,
\]

Therefore, taking \(n \) to \(\infty \), we get

\[
E_x[T] \leq E_x[T_R] \leq \frac{R^2}{d} < \infty, \quad \forall x \in U.
\]

Hence,

a) \[P_x[T < \infty] = 1, \quad \forall x \in U, \]

b) for large \(t_0 \)

\[\sup_{x \in U} P_x[T > t_0] \leq \sup_{x \in U} \frac{1}{t_0} E_x[T] < 1. \]

Define

\[
\varphi(t) := \sup_{x \in U} P_x[T > t].
\]

Then, we have

\[
\varphi(t + s) = \sup_{x \in U} E_x[1_{\{T > t+s\}}] = \sup_{x \in U} E_x[1_{\{T > t\} \cdot 1_{\{T > s\}}} \circ \vartheta_s] = \sup_{x \in U} E_x[E_x[1_{\{T > t\} \circ \vartheta_s} \mid \mathcal{F}_s]; T > s] \quad \text{(since \{T > s\} \in \mathcal{F}_s)}
\]

\[\leq \sup_{x \in U} E_x[P_X[T > t]; T > s] \leq \sup_{x \in U} P_x[T > t] \cdot \sup_{x \in U} P_x[T > s] = \varphi(t)\varphi(s). \]

Claim: These two conditions, i.e.

a) there exists a \(t_0 > 0 \) such that \(\varphi(t_0) < 1 \),

b) \[\varphi(t + s) \leq \varphi(t)\varphi(s), \quad (\star) \]

imply that \(\varphi \) is subexponential, i.e. there exist \(K > 0 \) and \(\lambda > 0 \) such that

\[\varphi(t) \leq Ke^{-\lambda t}, \quad \forall t \geq t_0. \]

Proof. We have

\[\varphi(s) = \varphi \left(\frac{s}{t_0} \cdot t_0 \right) \leq \varphi \left(\frac{t_0}{t_0} \cdot t_0 \right) \]
Hence, equation (\(\star\)) implies
\[
\varphi(s) \leq \varphi(t_0 + \ldots + t_0) \leq \varphi(t_0) \cdot \ldots \cdot \varphi(t_0) = \varphi(t_0)\left\lfloor \frac{s}{t_0} \right\rfloor. \tag{3.4.1}
\]

From now on, without loss of generality we consider \(\varphi(t_0) > 0\). Then, since \(\left\lfloor \frac{s}{t_0} \right\rfloor \leq \frac{s}{t_0} - 1\), it follows that
\[
\varphi(t_0)\left\lfloor \frac{s}{t_0} \right\rfloor = e^{\left\lfloor \frac{s}{t_0} \right\rfloor \ln \varphi(t_0)} \leq \exp \left(-s \frac{\ln \varphi(t_0)}{t_0} \right) \exp(\ln \varphi(t_0)) = Ke^{-s\lambda},
\]
where
\[
K := \frac{\varphi(t_0) - 1}{\varphi(t_0)} < 1 = \exp(\ln \varphi(t_0)) \quad \text{and} \quad \lambda := \frac{\ln \varphi(t_0)}{t_0}.
\]

Then for all \(x \in U\)
\[
E_x[e^{\varepsilon T}] = E_x \left[\int_0^{e^{\varepsilon T}} 1 \, ds \right] = E_x \left[\int_0^\infty 1_{[0,e^{\varepsilon T}]}(s) \, ds \right] \\
\text{Fubini} = \int_0^\infty P_x[e^{\varepsilon T} > s] \, ds \\
= \int_{e^{\varepsilon t_0}}^\infty P_x[e^{\varepsilon T} > s] \, ds + \int_{e^{\varepsilon t_0}}^\infty P_x[e^{\varepsilon T} > s] \, ds.
\]

For the first term we have easily
\[
\int_{e^{\varepsilon t_0}}^\infty P_x[e^{\varepsilon T} > s] \, ds \leq e^{\varepsilon t_0} < \infty.
\]

But, we can compute the second one:
\[
\int_{e^{\varepsilon t_0}}^\infty P_x[e^{\varepsilon T} > s] \, ds \leq \int_{e^{\varepsilon t_0}}^\infty \sup_{x \in U} P_x[e^{\varepsilon T} > s] \, ds \\
= \int_{t_0}^\infty e^{\varepsilon u} \sup_{x \in U} P_x[e^{\varepsilon T} > e^{\varepsilon u}] \, du \\
= \varepsilon \int_{t_0}^\infty e^{\varepsilon u} \varphi(u) \, du \\
= \varepsilon \cdot K \int_{t_0}^\infty e^{u(e-\lambda)} \, du < \infty,
\]
if \(\varepsilon < \lambda\).

\(\square\)

3.4. Sojourn Time

Let \(S\) be a polish space, \(\mathcal{S}\) the Borel-\(\sigma\)-algebra and \(\mathbb{M} = (\Omega, \mathcal{F}, (X_t)_{t \geq 0}, (P_x)_{x \in S})\) normal Markov process with respect to a right-continuous filtration \((\mathcal{F}_t)_{t \geq 0}\) with state space \(S\) and continuous paths.
3. Markov Processes

Definition 3.4.1. The time
\[\tau_x := \inf \{ t > 0 | X_t \neq x \} = \sigma_{\{x\}^c} \]
is called sojourn time.

Remark 3.4.2. \(\tau_x \) is an \((F_t)_{t \geq 0}\)-stopping time because for all \(t \geq 0 \)
\[\{ \tau_x < t \} = \{ X_s = x | 0 \leq s \leq t, s \in \mathbb{Q} \} \in F_t, \]
hence, \(\{ \tau_x < t \} \in F_t \). Since \(F_t = F_{t+} \), also
\[\{ \tau_x < t \} = \bigcap_{k \in \mathbb{N}} \{ \tau_x < t + \frac{1}{k} \} \in F_{t+} = F_t. \]

Proposition 3.4.3.
\[P_x[\tau_x > t] = \exp(-c_x \cdot t), \quad t \geq 0, \]
where \(c_x := -\ln P_x[\tau_x > 1] \in [0, \infty] \),
i.e. \(\tau_x \) is exponential distributed with constant \(c_x \) (cf. [KL99]).

Proof. (By Markov property.) Define for \(t \geq 0 \)
\[f(t) := P_x[\tau_x > t]. \]

Claim: \(f(t+s) = f(t)f(s) \) for all \(t, s \geq 0 \).
\[E_x[1_{\{\tau_x > t+s\}} | F_s] = E_x[1_{\{\tau_x > t\}} \cdot 1_{\{\tau_x > s\}}] \]
\[= E_x[1_{\{\tau_x > t\}}]1_{\{\tau_x > s\}} = P_x[\tau_x > t] \cdot 1_{\{\tau_x > s\}}. \]

Hence,
\[f(t+s) = P_x[\tau_x > t+s] = E_x[1_{\{\tau_x > t+s\}} | F_s] \]
\[= E_x[1_{\{\tau_x > t+s\}}] \]
\[= P_x[\tau_x > t]P_x[\tau_x > s] = f(t)f(s). \]

In particular,
\[f(1) = f \left(2^n \frac{1}{2^n} \right) = f \left(\frac{1}{2^n} \right)^{2^n} \]
and then
\[f \left(\frac{k}{2^n} \right) = f \left(\frac{1}{2^n} \right)^k = f(1)^{kn}. \]

Hence, by the right-continuity of \(f \) we have \(f(t) = f(1)^t = e^{t\ln f(1)} \).

Corollary 3.4.4. Let \(T_x = \inf \{ t > 0 | X_t = x \} = \sigma_{\{x\}^c} \). Let \(M \) be as in Proposition 3.4.3, but assume in addition, that \(M \) has (SMP) with respect to \((F_t)_{t \geq 0}\) (right-continuity!). Let \(y \in S \) such that
\[P_x[T_x < \infty] > 0. \]

Then for all \(u \geq 0 \), we have
\[P_x[X_s = x, \forall s \in [T_x, T_x + u); T_x < \infty] = e^{-c_x u}, \]
where \(c_x \) is as in Proposition 3.4.3.
3.4. Sojourn Time

Proof. Let \(\varphi := 1_{\{X_s = x, \ \forall s \in [0, u]\}} \). Then

\[
P_x[X_s = x, \ \forall s \in [T_x, T_x + u); T_x < \infty] = E_x[\varphi \circ \vartheta_{T_x}; T_x < \infty]
\]

\[
= E_x[E_x[\varphi \circ \vartheta_{T_x}; \mathcal{F}_{T_x}]; T_x < \infty]
\]

\[
= E_x[E_{X_{T_x}}[\varphi]; T_x < \infty]
\]

\[
= E_x[\varphi] \cdot P_x[T_x < \infty]
\]

\[
= P_x[X_s = x, \ \forall s \in [0, u)] \cdot P_y[T_x < \infty]
\]

\[
= e^{-c_x u} P_x[T_x < \infty].
\]
3. Markov Processes
4. Girsanov Transformation

4.1. Problem Outline \((d = 1)\)

We want to construct a process such that it solves (in a “weak” sense) the following equation (“law of motion for the stochastic dynamics \((X_t)_{t \geq 0}\)”):

\[
\begin{align*}
 &dX_t = b(X_t, t) \, dt + dW_t, \\
 &X_0 = x_0 \in \mathbb{R}^d,
\end{align*}
\]

that is,

\[
X_t(\omega) = x_0 + \int_0^t b(X_s(\omega), s) \, ds + W_t(\omega).
\]

Here, \(X_t = x_0 + \int_0^t b(X_s, s) \, ds\) denotes the deterministic part and \(W_t\) the stochastic perturbation, i.e. \(W_t\) is a Wiener process.

One possible strategy of solving this equation is to find the strong solution, that is, for a given Wiener process \((W_t)_{t \geq 0}\) on a given probability space \((\Omega, \mathcal{F}, P)\) construct the paths \((X_t)_{t \geq 0}\) of the solution by classical methods (e.g. Picard-Lindelöf or Euler scheme).

Example: The Ornstein-Uhlenbeck process has the “law of motion”

\[
\begin{align*}
 &dX_t = -\alpha X_t \, dt + dW_t, \quad \alpha > 0, \\
 &X_0 = x_0 \in \mathbb{R}.
\end{align*}
\]

Claim: This problem has a strong solution

\[
X_t := e^{-\alpha t}x_0 + \int_0^t e^{-\alpha (t-s)} \, dW_s = F(x_0, (W_s)_{s \leq t})(t),
\]

hence, \(X_t\) is adapted to the Wiener filtration.

Proof. We apply Itô’s product rule to \(X_t = e^{-\alpha t} \cdot \left(x_0 + \int_0^t e^{\alpha s} \, dW_s\right)\) to get

\[
X_t = x_0 + \int_0^t e^{-\alpha s} \, d \left(x_0 + \int_0^s e^{\alpha u} \, dW_u\right) + \int_0^t \left(x_0 + \int_0^s e^{\alpha u} \, dW_u\right) (-\alpha) e^{-\alpha s} \, ds
\]

\[
= x_0 - \alpha \int_0^t X_s \, ds + \int_0^t 1 \, dW_s = X_0 - \alpha \int_0^t X_s \, ds + W_t.
\]

Instead of strong solutions one can construct “(probabilistically) weak solutions”. We want to construct a Brownian motion \((W_t)_{t \geq 0}\) and a process \((X_t)_{t \geq 0}\) on some probability space \((\Omega, \mathcal{F}, P)\) such that

\[
X_t = x_0 + \int_0^t b(X_s) \, ds + W_t
\]
4. Girsanov Transformation

holds, that is, construct \((X_t)_{t \geq 0}\) on a suitable probability space \((\Omega, \mathcal{F}, P)\) such that \((X_0 = 0)\)

\[
W_t := X_t - \int_0^t b(X_s, s) \, ds
\]

is a Brownian motion, e.g. take \((\Omega, \mathcal{F}), (X_t)_{t \geq 0}\) canonical, i.e.,

\[
\Omega := C([0, 1]),
X_t(\omega) := \omega(t),
\mathcal{F} := \sigma(X_t|t \geq 0),
\]

such that

\[
W_t(\omega) := X_t(\omega) - \int_0^t b(X_s(\omega), s) \, ds (= G(X_s(\omega)))
\] (4.1.1)

is a Brownian motion under \(P\).

But we have to identify \(P\)!

One technique to find \(P\) is using the Girsanov transformation. This approach has the following advantages:

- One can do this even if dependence on the past is very complicated.
- One can do this for very irregular \(b_s\).

Method: Let \(\Omega = C([0, 1])\), \((X_t)_{t \geq 0}\) be a coordinate process, i.e. \(X_t(\omega) = \omega(t)\) and \(P_0\) be the Wiener measure on \(C([0, 1]) = \Omega\). Then define

\[
P := \exp \left(\int_0^1 b_t \, dX_t - \frac{1}{2} \int_0^1 b_t^2 \, dt \right) P_0.
\]

We can check that

\[
W_t := X_t - \int_0^t b_s \, ds
\]

is a Brownian motion under \(P\), where \(b_s\) denotes the drift. \((X_t)_{t \geq 0}\) is a Brownian motion under \(P_0\), hence, a martingale under \(P_0\), but *not* a martingale under \(P\)!

Catch: We have to check, that \(P\) is a probability measure, i.e. we have to check, that

\[
\int e^{\int_0^1 b_t \, dX_t - \frac{1}{2} \int_0^1 b_t^2 \, dt} \, dP_0 = 1.
\]

This is the hard work in applications.

Relation with Transformation Rule for Lebesgue Measure

Define \(T : C([0, 1]) \to C([0, 1])\) by

\[
T(\omega) := X(\omega) - \int_0^\cdot b(X_s(\omega), s) \, ds.
\]

Then by Girsanov (under certain conditions)

\[
P \circ T^{-1} = \left(e^{\int_0^1 b_s(X_s, s) \, dX_s - \frac{1}{2} \int_0^1 b_s(X_s, s)^2 \, ds} \, dP_0 \right) \circ T^{-1} = P_0.
\]

\("\equiv \det DT"\)
4.2. The General Girsanov Transformation

Let \((\Omega, \mathcal{F}, P)\) be a probability space and \((\mathcal{F}_t)_{t \geq 0}\) be a right-continuous filtration (not necessarily “completed”). Then let \(\tilde{P}\) be another probability measure such that

\[\tilde{P} \, \text{loc.} \ll P \quad \text{(i.e.} \, \tilde{P}|_{\mathcal{F}_t} \ll P|_{\mathcal{F}_t} \, \forall \, t \geq 0) \].

Then the Radon-Nikodym densities

\[Z_t := \frac{d\tilde{P}}{dP}\bigg|_{\mathcal{F}_t} := \frac{d\tilde{P}|_{\mathcal{F}_t}}{dP|_{\mathcal{F}_t}} \]

exist and \((Z_t)_{t \geq 0}\) is a martingale (since for all \(t > s\) and \(F_s \in \mathcal{F}_s\)

\[\int_{F_s} Z_t \, dP \big|_{\mathcal{F}_s \subset \mathcal{F}_t} = \int_{F_s} \tilde{Z}_s \, d\tilde{P} = \int_{F_s} Z_s \, dP, \]

i.e.

\[E[\tilde{Z}_t|\mathcal{F}_s] = Z_s. \]

Assumption (from now on in force): \(Z\) has continuous sample paths \(P\)-a.s. (This is enough in most applications. Note that by Ito’s representation theorem any martingale with respect to a filtration “generated” by a Brownian motion has this property!)

Lemma 4.2.1. For every \((\mathcal{F}_t)\)-stopping time \(T\) we have

\[\tilde{P} = Z_T P \quad \text{on} \quad \mathcal{F}_T \cap \{ T < \infty \} \quad \text{(trace \sigma-field)} \]

In particular, \(\tilde{P} \ll P\) on \(\mathcal{F}_T\) if \(T\) is finite.

Proof. Let \(A \in \mathcal{F}_t\). Then, by a lemma in [Röc06] for all \(t \geq 0\)

\[A \cap \{ T \leq t \} \in \mathcal{F}_T \cap \{ T < \infty \} \subset \mathcal{F}_t. \]

Hence,

\[\tilde{P}[A \cap \{ T \leq t \}] = \int_{A \cap \{ T \leq t \}} Z_t \, dP \bigg|_{A \cap \{ T \leq t \} \in \mathcal{F}_T \cap \{ T < \infty \}} = \int_{A \cap \{ T \leq t \}} Z_T \, dP. \]

Letting \(t \to \infty\) and applying monotone convergence the assertion follows. \(\square\)

The following lemma describes how martingales “behave” under change from \(P\) to \(\tilde{P}\). Define

\[\xi(\omega) := \inf\{ t \geq 0 | Z_t(\omega) = 0 \}. \]

\(\xi(\omega)\) is a stopping time. Recall that then \(Z_t(\omega) = 0\) for all \(t \in [\xi(\omega), \infty[\), since \((Z_t)_{t \geq 0}\) is a positive (super)martingale (cf. [Röc06]).

Lemma 4.2.2.

i. \(\xi = \infty\) \(\tilde{P}\)-a.s. (not necessarily \(P\)-a.s.).

ii. For all \(s \leq t\), \(\varphi_t \mathcal{F}_t\)-measurable and positive we have

\[E_{\tilde{P}}[\varphi_t|\mathcal{F}_s] = 1_{\{Z_s \neq 0\}} Z_s^{-1} E_{\tilde{P}}[\varphi_t Z_t|\mathcal{F}_s] \quad \tilde{P} - a.s.. \]

iii. Let \(\tilde{M} := (\tilde{M}_t)_{t \geq 0}\) be an adapted continuous process. Then \(\tilde{M}\) is a local \(\tilde{P}\)-martingale (up to \(\infty\)), if \(\tilde{M} \cdot Z\) is a local \(P\)-martingale (up to \(\xi\)).

69
4. Girsanov Transformation

Proof. i. We have

\[\tilde{P}[\xi < t] = \begin{cases} E_P[Z_{\xi\wedge t}, \xi < t] = E_P[Z_{\xi}, \xi < t] = 0. \end{cases} \]

Letting \(t \to \infty \), the assertion follows.

ii. For all \(\varphi, F_s \)-measurable and positive,

\[E_P[\varphi] = E_P[\varphi 1_{\{Z_{\xi}\neq 0\}}] = E_P[\varphi 1_{\{Z_{\xi}\neq 0\}} E_P[Z_{\xi} | F_s]] = E_P[\varphi 1_{\{Z_{\xi}\neq 0\}}] E_P[Z_s^{-1} E_P[\varphi_t Z_t | F_s]] \]

iii. Let \(T_1 \leq T_2 \leq \ldots < \xi \) (on \(\{\xi > 0\} \)) be a localizing sequence for the local \(P \)-martingale \(M \cdot Z \) (hence in particular \(\sup_n T_n = \xi \)). Then for all bounded stopping times \(T \)

\[E_P[\tilde{M}_{T \wedge T_n}] = E_P[M_{T \wedge T_n} Z_{T \wedge T_n}] = E_P[M_0 Z_0] = E_P[M_0]. \]

Hence, \((\tilde{M}_{T_n \wedge T})_{t \geq 0} \) is a \(\tilde{P} \)-martingale and the assertion follows, since \(\xi = \infty \) \(\tilde{P} \)-a.s. by (i).

Proposition 4.2.3 (General Girsanov transform). Let \(M \) be a continuous local \(P \)-martingale (up to \(\infty \)). Then

\[\tilde{M} := M - \int_0^\infty \frac{1}{Z_s} \, d(M, Z)_s \]

is a continuous local \(\tilde{P} \)-martingale (up to \(\infty \)).

Proof. By Lemma 4.2.2(iii) we have to show that \(\tilde{M} \) is a local \(P \)-martingale up to \(\xi \).

We have that \(M \cdot Z \) is \(P \)-a.s. continuous. Let \(\xi_n := \inf\{t \geq 0 | Z_t \leq \frac{1}{n}\} \) and \(T_n, n \in \mathbb{N} \), be stopping times, such that \(M_{T_n} \) is a localizing sequence for the following three local \(P \)-martingales \(M, M \cdot Z - \langle M, Z \rangle \) and

\[\int_0^r \left(\int_0^s \frac{1}{Z_s} \, d(M, Z)_s \right) \, dZ_r. \]

Note that \(\int_0^r \frac{1}{Z_s} \, d(M, Z)_s \) is predictable, since it is \(P \)-a.s. continuous in \(r \) and adapted. We have that \(0 \leq T_1 \leq T_2 \leq \ldots \leq T_n < \xi \) on \(\{\xi > 0\} \), since \(\xi_n < \xi \) on \(\{\xi > 0\} \) because \(Z \) is \(P \)-a.s. continuous. Furthermore, \(\xi_n' \), because \(Z \) is \(P \)-a.s. continuous. Then by Itô’s product rule for all \(t \geq 0 \)

\[(M \cdot Z)_{t \wedge T_n} = (M \cdot Z)_{t \wedge T_n} - Z_{t \wedge T_n} \int_0^{t \wedge T_n} \frac{1}{Z_s} \, d\langle M, Z \rangle_s \]

\[= (M \cdot Z)_{t \wedge T_n} - \int_0^{t \wedge T_n} Z_r \, \left(\int_0^r \frac{1}{Z_s} \, d\langle M, Z \rangle_s \right) - \int_0^{t \wedge T_n} \int_0^r \frac{1}{Z_s} \, d\langle M, Z \rangle_s \, dZ_r \]

\[= (M \cdot Z)_{t \wedge T_n} - \int_0^{t \wedge T_n} Z_r \, \left(\int_0^r \frac{1}{Z_s} \, d\langle M, Z \rangle_s \right) - \int_0^r \frac{1}{Z_s} \, d\langle M, Z \rangle_s \, dZ_r \]

Here, \(\int_0^{t \wedge T_n} \frac{1}{Z_s} \, d\langle M, Z \rangle_s \, dZ_r \) is a \(P \)-martingale, and \((M \cdot Z)_{t \wedge T_n} - \langle M, Z \rangle_{t \wedge T_n} \) is a \(P \)-martingale. Therefore, \(M \cdot Z \) is a local \(P \)-martingale up to \(\xi \).
4.3. Girsanov Transform with Brownian Motion

Remark 4.2.4 ("Z as an exponential martingale"). We have by Itô formula for $t < \xi$ P-a.s.

$$\log Z_t = \log Z_0 + \int_0^t \frac{1}{Z_s} dZ_s - \int_0^t \frac{1}{Z_s^2} d\langle Z \rangle_s \quad (*)$$

Y_t is a local P-martingale up to ξ. Since Z is a P-martingale up to ∞ and has pathwise quadratic variation (cf. 1.4.2) we have

$$\langle Y \rangle_t = \int_0^t \frac{1}{Z_s} d\langle Z \rangle_s, \ t < \xi.$$ Exponentiating $(*)$ yields

$$Z_t = Z_0 \cdot e^{Y_t - \frac{1}{2} \langle Y \rangle_t} \quad \text{(exponential } P\text{-martingale)}.$$

Then Z solves the following SDE for given Y up to ξ:

$$dZ = Z \, dY \Leftrightarrow Z_t = Z_0 + \int_0^t Z_s \, dY_s, \quad (Z(0) = Z_0)$$

Proof. By the 2-dimensional Itô’s formula we have

$$Z_t = Z_0 + Z_0 \int_0^t e^{Y_s - \frac{1}{2} \langle Y \rangle_s} \, dY_s + \frac{1}{2} Z_0 \int_0^t e^{Y_s - \frac{1}{2} \langle Y \rangle_s} \, d\langle Y \rangle_s - \frac{1}{2} Z_0 \int_0^t e^{Y_s - \frac{1}{2} \langle Y \rangle_s} \, d\langle Y \rangle_s$$

$$= Z_0 + \int_0^t Z_s \, dY_s.$$ Note that the last terms in Itô’s formula don’t occur, since $\langle Y \rangle$ is of bounded variation. \hfill \Box

Corollary 4.2.5. For \tilde{M} as in Proposition 4.2.3 we have $\tilde{M} = M - \langle M, Y \rangle$ P-a.s. up to ξ, hence \tilde{P}-a.s. up to ∞.

Proof.

$$\int_0^t \frac{1}{Z_s} d\langle M, Z \rangle_s = \langle N, H \cdot M \rangle = H \langle N, M \rangle \left(M, \int_0^t \frac{1}{Z_s} dZ_s \right) = \langle M, Y \rangle.$$ Hence, the assertion follows by Proposition 4.2.3. \hfill \Box

4.3. Girsanov Transform with Brownian Motion

Let $(X_t)_{t \in [0,1]}$ be a Brownian motion on a probability space (Ω, \mathcal{F}, P), adapted to a right-continuous filtration $(\mathcal{F}_t)_{t \in [0,1]}$. (Take for example (Ω, \mathcal{F}, P) to be the canonical Wiener space $(C[0,1], \mathcal{F}, P)$ with classical Wiener measure P.)

Heuristics: Let Y be a local continuous P-martingale and $\tilde{P} \ll P$ with density

$$Z_t := e^{Y_t - \frac{1}{2} \langle Y \rangle_t} \text{ on } \mathcal{F}_t.$$ Then we know that $\tilde{M} = X - \langle X, Y \rangle$ is a local continuous \tilde{P}-martingale up to ∞, where X is a martingale with respect to P (as M above). Since $\langle \tilde{M} \rangle_t = \langle X \rangle_t = t$, it follows by Levy’s characterization theorem of Brownian motion that \tilde{M} is a Brownian motion under \tilde{P}. We want to get that

$$d\langle X, Y \rangle = B_t \, dt.$$ We succeed by the following

Ansatz:

$$Y_t := \int_0^t b_s \, dX_s.$$
Remark 4.3.1. In order to make this work, we need that
i. \((b_t)_{t \in [0,1]}\) is progressively measurable,

\[P \left[\int_0^1 b_s^2 \, ds < \infty \right] = 1 \]

(Then, \(Y\) is a continuous local \(P\)-martingale!) AND!

iii. \(\tilde{P} = e^{\int_0^1 b_s \, dX_s - \frac{1}{2} \int_0^1 b_s^2 \, ds} \cdot P\)
is a probability measure, i.e.

\[E_P \left[e^{\int_0^1 b_s \, dX_s - \frac{1}{2} \int_0^1 b_s^2 \, ds} \right] = 1 \quad (4.3.2) \]

Theorem 4.3.2 (Girsanov transform for \(M\) as a Brownian motion): Assume (i) - (iii) from Remark 4.3.1. Let

\[Z_t := \exp \left[\int_0^t b_s \, dX_s - \frac{1}{2} \int_0^t b_s^2 \, ds \right] , \ t \geq 0 , \]

and

\[\tilde{P} := Z_1 \cdot P . \]

Then

\[W_t := X_t - \int_0^t b_s \, ds , \ t \geq 0 , \]
is a Brownian motion under \(\tilde{P}\).

Proof. Claim: \((Z_t)_{t \geq 0}\) is a \(P\)-martingale up to \(\infty\).

Step 1: \((Z_t)_{t \geq 0}\) is a (global) \(P\)-supermartingale.

Proof. It is clear, that \((Z_t)\) is a local continuous \(P\)-martingale. Let \(0 \leq T_1 \leq \ldots \leq T_n \ldots < \infty\) on \(\{ \xi > 0 \}\) be a localizing sequence of stopping times for \((Z_t)_{t \geq 0}\). Then for \(0 \leq s < t\)

\[E_P[Z_t|\mathcal{F}_s] = E_P[\lim_{n \to \infty} Z_{t \wedge T_n}|\mathcal{F}_s] \]

\[\leq \liminf_{n \to \infty} E_P[Z_{t \wedge T_n}|\mathcal{F}_s] \]

\[= \liminf_{n \to \infty} Z_{s \wedge T_n} = Z_s . \]

\[\square \]

Step 2: \((Z_t)_{t \geq 0}\) is a \(P\)-martingale.

Proof. By (iii) for all \(s \in [0,1]\)

\[1 = E[Z_1] \leq E[Z_s] \leq E[Z_0] = 1 . \]

In addition,

\[0 \leq Z_s - E_P[Z_1|\mathcal{F}_s] \]

and

\[\int (Z_s - E_P[Z_1|\mathcal{F}_s]) \, dP = 0 . \]

So, \(Z_s = E_P[Z_1|\mathcal{F}_s]\) \(P\)-a.s.

\[\square \]
We have
\[\langle X, \int_0^t b_s \, dX_s \rangle_t = \int_0^t b_s \, ds. \]
Hence, by Corollary 4.2.5 it follows that \(W \) is a continuous local \(\tilde{P} \)-martingale. But \(\langle W \rangle_t = \langle X \rangle_t = t \) \(P \)-a.s., hence \(P \)-a.s.. So, by Lévy (Proposition 1.5.1) the assertion follows.

\[\square \]

Remark 4.3.3.

i. **Special case:**

\[b_t(\omega) := b(X_t(\omega), t), \]

i.e. depending only on “present” time, where \(b : \mathbb{R} \times [0, 1] \to \mathbb{R} \) is \(\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}([0, 1]) \) measurable. Then 4.3.1(i) is fulfilled.

4.3.1(ii) is fulfilled, if e.g.

\[
\begin{align*}
E \left[\int_0^1 b_t^2 \, dt \right] &= \int_0^1 E[b_t^2(X_t, t)] \, dt \\
&\equiv \int_0^1 p_t f(0) \, dt \\
p_t(0, dx) &= N(0, t) \int_0^1 b^2(x, t) N(0, t)(dx) \, dt \\
&= \int_0^1 \int b^2(x, t) \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} \, dx \, dt < \infty.
\end{align*}
\]

In particular, it is not necessary that \(b \) is bounded.

To satisfy 4.3.1(iii) we have to work harder (see below)!

ii. In Theorem 4.3.2 \((X_t)_{t \geq 0} \) solves the following SDE under \(\tilde{P} \)

\[dX_t = dW_t + b_t \, dt. \]

Here, \(W_t \) is only a Brownian motion under \(\tilde{P} \).

Example 4.3.4. Consider \(b_t = \alpha \in \mathbb{R} \) fixed for all \(t \). Then, clearly, 4.3.1(i),(ii) hold, but also:

Claim: (iii) holds.

Proof. Since \(P \circ X_1 \) is normal distributed, we have

\[
\begin{align*}
E \left[e^{\alpha X_1 - \frac{1}{2} \alpha^2} \right] &= e^{-\frac{1}{2} \alpha^2} \int e^{\alpha x} N(0, 1)(dx) \\
&= e^{-\frac{1}{2} \alpha^2} \int e^{\alpha x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx \\
&= e^{-\frac{1}{2} \alpha^2} \cdot e^{\frac{1}{2} \alpha^2} = 1.
\end{align*}
\]

Here, we have used that for the Laplace-transform \(\mathcal{L} \) we have

\[
\mathcal{L}(N(0, \sigma^2))(\xi) = \int e^{\xi x} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{1}{2\sigma^2} x^2} \, dx = e^{\frac{1}{2} \xi^2 \sigma^2}.
\]

\[\square \]
4. Girsanov Transformation

Hence, by Theorem 4.3.2 under $\tilde{P} := Z_1 \cdot P$ the process $W_t = X_t - \alpha t, t \geq 0$, is a Brownian motion.

Now we consider the canonical model for Brownian motion, i.e. $\Omega = C([0,1]), P$ as a Wiener measure and $X_t(\omega) := \omega(t), t \geq 0$. Define for $\alpha \in \mathbb{R}$

$$\Lambda_\alpha : C([0,1]) \to C([0,1])$$

by

$$\Lambda_\alpha(\omega)(t) = \omega + \alpha \cdot t, \quad t \in [0,1].$$

Note that by Theorem 4.3.2 we know $(Z_1 \cdot P) \circ W^{-1}$ is a Wiener measure! In particular,

$$\tilde{P} \circ \Lambda^{-1}_{-\alpha} = P.$$

Proposition 4.3.5. Let $P^\alpha := P \circ \Lambda^{-1}_{-\alpha}$. Then

$$P^{-\alpha} = \exp(\alpha X_1 - \frac{1}{2} \alpha^2) \cdot P.$$

Proof. Since by Theorem 4.3.2

$$\tilde{P} \circ \Lambda^{-1}_{-\alpha} = P$$

it follows that

$$P \circ \Lambda^{-1}_{-\alpha} = \tilde{P} = \exp(\alpha X_1 - \frac{1}{2} \alpha^2) \cdot P_{h(s)} = \exp \left(\int_0^1 \dot{h}(s) dX_s - \frac{1}{2} \int_0^1 (\dot{h}(s))^2 ds \right)$$

But we have even more:

Theorem 4.3.6 (Cameron-Martin). Let

$$h \in E := C([0,1])_0 := \{ h \in C([0,1]) | h(0) = 0 \}$$

and

$$X_h : \Omega \to C([0,1])$$

defined by

$$X_h(\omega) = X(\omega) + h.$$

Let P_0 be the law of X on $C([0,1])$ (i.e. the classical Wiener measure) and $P_h := P_0 \circ X_h^{-1}$ be the law of X_h on $C([0,1])$. Then the following assertions are equivalent:

i. $P_h \approx P_0$ with

$$\frac{dP_h}{dP_0} = \exp \left(\int_0^1 \dot{h}(s) dX(s) - \frac{1}{2} \int_0^1 (\dot{h}(s))^2 ds \right)$$

ii. $h \in H := \left\{ h \in C([0,1])_0 | h \text{ is absolutely continuous and } \dot{h} \in L^2([0,1], ds) \right\}$.

H is called **Cameron-Martin space**. H is a Hilbert space with inner product

$$\langle h, \tilde{h} \rangle_H := \int_0^1 \dot{h}(s) \dot{\tilde{h}}(s) ds, \quad h, \tilde{h} \in H.$$
Note that $\|h\|_H^2 = \langle h, h \rangle_H = 0$ implies $\dot{h}(s) = 0$ $\text{d}s$-a.s.. Hence,

$$h(t) = h(0) + \int_0^t \dot{h}(s) \, ds = h(0) = 0 \quad \forall t \geq 0.$$

So, $\|\cdot\|_H$ is not only a semi norm, but a norm. We have that H is dense in $E := C([0, 1])_0$ with respect to $\|\cdot\|_H$. Then identifying H with its dual H' by Riesz map R we get

$$E' \hookrightarrow H' \xrightarrow{R} H \subset E.$$

Before we prove Theorem 4.3.6, we want to characterize E'.

Lemma 4.3.7. For $M_0 := \{ \mu | \mu \text{ is a signed measure of finite total variation on } [0, 1], \text{ such that } \mu(1) := \int_1^1 d\mu = 0 \}$, we have

$$E' = M_0.$$

Remark 4.3.8. A signed measure μ can be written as $\mu = \mu_1 - \mu_2$ with positive measures μ_1 and μ_2 and the total variation

$$\sup_{A \in \mathcal{B}([0, 1])} \mu(A) = \|\mu\|_{\text{var}} < \infty.$$

In addition, for a signed measure μ, there exist positive measures μ^+, μ^- and $S \in \mathcal{B}([0, 1])$ such that $\mu = \mu^+ - \mu^-$ and

$$\mu^+(S^c) = 0 \quad \text{and} \quad \mu^-(S) = 0.$$

Then

$$\|\mu\|_{\text{var}} = \mu^+([0, 1]) + \mu^-([0, 1]).$$

Proof of 4.3.7. "\supset": Defining $f \mapsto \mu(f) := \int f \, d\mu$ for $\mu \in M_0$ we see that any μ defines an element in E'. Furthermore, if $\mu, \nu \in M_0$ such that $\mu(f) = \nu(f)$ $\forall f \in E$, then for all $f \in C([0, 1])$

$$\int f \, d\mu = \int f \, d\mu - f(0) \int 1 \, d\mu = \int_{E} (f - f(0)) \, d\mu$$

$$= \int (f - f(0)) \, d\nu = \int f \, d\nu - \int f(0) \, d\nu = \int f \, d\nu.$$

Hence, (since $\mu(1) = \nu(1) = 0$) μ and ν define the same element in E'. (See also [Cho69a] and [Cho69b].)

"\subset": Let $l \in E'$. Then by the Hahn-Banach theorem there exists an $\bar{l} \in (C[0, 1])'$ such that $\bar{l} = l$ on $E' \subset C([0, 1])$. Hence, by Riesz-Markov (cf. [Röc04]) there exists a signed measure ν on $[0, 1]$ of finite total variation such that

$$\bar{l}(f) = \int f \, d\nu \quad \forall f \in C([0, 1]).$$

Set $\mu := \nu - \nu(1)\delta_0$, where δ_0 is the Dirac measure at $0 \in [0, 1]$. Then $\mu(1) = 0$, so $\mu \in M_0$ and for all $f \in E$

$$\int f \, d\mu = \int f \, d\nu - \nu(1) f(0) \int = 0 = \int f \, d\nu = \bar{l}(f) = l(f).$$
4. Girsanov Transformation

Proof of Theorem 4.3.6. Without loss of generality consider \((\Omega, \mathcal{F}, P), \mathcal{F}_t\) and \((X_t)_{t \geq 0}\) as the canonical model, hence \(P = P_0\).

(ii) \(\Rightarrow\) (i): (An alternative proof using Fourier transform can be found in [MR92, Chapter II].) We first check the conditions of Remark 4.3.1 (i)-(iii):

(i) and (ii) are obviously satisfied for
\[
 b_s(\omega) := \dot{h}(s) \quad \forall \omega \in \Omega, s \in [0, 1].
\]

(iii): Define
\[
 Y_t := \int_0^1 \dot{h}(s) \, dX_s \quad \text{(Itô-Integral)}.
\]

Then \(Y_1\) is centered (i.e. \(E[Y_1] = 0\) for all \(t\) (martingale)) and normally distributed as an \(L^2\)-limit of centered, normally distributed random variables (cf. [Röc06]). Furthermore,

\[
 E[Y_1^2] = E[(Y_1)_1] = E\left(\int_0^1 (\dot{h}(s))^2 \, ds\right) = \|h\|_H^2,
\]

i.e.
\[
 Y_1 \sim N(0, \|h\|_H^2).
\]

Hence,
\[
 E\left[e^{Y_1 - \frac{1}{2}\|h\|_H^2}\right] = e^{-\frac{1}{2}\|h\|_H^2} E[e^{Y_1}] = 1
\]

So, 4.3.1(iii) holds. Therefore, applying Girsanov (Theorem 4.3.2) we obtain that under
\[
 \tilde{P} := Z_1 \cdot P := \exp\left[\int_0^1 \dot{h}(t) \, dX_t - \frac{1}{2} \int_0^1 \dot{h}(t)^2 \, dt\right] \cdot P
\]

\(W := X - h\) is a Brownian motion, i.e. \(\tilde{P} \circ W^{-1} = P_0\), i.e. \(\tilde{P} = P_0 \circ (W^{-1})^{-1} = P_0 \circ X_h^{-1} = P_h\).

But, since \(E[Y_1^2] < \infty\), we have \(Z_1 > 0\) \(P\)-a.s., therefore, \(P_h \approx P\).

(i) \(\Rightarrow\) (ii): We know \(P_0(E) = 1\) with \(E := C([0, 1])_0\). Clearly, we have that \(H \subset E\) dense with respect to the norms \(\|\cdot\|_H\) and \(\|\cdot\|_\infty\) (cf. functional analysis).

Continuity: Let \(h \in H\). Then (by definition of absolute continuity)
\[
 \dot{h}(t) = \dot{h}(0) + \int_0^t \dot{h}(s) \, ds \quad \forall t \in [0, 1],
\]

thus,
\[
 |h(t)| \leq \int_0^t |\dot{h}(s)| \, ds \leq \int_0^1 |\dot{h}(s)| \, ds \leq \left(\int_0^1 |\dot{h}(s)|^2 \, ds\right)^{\frac{1}{2}} = \|h\|_H, \quad \forall t \in [0, 1],
\]

hence,
\[
 \|h\|_\infty \leq \|h\|_H.
\]

Let \(R : H \to H\) the Riesz isomorphism. Then
\[
 E' \subset H' \xrightarrow{R} H \subset E \quad \text{(continuously)}.
\]

(Cf. Lemma 4.5.1 below: \(R(\mu) = -\int_0^t \mu([0, s]) \, ds, \quad \mu \in E'\).)
Claim 1: Let $\mu \in E' (= M_0)$. The map $C([0, 1]) \ni f \mapsto \mu(f) \in \mathbb{R}$ is Gaussian distributed under P_0, more precisely

$$P_0 \circ \mu^{-1} = N(0, E[\mu^2]).$$

Proof. Since $\mu = \lim_{n \to \infty} \sum_{i=1}^{N_n} \alpha_{i}^{(n)} \delta_{t_i^{(n)}}$, $\alpha_{i}^{(n)} \in \mathbb{R}$, $t_i^{(n)} \in [0, 1]$ weakly (cf. Bauer), we realize that $\mu_n : E \to \mathbb{R}, \ n \in \mathbb{N}$, are jointly Gaussian because

$$\sum_{i=1}^{N} (\gamma \mu_{n_i})(f) = \sum_{i=1}^{N} \gamma_{i} \sum_{i=1}^{N_{n_i}} \alpha_{i}^{(n)} \delta_{t_i^{(n)}}(f) = \sum_{i=1}^{N} \gamma_{i} \sum_{i=1}^{N_{n_i}} \alpha_{i}^{(n)} f(t_i^{(n)}) \sim X_{t_i^{(n)}}(f)$$

i.e.

$$\sum_{i=1}^{N} \gamma_{i} \mu_{n_i} = \sum_{i=1}^{N} \gamma_{i} \sum_{i=1}^{N_{n_i}} \alpha_{i}^{(n)} X_{t_i^{(n)}} \sim N(0, E(\sum_{i=1}^{N} \gamma_{i} \mu_{n_i})^2)$$

Hence, since $\mu_n \xrightarrow{n \to \infty} \mu$ weakly, $\hat{\mu}_n \xrightarrow{n \to \infty} \hat{\mu}$ and μ is centered Gaussian.

Claim 2: Let $\mu \in M_0$ of the form $\mu = \varrho \cdot dt$ and ϱ bounded and

$$\mu(1) = \int_{0}^{1} \varrho \ dt = 0.$$ \hfill(*)

Then

$$E[\mu^2] = \int_{0}^{1} \left(\int_{0}^{t} \varrho(s) \ ds \right)^2 \ dt = \|R(\mu)\|_H^2.$$ \hfill(4.3.3)
4. Girsanov Transformation

Proof.

\[E[\mu^2] X_t(\omega) = E \left(\int_0^1 X_t \phi(t) \, dt \int_0^1 X_t' \phi(t') \, dt' \right) \]

Using Fubini = \int_0^1 \int_0^1 \phi(t) \phi(t') E[X_t X_t'] \, dt \, dt' = \int_0^1 \int_0^1 \phi(t) \phi(t') (t \land t') \, dt' \, dt

\[= \int_0^1 \int_0^t \phi(t) \phi(t') \, dt' \, dt + \int_0^1 \phi(t) \int_t^1 \phi(t') \, dt' \, dt \]

= \int \phi(t) \left[\int_0^t \phi(t') \, dt' \cdot t - \int_0^t \int_t^1 \phi(s) \, ds \cdot 1 \, dt' \right] \, dt \, \int \phi(t) + \int \phi(t') \, dt' \, dt

\[= \int \phi(t) t \left(\int_0^t \phi(t') \, dt' + \int_0^1 \phi(t') \, dt' \right) \, dt - \int \phi(t) \int_0^t \phi(s) \, ds \, dt' \, dt \]

\[= \int \left[\int_0^t \phi(t') \, dt' \cdot t - \int_0^t \int_t^1 \phi(s) \, ds \cdot 1 \, dt' \right] \, dt \, t \int \phi(t) + \int \phi(t') \, dt' \, dt \]

\[= \int \phi(t) t \left(\int_0^t \phi(t') \, dt' + \int_0^1 \phi(t') \, dt' \right) \, dt - \int \phi(t) \int_0^t \phi(s) \, ds \, dt' \, dt \]

\[\overset{I.b.p.}{=} - \int_0^1 \phi(t) \, dt \cdot \int_0^1 \int_t^1 \phi(s) \, ds \, dt' + \int_0^0 \phi(t) \, dt \cdot \int_0^1 \int_t^1 \phi(s) \, ds \, dt' + \int_0^1 \left(\int_0^t \phi(s) \, ds \right)^2 \, dt \]

\[= \int_0^1 \left(\int_0^t -\phi(s) \, ds \right)^2 \, dt \]

\[= \int_0^1 \left(\frac{d}{dt} \int_0^t \left(\int_0^t -\phi(s) \, ds \right) \, dt' \right)^2 \, dt = \int_0^1 \left(\frac{d}{dt} \tilde{R}(\mu)(t) \right)^2 \, dt = \left\| \tilde{R}(\mu) \right\|_H^2. \]

(4.3.4)

For Claim 2 it remains to show that \(\tilde{R}(\mu) = R(\mu) \), i.e.

\[R(\mu) = - \int \left(\int_0^t \phi(s) \, ds \right) \, dt'. \]

(4.3.5)

To this end let \(\tilde{h} \in H \). Then

\[\mu(\tilde{h}) = \int_0^1 \tilde{h}(t) \phi(t) \, dt \overset{1.b.p.}{=} - \int \int \frac{d}{dt} \tilde{h}(t) \int_0^t \phi(t) \, ds \, dt = \left\langle \tilde{h}, - \int \left(\int_0^t \phi(s) \, ds \right) \, dt' \right\rangle \]

(4.3.6)

and Claim 2 is proved. \(\square \)

Since \(C_0^1([0, 1]) \) is dense in \(L^2([0, 1], dt) \) for all \(\tilde{h} \in H \), there exists a sequence \((v_n)_{n \in \mathbb{N}}\) in \(C_0^1([0, 1]) \) such that \(v_n \to \tilde{h} \) as \(n \to \infty \) in \(L^2([0, 1], dt) \). Hence

\[u_n := \int_0^1 v_n \, dt \overset{n \to \infty}{\longrightarrow} \tilde{h} \quad \text{in } H. \]

Since by (4.3.5)

\[u_n = R(\mu_n) \quad \text{for} \quad \mu_n := - \dot{v}_n \, dt \in E' \]

it follows that for

\[\tilde{M}_0 := \left\{ \phi \, dt \left| \phi \in C([0, 1]), \int_0^1 \phi \, dt = 0 \right. \right\} \]

78
that $R(\tilde{M}_0)$ is dense in H with respect to $\|\cdot\|_H$. $R(\tilde{M}_0)$ is also a linear subspace of H.

Let $h \in E(= C([0,1])_0)$ such that $P_h \ll P$.

Claim: $\mu_n \in \tilde{M}_0$ such that $R(\mu_n) \xrightarrow{n \to \infty} 0$ in H. Then $\mu_n(h) \xrightarrow{n \to \infty} 0$.

Suppose the claim is true. Then $h \in H$.

Proof. By claim the map $R(\tilde{M}_0) \ni R(\mu) \mapsto R(\mu) \in \mathbb{R}$ (for fixed h) is a linear continuous functional on $(R(\tilde{M}_0), \|\cdot\|_H)$. Hence, by Riesz ($R(\tilde{M}_0)$ is dense in H, hence Riesz is applicable) there exists an unique $h_0 \in H$ such that

$$\mu(h) = \langle R(\mu), h_0 \rangle_H \quad \forall \mu \in \tilde{M}_0.$$

But by (4.3.6) we also have $\langle R(\mu), h_0 \rangle_H = \mu(h_0)$. Therefore,

$$\mu(h) = \mu(h_0). \quad \text{(4.3.7)}$$

Hence, for all $q \in C([0,1])$ and for

$$\tilde{h} := h - \int_0^1 h(t) \, dt, \quad \tilde{h}_0 := h_0 - \int_0^1 h_0(t) \, dt$$

we have

$$\int q \tilde{h} \, dt = \int \left(q - \int_0^1 q \, ds \right) \tilde{h} \, dt = \int \left(q - \int_0^1 q \, ds \right) h \, dt$$

$$\overset{(4.3.7)}{=} \int \left(q - \int_0^1 q \, ds \right) h_0 \, dt = \int \left(q - \int_0^1 q \, ds \right) \tilde{h}_0 \, dt = \int q \tilde{h}_0 \, dt.$$

Hence, $\tilde{h} = \tilde{h}_0$, therefore, $h = h_0$, because $h(0) = h_0(0) = 0$. Therefore, the assertion is true as long as claim holds.

Proof of Claim. Since $R(\mu_n) \to 0$ in H, it follows by (4.3.3) that

$$E[\mu_n^2] = \|R(\mu_n)\|_H^2 \xrightarrow{n \to \infty} 0,$$

i.e. $\mu_n \to 0$ in $L^2(P)$, hence, also in P-measure, therefore, because of $P_h \ll P$, also in P_h-measure. Since $\{\mu_n, n \in \mathbb{N}\}$ is a Gaussian family under P_h such that

$$E_{P_h}[\mu_n] = \int_{\mu_n(\omega) + h}^{\mu_n(\omega)} P(d\omega) = \int_{\mu_n(\omega) + h}^{\mu_n(\omega) + \mu_n(h)} P(d\omega) + \mu_n(h), \quad \text{(4.3.8)}$$

it follows by [Ròc06] that $\mu_n \xrightarrow{n \to \infty} 0$ in $L^p(P_h)$ for all $p \geq 1$, hence for $p = 1$

$$\limsup_{n \to \infty} |\mu_n(h)| \overset{(4.3.8)}{\leq} \limsup_{n \to \infty} E[|\mu_n|] = 0.$$

So, the claim is proved.
4. Girsanov Transformation

4.4. Novikov condition

Let \((\Omega, \mathcal{F}, P)\) be a probability space together with a right-continuous complete filtration \((\mathcal{F}_t)\) and let \((Y_t)_{t\geq 0}\) be a \(P\)-a.s. continuous local martingale. Then by 1.4.8

\[Z_t := \exp(Y_t - \frac{1}{2} \langle Y \rangle_t), \quad t \geq 0, \]

is a \((P\)-a.s.) continuous local martingale. We want to develop a condition for (4.3.2).

Lemma 4.4.1. Let \(t \geq 0\) and \(\langle Y \rangle_t\) be bounded. Then \(Z_t \in \mathcal{L}^p\) for all \(p > 1\) and

\[E(Z_t^p) \leq \exp\left(\frac{1}{2} p(p - 1) \|\langle Y \rangle_t\|_\infty\right). \]

Proof.

\[
E(Z_t^p) = E\left[\exp\left(pY_t - \frac{1}{2} p^2 \langle Y \rangle_t + \left(\frac{1}{2} p^2 - \frac{1}{2} p\right) \langle Y \rangle_t\right)\right]
\leq \exp\left(\frac{1}{2} p(p - 1) \|\langle Y \rangle_t\|_\infty, \Omega\right) E\left[\exp\left(pY_t - \frac{1}{2} p^2 \langle Y \rangle_t\right)\right].
\]

Set \(\tilde{Y}_t := pY_t\). Then \(\langle \tilde{Y} \rangle_t = p^2 \langle Y \rangle_t\) and, therefore,

\[
E(\exp(\tilde{Y}_t - \frac{1}{2} \langle \tilde{Y} \rangle_t)) \leq 1,
\]
since it is a supermartingale (by Fatou).

Now we come to the condition for (4.3.2).

Theorem 4.4.2 (Novikov). If \(E(\exp(\frac{1}{2} \langle Y \rangle_t)) < \infty\) for all \(t\), then \(E(Z_t) = 1\) for all \(t\).

Remark 4.4.3. i. In the examples above (see 4.3.4 and 4.3.6) we had \(Y_t = \int_0^t b_s \, dX_s\) and

\[E\left(\exp\left(\frac{1}{2} \langle Y \rangle_t\right)\right) = E\left(\exp\left(\frac{1}{2} \int_0^t b_s^2 \, ds\right)\right) = E(\exp(\frac{1}{2} \langle Y \rangle_t)) < \infty \]

was always satisfied.

ii. For the proof of Theorem 4.4.2 we need that by a time change one can construct a Wiener process \(W\), such that

\[Y_t = W(\langle Y \rangle_t), \]

and (for every fixed \(t\)) \(\langle Y \rangle_t\) is a stopping time with respect to a suitable filtration for which \(W\) is adapted. This means that \(Y_t\) has the form \(W_T\), and it holds

\[\langle Y \rangle_t = T. \]

The details are presented in appendix A.

Now Theorem 4.4.2 follows from

Theorem 4.4.4. Let \((W_t)_{t\geq 0}\) be a Wiener process on \((\Omega, \mathcal{F}, P)\) and \(T\) be a stopping time. If

\[E(\exp(\frac{1}{2} T)) < \infty, \]

then the "Wald identity" holds:

\[E(\exp(W_T - \frac{1}{2} T)) = 1. \]
Remark 4.4.5. Set $M_t := \exp(W_t - \frac{1}{2}t)$. Then (M_t) is a continuous martingale, since it is a continuous positive supermartingale and $E[M_t] = 1$ (Exercise, cf. 4.3.4). By the optional sampling theorem for unbounded stopping times (cf. [Röc06]), we have

$$E(M_T) \leq E(M_0) = 1.$$

Thus, it is clear that $E(\exp(W_t - \frac{1}{2}T)) \leq 1$ in 4.4.4. For the proof of ”\geq” in 4.4.4 we will need two Lemmas.

Lemma 4.4.6. Let \tilde{P} be a probability measure on (Ω, \mathcal{F}, P) with

$$\tilde{P}|_{\mathcal{F}_t} = \exp(W_t - \frac{1}{2}t) \cdot P|_{\mathcal{F}_t}, \forall t \geq 0,$$

and T be a stopping time with $P(T < \infty) = 1$. Then

$$E(\exp(W_t - \frac{1}{2}T)) = \tilde{P}(T < \infty).$$ (4.4.9)

In particular, the Wald identity (cf. 4.4.4) holds if and only if

$$\tilde{P}(T < \infty) = 1.$$

Proof. Since $M_t := \exp(W_t - \frac{1}{2}t)$ is a martingale and $\{T \leq t\} \in \mathcal{F}_{t \land T}$ we have

$$\tilde{P}[T \leq t] = E[1_{\{T \leq t\}} M_t] = E[1_{\{T \leq t\}} M_{t \land T}] = E[1_{\{T \leq t\}} M_T].$$

Letting $t \to \infty$ we get (since $P[T < \infty] = 1$)

$$\tilde{P}[T < \infty] = E[M_T].$$

Lemma 4.4.7. Let $c > 0$ and define the “passage time of $(W_t - t)$” by

$$T_c := \inf \{t > 0 | W_t = t - c\}.$$

Then

$$\tilde{P}(T_c < \infty) = 1$$

and, thus, the Wald identity holds for T_c. Furthermore,

$$E \left(\exp \left(\frac{1}{2} T_c \right) \right) = e^c.$$

Proof. By the law of iterated logarithm we have

$$P(T_c < \infty) = 1.$$

$\tilde{W}_t = W_t - t$ is a Brownian motion with respect to \tilde{P} (cf. Example 4.3.4 with $\alpha = 1$), which means that T_c is a passage time of \tilde{W}_t with respect to \tilde{P}. Therefore, again by the law of iterated logarithm

$$\tilde{P}(T_c < \infty) = 1.$$

Thus, by 4.4.6

$$1 = E \left(\exp \left(W_{T_c} - \frac{1}{2} T_c \right) \right) = e^{-c} E \left(\exp \left(\frac{1}{2} T_c \right) \right).$$

\[\square\]
4. Girsanov Transformation

Proof of Theorem 4.4.4. It remains to show that "\geq" holds:
By 4.4.5 $M_t := \exp(W_t - \frac{1}{2}t), t \geq 0$, is a positive continuous supermartingale. Hence,

$$1 \geq E(M_{T \wedge T}) \geq E(M_T)^{\text{4.4.7}} = 1.$$

But then for all $c > 0$

$$1 = E(M_{T \wedge T}) \overset{\text{Wien}}{=} E\left(\exp\left(\frac{1}{2}c\right)\exp(-c), T_c \leq T\right) + E\left(\exp\left(W_T - \frac{1}{2}T\right), T_c \geq T\right)$$

$$\leq e^{-c} E(e^{\frac{1}{2}T}) + E\left(\exp\left(W_t - \frac{1}{2}T\right)\right)$$

$$\iff E\left(\exp\left(W_t - \frac{1}{2}T\right)\right)$$

\square
4.5. Integration by Parts on Wiener Space: A First Introduction to the Malliavin Calculus Following J.M. Bismut

Fix the following framework:
Let P be the Wiener measure on $\Omega = C([0, 1])_0 (= E)$, (X_t) the coordinate process,
$$H := \left\{ h \in C([0, 1])_0 \mid h \text{ is absolutely continuous and } \int_0^1 \dot{h}(s)^2 \, ds < \infty \right\}$$
the Cameron-Martin space. H is a Hilbert space with inner product
$$\langle h, g \rangle_H = \int_0^1 \dot{h}(s) \dot{g}(s) \, ds = \langle \dot{h}, \dot{g} \rangle_{L^2([0, 1], dt)},$$
and $F : \Omega \to \mathbb{R}$ be the Wiener functional. We already know
$$E' = \{ \mu | \mu \text{ is a signed measure on } [0, 1] \text{ of bounded variation such that } \mu(1) = 0 \}$$
and
$$E' \subset H' \xrightarrow{\text{R}} H \subset E$$
continuous and densely, where R denotes the Riesz map.

Lemma 4.5.1.
$$R(\mu) = \int_0^1 \mu([s, 1]) \, ds \left(= - \int_0^1 ([0, s]) \, ds \right).$$
(Cf. (4.3.5) as a special case.)

Proof. Let $h \in H$. Then
$$\mu(h) = \int_0^1 \int_0^t \dot{h}(s) \, ds \, d\mu(dt) = \int_0^1 \int_0^1 \dot{h}(s) \, ds \, d\mu(dt) = \int_0^1 \int_0^1 \dot{1}_{[s, 1]}(t) \dot{h}(s) \, ds \, d\mu(dt)$$
$$= \int_0^1 \left(\int_0^1 \mu([r, 1]) \, dr \right) \dot{h}(s) \, ds = \left\langle \int_0^1 \mu([s, 1]) \, ds, h \right\rangle_H$$
Hence $R(\mu) = \int_0^1 \mu([s, 1]) \, ds$ by 4.3.2.

We recall

Definition 4.5.2. $F : C([0, 1])_0 \to \mathbb{R}$ is called Fréchet-differentiable in $\omega \in C([0, 1])_0$, if there exists $F'(\omega) \in E'$ such that
$$F(\omega + \eta) = F(\omega) + F'(\omega)(\eta) + o(\|\eta\|), \quad \forall \eta \in C([0, 1])_0.$$
In this case
$$\nabla F(\omega) := R(F'(\omega)) \in H$$
is called gradient of F at ω. Note that $\nabla F(\omega)$ is in the "tangent space" of H in ω.

83
4. Girsanov Transformation

Remark 4.5.3. Because of Lemma 4.5.1 we have for the measure

\[F'(\omega)(dt) = F'(\omega, dt) \]

that

\[\nabla F(\omega)(\cdot) = R(F'(\omega, dt)) = \int_0^1 F'(\omega, s, 1) \, ds. \tag{4.5.10} \]

Then by definition of the derivative

\[\lim_{\lambda \to 0} \frac{F(\omega + \lambda \eta) - F(\omega)}{\lambda} = \langle \nabla F(\omega), \eta \rangle_H \quad \forall \eta \in H (\subset E := C([0, 1]))_0. \]

Definition 4.5.4. \(F \in L^2(P) \) is called \(H \)-differentiable, if for all \((\mathcal{F}_t) \)-adapted real processes \((u_s)_{s \in [0,1]} \), product-measurable, bounded and

\[U_t(\omega) := \int_0^t u_s(\omega) \, ds, \quad t \in [0,1] \quad (H - \text{vector field on } E) \]

(i.e. \(U(\omega) \in H \)) there exists a \(\mathcal{F}/\mathcal{B}(H) \)-measurable map \(\nabla F : E \to H \) such that

\[E(\|\nabla F\|_H^2) < \infty \]

and

\[\frac{F(\omega + \lambda U) + F(\omega)}{\lambda} \to \langle \nabla F(\omega), U(\omega) \rangle_H \quad \text{in } L^2(P) \]

or equivalently

\[\nabla_U F := \lim_{\lambda \to 0} \frac{F(X + \lambda U) + F(X)}{\lambda} = \langle \nabla F, U \rangle_H \quad \text{in } L^2(P). \]

Here, \(\nabla F \) is called the Malliavin gradient (cf. [Wat84]). Define the Malliavin derivative

\[D_t F := (\nabla F)(\omega)(t). \]

In particular, \((D_t F)_{0 \leq t \leq 1} \) is a process. (Fact is that this process always has a version that is product-measurable in \((\omega, t)\)!

Geometric interpretation of \(\nabla F : H \text{-vector field on } E \).

Geometric interpretation of \(\nabla F : L^2([0, 1], dt) \text{-vector field on } E \).

Remark 4.5.5. Let \(u \) and \(U \) as in Definition 4.5.4.

i. We have

\[\langle \nabla F(\omega), U(\omega) \rangle_H = \langle D F(\omega), u \rangle_{L^2([0,1], dt)} \]

ii. Let

\[Z_\lambda^t := \exp \left(\lambda \int_0^t u_s \, dX_s - \frac{1}{2} \lambda^2 \int_0^t u_s^2 \, ds \right). \]

Then Novikov’s condition is fulfilled, since \(u \) is bounded. So, Girsanov’s theorem implies that \(X_\lambda := X - \lambda U \) is a Wiener process under \(P^\lambda := Z_1^\lambda P \). Hence,

\[E_P[F(X_\lambda)] = \int F(X_\lambda) \, dP^\lambda = \int F(X) \, dP = E_P[F(X)] \tag{4.5.11} \]

Lemma 4.5.6.

\[\lim_{\lambda \to 0} \frac{Z_\lambda^1 - 1}{\lambda} = \int_0^1 u_s \, dX_s \in L^2(P). \]
In fact this limit exists even in $\mathcal{L}^p(P)$ for all $p \geq 1$ (exercise).

Proof. By Itô
\[Z_t^\lambda = 1 + \lambda \int_0^t Z_s^\lambda u_s \, dX_s. \] (*)&

Hence, for $t = 1$
\[\frac{Z^\lambda_1 - 1}{\lambda} - \int_0^1 u_s \, dX_s = \int_0^1 (Z^\lambda_s - 1)u_s \, dX_s. \]

But by Ito-isometry
\[E \left[\left(\int_0^1 (Z^\lambda_s - 1)u_s \, dX_s \right)^2 \right] = E \left[\int_0^1 (Z^\lambda_s - 1)^2 u_s^2 \, ds \right] \leq \|u\|_\infty^2 E \left[\int_0^1 (Z^\lambda_s - 1)^2 \, ds \right]. \]

$Z^\lambda_s - 1$ is a martingale, since Z^λ_s is in $\mathcal{L}^2(P)$ (see below), thus, by (\ast) $(Z^\lambda_s - 1)^2$ is a submartingale. Therefore,
\[E \left[\left(\int_0^1 (Z^\lambda_s - 1)u_s \, dX_s \right)^2 \right] = \|u\|_\infty^2 E[(Z^\lambda_1 - 1)^2]. \]

It remains to prove that $(Z^\lambda_1 - 1)^2 \to 0 \in \mathcal{L}^2(P).$ Clearly, $(Z^\lambda_1 - 1)^2 \to 0$ P-a.s., since for (fixed) $\omega \in E$ it is differentiable in $\lambda = 0,$ in particular continuous. But the set $\{(Z^\lambda_1 - 1)^2 | 0 \leq \lambda \leq 1\}$ is uniformly P-integrable because $\{(Z^\lambda_1)^p | 0 \leq \lambda \leq 1\}$ is \mathcal{L}^1 bounded for all $p \geq 2$:
\[E[(Z^\lambda)^p] \leq \exp \left[\frac{1}{2} \lambda^2 p(p - 1) \left\| \int_0^1 u_s^p \, ds \right\|_{\infty} \right] \leq \exp \left[\frac{1}{2} p(p - 1) \lambda^2 \|u\|_{\infty} \right]. \]

Hence, the assertion follows by Lebesgue’s dominated convergence theorem. \(\square\)

Proposition 4.5.7 (Bismut’s integration by Parts formula on Wiener space). Let u, U be as in Proposition 4.5.4 and let $F : E \to \mathbb{R}$ be H-differentiable. Then
\[\left(E \left[(D,F,U)_{L^2([0,1],dt)} \right] \right) = E[(\nabla F,U)] = E \left[F \int_0^1 u_s \, dX_s \right]. \]

Remark 4.5.8. Proposition 4.5.7 identifies duality between D and $\int \cdot \, dX$ (i.e. between the Malliavin derivative and the Itô-integral). This is the starting point for defining an extension of the Itô-integral, namely the Skorohod integral.

The extension is simply defined as the adjoint D^* of $D.$ Note that $\text{dom } D^*$ contains also non-(F_t)-adapted processes (cf. Lectures on Malliavin calculus)! $\text{dom } D$ is the set of all H-differentiable functions $F : E \to \mathbb{R} \subset L^2(E, P_0),$
\[D : \text{dom } D \subset L^2(E, P) \to L^2(E \to L2([0,1], dt), P_0). \]

Hence,
\[D^* : \text{dom } D^* \subset L^2(E \to L^2([0,1], dt), P_0) \to L^2(E, P_0). \]

Proof of 4.5.7. (4.5.11) implies
\[E_{(P_0)} \left[\frac{F(X^\lambda) - F(X)}{\lambda} \right] = E_{(P_0)} \left[\frac{F(X)}{\lambda} \right]. \]

Therefore,
\[E \left[\frac{F(X^\lambda) - F(X)}{\lambda} Z_1^\lambda \right] = E \left[-F(X) \frac{Z_1^\lambda - 1}{\lambda} \right] \xrightarrow{\lambda \to 0} E \left[-F \int_0^1 u_s \, dX_s \right] \]
4. Girsanov Transformation

by Lemma 4.5.6. But the left hand side is equal to
\[E \left[\frac{1}{\lambda} \left((F(X^\lambda) - F(X)) + \langle \nabla F, U \rangle_H \right) Z_1^\lambda \right] - E \left[\langle \nabla F, U \rangle_H Z_1^\lambda \right]. \]

Since \(\langle \nabla F, U \rangle_H \in L^2(E, P_0) \) and \(Z_1^\lambda \to 1 \) in \(L^2(P_0) \) (see Proof of 4.5.6), the second summand converges to \(-E[\langle \nabla F, U \rangle_H] \) as \(\lambda \to 0 \). The first summand converges to 0 by Cauchy-Schwarz and Lemma 4.5.6 as \(\lambda \to 0 \).

First application:
Identification of the integrand in Itô’s representation theorem.

Corollary 4.5.9 (Clark-Formula). Let \(F \in L^2(P_0) \) \(H \)-differentiable. Then
\[F = E[F] + \int_0^1 E[D_tF|\mathcal{F}_t] \, dX_t \quad P\text{-a.s..} \]

Exercise: Show that \((t, \omega) \mapsto E[D_tF|\mathcal{F}_t](\omega)\) is \(\bar{P}_X \)-a.e. equal to a \(B([0,1]) \otimes \mathcal{F}\)-measurable function. Hint: First consider \(N_t(\omega) = 1_{[a,b]}(t)1_A(\omega) \) for \(A \in \mathcal{F} \) instead of \(D_tF \) (Here, \(\bar{P}_M(dt, d\omega) = d\langle M \rangle_t(\omega)P_0(d\omega)0dtP_0(d\omega) \)).

Proof of 4.5.9. Without loss of generality \(E[F] = 0 \). Let \(G \in L^2(P_0) \). Then
\[G = E[G] + \int_0^1 u_t \, dX_t, \]
where \(u \in L^2(\bar{\Omega}, \bar{\mathcal{F}}, \bar{P}_x) \) and \(u \) adapted. Then by Bismut’s Integration by Parts-formula we have for
\[u^{(n)} := (u \wedge n) \vee (-n), \quad n \in \mathbb{N}, \]
bounded, that
\[E[FG] = \lim_{n \to \infty} E \left[F \int_0^1 u_t^{(n)} \, dX_t \right] \overset{4.5.7}{=} \lim_{n \to \infty} E \left[\int_0^1 D_tFu_t^{(n)} \, dt \right] \overset{\text{Fubini}}{=} \lim_{n \to \infty} \int_0^1 E[D_tFu_t^{(n)}] \, dt = \int_0^1 E[D_tFu_t] \, dt \overset{\text{u adapted}}{=} \int_0^1 E[D_tF|\mathcal{F}_t]u_t \, dt \overset{2.4.1}{=} E \left[\left(\int_0^1 E[D_tF|\mathcal{F}_t] \, dX_t \right) G \right]. \]

Example 4.5.10. i. Define
\[F := \int_0^1 X_t \, dt. \]
Note that \(E \ni \omega \mapsto F(\omega) = \int_0^1 X_t \, dt \) is linear and continuous in \(E \), hence \(F \in E' \). Then \(E' \ni F'(\omega, dt) = dt - \delta_0 \), hence
\[D_tF(\omega) = F'(\omega, [t, 1]) = 1 - t. \]
So, by 4.5.9
\[\int_0^1 X_t \, dt = F = \int_0^1 (1 - t) \, dX_t. \]
Note that this can be also (in fact much more easily) proved by Itô’s product rule (see 2.5.6).
ii. \(F := f(X_1) \), where \(f \in \mathcal{C}^2(\mathbb{R}) \). Then by the chain rule (which also holds for Frechet-differentiable functions on Banach spaces) \(F \) is Frechet-differentiable and

\[
F'(\omega, dt) = f'(X_1(\omega)) \cdot \delta_1(-f(X_1(\omega))) \delta_0 \quad (\in E').
\]

Thus,

\[
D_t F(\omega) = F'(\omega, |t, 1]) = f'(X_1(\omega)).
\]

Hence, by Corollary 4.5.9

\[
f(X_1) = F = E[f(X_1)] + \int_0^1 E[f'(X_1)|\mathcal{F}_t] \, dX_t. \tag{*}
\]

\(F \) depends only on time \(t = 1 \), but is represented as an integral along paths. The corresponding integrands can be interpreted in terms of solutions \(h(X_t(\omega), t) \) to the following “final value problem”

\[
h(\cdot, 1) = f(\cdot), \\
\frac{1}{2} h_{xx} + h_t = 0.
\]

The solution has the form \(h(x, t) = p_{1-t} f(x) \) (Fact by elementary calculation, cf. Chapter III). Hence by Itô’s formula (cf. 1.3.1 (iii))

\[
h(X_1, 1) = h(0, 0) + \int_0^1 h_x(X_s, s) \, dX_s, \tag{**}
\]

where \(h(X_1, 1) = f(X_1) \) and \(h(0, 0) = p_{1} f(0) = E[f(X_1)] \). By (*) and (**) and uniqueness in Itô’s representation theorem we can conclude that

\[
h_x(X_s, s) = E[f'(X_1)|\mathcal{F}_s] = (\partial_s(E[fX_{1-s} + x]))_{x=X_s}.
\]

To show that \(F \in \mathcal{L}^2(P) \) is \(H \)-differentiable is rather difficult in general. The following sufficient condition might be useful to check \(H \)-differentiability.

Proposition 4.5.11. The following is a sufficient condition for the \(H \)-differentiability of \(F \) in \(\mathcal{L}^2(P) \):

There exists a kernel \(F'(\omega, dt) \) from \(\Omega \) to \(E([0, 1]) \) such that for all \(U \) as in 4.5.4

i. \[
\frac{F(X + \lambda U)}{\lambda} - F(X) \rightarrow_{\lambda \rightarrow 0} 1 \int_0^1 F'(\omega, dt) U_t(\omega) \quad \text{for } P\text{-a.e. } \omega \in E.
\]

ii. For all \(c > 0 \)

\[
|F(X + U) - F(X)| \leq c \| U \|_{\infty} \quad \text{P-a.s.}
\]

In this case

\[
\langle H \rangle \nabla F(\omega) = R(F'(\omega, dt) - F'(\omega, [0, 1]) \cdot \delta_0) = \int \mathcal{F}_0 F'(\omega, [s, 1]) \, ds.
\]

Proof. By 4.5.1 we have

\[
\int F'(\omega, dt) U_t(\omega) \bigg|_{U_0=0} = \int \mu_\omega(dt) U_t(\omega) = \langle R(\mu_\omega), U(\omega) \rangle_H = \langle \nabla F(\omega), U(\omega) \rangle_H.
\]

Hence, the assertion follows by Lebesgue’s dominated convergence theorem. \(\square \)
4. Girsanov Transformation

Example 4.5.12. $F(\omega) := \max_{0 \leq t \leq 1} \omega$ is not Frechet-differentiable, but define

$$F'(\omega, dt) := \delta_{T(\omega)}(dt),$$

where

$$T := \inf \{ t > 0 | X_T = F \}.$$

Exercise: Show that $T = \sup_n T_n$, where $T_n := \inf \{ t > 0 | X_t > -F - \frac{1}{n}, t \in \mathbb{Q} \}$ and that T_n are stopping times for all n, hence, T is a stopping time.

Then it follows by Proposition 4.5.11 that

$$D_tF(\omega) = F'(\omega, [t, 1]) = \delta_{T(\omega)}([t, 1]) = 1_{\{T > t\}}(\omega).$$

Next step: Identify $E[D_tF|\mathcal{F}_t]$ in order to use Clark formula.

Define

$$M_t := \max_{0 \leq s \leq t} X_s.$$

Then we have for P-a.e. $\omega \in E$

$$E[D_tF|\mathcal{F}_t](\omega) = P[T > t|\mathcal{F}_t](\omega)$$

$$= P\left(\max_{t \leq s \leq 1} X_s > M_t|\mathcal{F}_t \right)(\omega)$$

$$= P\left(\max_{0 \leq s \leq 1-t} X_{s+t} > M_t|\mathcal{F}_t \right)(\omega).$$

Now, we use the superstrong Markov property, i.e. for any \mathcal{F}-measurable functions ϑ_t and any \mathcal{F}_t-measurable function φ we have

$$E_x[H(\vartheta_t, \varphi_t)|\mathcal{F}_t](\omega) = E_{X_t}(\omega)[H(\cdot, \omega)].$$

Hence,

$$E[D_tF|\mathcal{F}_t](\omega) = P_{X_t}(\omega)\left(\max_{0 \leq s \leq 1-t} X_s(\omega) > M_t(\omega) \right)$$

$$= P_{X_t}(\omega)\left(\max_{0 \leq s \leq 1-t} X_s(\omega) - X_t(\omega) > M_t(\omega) - X_t(\omega) \right).$$

By the reflection principle, this is equal to

$$2 \cdot P_{X_t}(X_{1-t}(\omega) - X_t(\omega) > M_t(\omega) - X_t(\omega))$$

$$= 2 \cdot P_0(X_{1-t}(\omega) > M_t(\omega) - X_t(\omega))$$

$$= 2 \cdot N(0, (1-t))(\{M_t(\omega) - X_t(\omega), \infty\})$$

$$= 2 \cdot N(0, 1)\left(\frac{M_t(\omega) - X_t(\omega)}{\sqrt{1-t}}, \infty\right)$$

$$= 2 \int_{\frac{M_t(\omega) - X_t(\omega)}{\sqrt{1-t}}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

$$= 2 \cdot \left(1 - \Theta \left(\frac{M_t(\omega) - X_t(\omega)}{\sqrt{1-t}} \right) \right).$$
A. Time Transformation

Let \((\Omega, \mathcal{F}, P)\) be a probability space, \((\mathcal{F}_t)_{t \geq 0}\) a right-continuous, complete filtration and \(Y\) a \(P\)-a.s. continuous locale martingale up to \(\infty\) (with respect to \((\mathcal{F}_t)\)) such that \(Y_0 \equiv 0\). For simplicity let
\[
\langle Y \rangle_\infty : = \lim_{t \to \infty} \langle Y \rangle_t = \infty \quad P\text{-a.s.}
\]
Define the "inverse" of \(\langle Y \rangle_t\) by
\[
C_t := \inf \{ s > 0 \mid \langle Y \rangle_s > t \}.
\]

Theorem A.0.1. Let \(\langle Y \rangle_\infty = \infty\) \(P\)-a.s. and \(W_t := Y_{C_t}, t \geq 0\). Then, \(W\) is a \((\mathcal{G}_t)\) \(t \geq 0 = \mathcal{F}_{C_t}\) Brownian motion (cf. 1.5.1) and \(Y_t = W_{\langle Y \rangle_t}\) for all \(t \geq 0\).

For the proof we need the following two lemmas.

Lemma A.0.2.

\(i.\) The map \(t \mapsto C_t\) is increasing and right-continuous.

\(ii.\) \(C_t\) is an \((\mathcal{F}_s)\)-stopping time for all \(t\).

\(iii.\)
\[
\langle Y \rangle_{C_t} = t \quad P\text{-a.s. } \forall t.
\]

\(iv.\) \(t \leq C_{\langle Y \rangle_t}\). (Note that in general case \(t \neq C_{\langle Y \rangle_t}\) !)

Proof. (iii): Without loss of generality \(\langle Y \rangle\) is continuous everywhere. Then \(\langle Y \rangle_{C_t} \geq t\), since \(t \mapsto \langle Y \rangle_t\) is (right-)continuous.

Assumption: \(\langle Y \rangle_{C_t} \geq t + \epsilon\) for \(\epsilon > 0\).

Then, since \(t \mapsto \langle Y \rangle_t\) is continuous, there exists a \(\delta > 0\) such that \(\langle Y \rangle_{C_t + \delta} > t + \frac{\epsilon}{2} > t\). Hence, \(C_t \leq C_t - \delta\). Since this is impossible it follows that \(\langle Y \rangle_{C_t} < t + \epsilon\) for all \(\epsilon > 0\).

(i): Obviously \(t \mapsto C_t\) is increasing. It remains to show that
\[
\lim_{u \searrow t} C_u \leq C_t.
\]
("\(\geq\)" is clear since \(C_t\) is increasing.)

Let \(\epsilon > 0\). Then \(\langle Y \rangle_{C_t + \epsilon} > t\). Hence, there exists a \(\delta > 0\) such that
\[
\langle Y \rangle_{C_t + \epsilon} > u \quad \forall u \in [t, t + \delta].
\]
Thus,
\[
C_u \leq C_t + \epsilon \quad \forall u \in [t, t + \delta].
\]

(ii): We have
\[
\{ C_t < u \} = \{ \langle Y \rangle_u > t \} \quad \forall u, t, \quad (A.0.1)
\]
because "\(\subset\)" is clear and, if \(\langle Y \rangle_u > t\), then there exists an \(\epsilon > 0\) such that \(\langle Y \rangle_u - \epsilon > t\) and, therefore, \(C_t \leq u - \epsilon < u\). But
\[
\{ \langle Y \rangle_u > t \} \in \mathcal{F}_u.
\]
Hence, by \((A.0.1)\)
\[
\{ C_t \leq u \} \in \mathcal{F}_{u+} = \mathcal{F}_u.
\]

(iv): If \(C_{\langle Y \rangle_t} < t\), then by \((A.0.1)\) we would get \(\langle Y \rangle_t > \langle Y \rangle_t\). Therefore, \(C_{\langle Y \rangle_t} \geq t\). \(\square\)
A. Time Transformation

Note that $\mathcal{G}_t := \mathcal{F}_{C_t}$, $t \geq 0$ (filtration, since C_t is increasing!).

Lemma A.0.3.

i. $(\mathcal{G}_t)_{t \geq 0}$ is right-continuous and complete.

ii. $(Y)_t$ is a stopping time with respect to $(\mathcal{G}_s)_{s \geq 0}$ for all t.

Proof. (ii) is clear by (A.0.1).

(i): Right-continuity: Let $A \in \bigcap_{s>0} \mathcal{F}_{C_{t+s}}$ (in particular, $A \in \mathcal{F}_{C_{t+\frac{1}{n}}}$). Hence, for all s

\[
A \cap \{C_{t+\frac{1}{n}} < s\} \in \mathcal{F}_s \quad \forall n, s,
\]

therefore,

\[
A \cap \bigcup_{n=1}^\infty \{C_{t+\frac{1}{n}} < s\} \in \mathcal{F}_s \quad \forall s,
\]

thus $A \cap \{C_t \leq s\} \in \mathcal{F}_{s^+} = \mathcal{F}_s \forall s$, and $A \in \mathcal{F}_{C_t}$.

Completeness: Let $A_0 \in \mathcal{F}_{C_t}$ with $P[A_0] = 0$ and $A \subset A_0$. Then for all s

\[
A \cap \{C_t \leq s\} \in \mathcal{F}_s
\]
as a subset of an \mathcal{F}_s-measurable P-zero set $A_0 \cap \{C_t \leq s\}$, since \mathcal{F}_s is complete. Hence, $A \in \mathcal{F}_{C_t}$.

Proof of A.0.1. Since Y is P-a.s. continuous and (C_t) is right-continuous, (W_t) is P-a.s. right-continuous.

Step 1. $t \mapsto W_t = Y_{C_t}$ is P-a.s. continuous:

It suffice to show that (cf. Exercises)

\[
P[Y_u = Y_t \quad \text{for } t \leq u \leq \sigma_t \quad \forall t \geq 0] = 1, \tag{A.0.2}
\]

where

\[
\sigma_t := \inf\{s > t|\langle Y\rangle_s > \langle Y\rangle_t\},
\]

hence,

\[
\langle Y \rangle_u = \langle Y \rangle_t \quad \text{for } u \in [t, \sigma_t].
\]

(A.0.2) is sufficient, since then Y is constant on the interval, where $\langle Y \rangle$ is constant and by definition this is the case on $[C_{t-}, C_t]$. Therefore, $Y_{C_t} = Y_{C_{t-}}$. For (A.0.2) it remains to show that for all $r \in \mathbb{Q}^+$

\[
P[Y_u = Y_r \quad \text{for } r \leq u \leq \sigma_r \quad \forall r \in \mathbb{Q}^+] = 1, \tag{A.0.3}
\]

because, if $t \geq 0$ with $t < \sigma_t$, then for all $r \in [t, \sigma_t) \cap \mathbb{Q}^+ \sigma_r = \sigma_t$ and (A.0.3) implies (A.0.2), since Y is P-a.s. (right-)continuous.

Let $(T'_n)_{n \in \mathbb{N}}$ be a localizing sequence for Y. Then

\[
T_n := \inf\{t > 0|Y_t > n\} \land T'_n, \quad n \in \mathbb{N},
\]
is again a localizing sequence. Fix $r \in \mathbb{Q}^+$. For $n \in \mathbb{N}$ set

\[
N^{(n)}_t := Y_{(r+t)\land \sigma_r \land T_n} - Y_{r \land T_n}, \quad t \geq 0,
\]

\[
\bar{F}_t := \mathcal{F}_{t+r}, \quad t \geq 0.
\]

Then $N^{(n)}$ is a continuous bounded martingale with respect to (\bar{F}_t), since by the stopping theorem $\forall s \leq t$

\[
E[N^{(n)}_t | \bar{F}_s] = E[Y_{(r+t)\land \sigma_r \land T_n} - Y_{r \land T_n} | \bar{F}_{r+s}] = Y_{(r+s)\land \sigma_r \land T_n} - Y_{r \land T_n} = N^{(n)}_s,
\]

90
since σ_r is a stopping time with respect to (\mathcal{F}_t). Additionally,
\[
(N^{(n)})_t = \langle Y \rangle_{(r+t)\wedge \sigma_r \wedge T_n} - \langle Y \rangle_{r\wedge T_n} = 0 \quad \forall t \geq 0.
\]
Hence,
\[
E[(N^{(n)}_t)^2] = E[(N^{(n)}_t)] = 0 \quad \forall t \geq 0,
\]
thus
\[
N^{(n)}_t = 0 \quad \text{P-a.s.}
\]
Letting $n \to \infty$ implies
\[
Y_{(r+t)\wedge \sigma_r} - Y_r = 0 \quad \text{P-a.s.} \quad \forall t \geq 0,
\]
which yields (A.0.3).

Step 2. W is a local martingale (up to ∞) with respect to (\mathcal{G}_t):

By A.0.2(ii) C_t is an (\mathcal{F}_u)-stopping time. For $t \geq 0$
\[
E[(Y^{C_t})_u] = E[(Y^{C_t})] \leq E[(Y)_C] = t.
\]
Therefore, by Corollary 1.4.7 Y^{C_t} is a martingale and
\[
E[(Y^{C_t}_s)^2] \leq \liminf_n E[(Y^{C_t}_s)^2] = \liminf_n E[(Y)_s | C_t \wedge T_n] \leq t.
\]
Hence, $(Y^{C_t}_s)_{s \geq 0}$ and $(Y^{C_t}_s)^2)_{s \geq 0}$ are uniformly integrable.

Moreover, $C_{(Y)_T_n}$ is a (\mathcal{F}_t)-stopping time, because:
\[
\{C_{(Y)_T_n} < u\} \overset{(A.0.1)}{=} \{\langle Y \rangle_u > \langle Y \rangle_{T_n}\}
\]
\[= \bigcup_{r \in \mathbb{Q}} \{\langle Y \rangle_u > r\} \cap \{r > \langle Y \rangle_{T_n}\}\]
\[= \bigcup_{r \in \mathbb{Q}} \{C_r < u\} \cap \{C_r > T_n\}\]
\[= \bigcup_{r \in \mathbb{Q}} \{C_r < u\} \cap \{C_r \wedge u > T_n\}\]

Thus,
\[
\{C_{(Y)_T_n} \leq u\} \in \mathcal{F}_{u+} = \mathcal{F}_u.
\]
Furthermore, $(Y)_T_n$ is a stopping time with respect to (\mathcal{G}_t), since
\[
\{\langle Y \rangle_{T_n} \leq u\} \overset{(A.0.1)}{=} \{C_u \geq T_n\} \in \mathcal{F}_{T_n \wedge Cu} \subset \mathcal{F}_{Cu} = \mathcal{G}_k.
\]
Hence, for all $t > s$ (since $C_{t \wedge (Y)_T_n} = C_t \wedge C_{(Y)_T_n}$, because (C_t) is increasing)
\[
E[W_{t \wedge (Y)_T_n} | G_s] = E[W_{t \wedge (Y)_T_n} | G_s] = E[Y_{C_{t \wedge (Y)_T_n}} | G_s]
\]
\[= E[Y_{C_{t \wedge C_{(Y)_T_n}} \wedge T_n} | \mathcal{F}_u] = E[Y^{C_{t \wedge C_{(Y)_T_n}}} | \mathcal{F}_u]
\]

Since $(Y^{C_t})_{s \geq 0} \wedge C_{(Y)_T_n}$ is an uniformly integrable martingale (note that C_s is not necessarily bounded), it follows that
\[
= Y^{C_t}_{s \geq t} \wedge C_{(Y)_T_n} = W_{s \wedge (Y)_T_n}.
\]
A. Time Transformation

Hence, W is a local martingale with localising sequence $(Y_T)_n \in \mathbb{N}$ (up to ∞).

Step 3. $(W)_t = t \, \forall t$. In particular, W is a Brownian motion:

Since by L^2-martingale convergence theorem $(Y^C_s)_{s \geq 0}$ is uniformly integrable and $(Y^C_s)_{s \geq 0} \leq (Y^C_s)_{s \geq 0}$, it follows that $(W^C_s)^2 - (Y^C_s)$ is an uniformly integrable martingale. Hence, (though C_t, s are not bounded) by the stopping theorem we get that for all $t > s$

$$E[W_t^2 - t|G_s] = E[Y^C_t - (Y^C_s)_t|G_s]$$

$$= E[(Y_t^C)^2 - (Y^C_s)_t|G_s] = (Y_t^C)^2 - (Y_t^C)_s$$

$$= Y_s^2 - (Y^C_s)_s = W_s^2 - s.$$ Therefore, $(W^2_t - t)_{t \geq 0}$ is a continuous martingale with respect to $(G_t)_{t \geq 0}$. By the Doob-Meyer decomposition it follows that $(W)_t = t$ for all t and by 1.4.7 that $(W_t)_{t \geq 0}$ is a martingale. By Lévy's characterization theorem 1.5.1 W_t is a Brownian motion.

Step 4. $Y_t = W(Y)_t$ for all $t \geq 0$:

We have

$$W(Y)_t = Y C(Y)_t$$

and since $s \mapsto \langle Y \rangle_s$ is increasing and continuous

$$C(Y)_t = \inf \{ s > 0 | \langle Y \rangle_s > \langle Y \rangle_t \} = \inf \{ s > t | \langle Y \rangle_s > \langle Y \rangle_t \} = \sigma_t.$$ Therefore, (Y) is constant on $[t, C(Y)_t]$. By (A.0.2) we get that Y is constant on $[t, C(Y)_t]$, thus, $W(Y)_t = Y C(Y)_t = Y_t$.

Remark A.0.4. We have supposed that $P[\langle Y \rangle_\infty = \infty] = 1$. (This has been necessary as the counter example

$$\Omega := \{ \omega \}, \quad Y \equiv 0$$

shows.) Basically, the theorem also holds for the case, where $P[\langle Y \rangle_\infty < \infty] > 0$. But, one possibly has to enlarge Ω.

Construction of the enlarged Wiener space:

Let $(W_t)_{t \geq 0}$ be a Wiener process on (Ω, F, P) with respect to (F_t). Set

$$\hat{\Omega} := \Omega \times \Omega', \quad \hat{F} := F \otimes F', \quad \hat{P} := P \times P',$$

$$C_t := \left\{ \begin{array}{ll} \inf \{ s | \langle Y \rangle_s > t \} & \text{on } \{ \langle Y \rangle_\infty > t \}, \\ \infty & \text{on } \{ \langle Y \rangle_\infty \leq t \}. \end{array} \right.$$ Let

$$\hat{F}_t := \sigma(F_{C_t \wedge s} | s \geq 0), \quad \hat{G}_t := \hat{F}_t \times F'_t,$$

$$W_t := \left\{ \begin{array}{ll} Y_{C_t} & \text{on } \{ \langle Y \rangle_\infty > t \}, \\ W'_t - W(Y)_\infty + \langle Y \rangle_\infty & \text{on } \{ \langle Y \rangle_\infty \leq t \}. \end{array} \right.$$ Then W is a Wiener process on $(\hat{\Omega}, \hat{F}, \hat{P})$ with respect to $(\hat{G}_t)_{t \geq 0}$, Y_t is a (\hat{G}_t)-stopping time and we have

$$Y_t = W(Y)_t.$$ For the proof cf. [IW89, Chapter II, Theorem 7.21].
Literaturverzeichnis

Literaturverzeichnis

