Optimization and Dynamics

Nora Müller

Tutorials: Siyu Liang - Postbox: 207 in V3-126/128

Exercise Sheet 9

Deadline: Wednesday 27.06.19 (in the tutorial or 3 p.m. in the postbox)

Exercise 31 (Theorem 8.10). Consider the following IVP

$$\begin{cases} x'(t) = x(t) \cdot \cos(t) \\ x(0) = 1 \end{cases}$$

Show that there exists a unique solution on the interval $\left[-\frac{1}{2},\frac{1}{2}\right]$ and determine the solution.

Exercise 32 (Proposition 9.4).

Let A and B be commuting $d \times d$ matrices and S an invertible $d \times d$ matrix. Prove the following identities:

a) $e^{A+B} = e^A e^B$ (Hint¹ or Hint²) b) $(e^A)^{-1} = e^{-A}$ c) $(e^A)^k = e^{kA}, \ k \in \mathbb{Z}$ (Hint³) d) $e^{SAS^{-1}} = Se^AS^{-1}$

Exercise 33 (Proposition 9.7, Proposition 9.16). Let $A = \begin{pmatrix} -1 & 2 \\ -4 & 5 \end{pmatrix}$.

- a) Write down the characteristic equation of A and show that A fulfils it.
- b) Diagonalise A and hence find A^{12} and e^{A} by using Proposition 9.7.
- c) Find the polynomial q such that $e^A = q(A)$ by using Proposition 9.16.

10 points

10 points

10 points

Summer semester 2019

¹Hint: Show $Be^{At} = e^{At}B$ and consider $F(t) = e^{(A+B)t} - e^{At}e^{Bt}$ and its derivative F'(t)

²Hint: Make use of the binomial theorem

³Hint: Case differentiation and induction are helpful