
HOW TO DETERMINE WHETHER A PATH ALGEBRA WITH RELATIONS IS

FINITE-DIMENSIONAL: THE GREEN-SØLBERG ALGORITHM

MARKUS PERLING

Abstract. We describe an algorithm due to Green and Sølberg that can determine whether the quo-

tient of a path algebra is finite-dimensional. This algorithm is based on Gröbner bases and a mostly

undocumented part of the GAP package QPA.

1. Introduction

Consider the following setup: let Q be a finite quiver (i.e. a finite directed multigraph), k some field
and kQ the path algebra generated by Q over k. Such an algebra is finite-dimensional if and only if the
quiver Q does not contain any directed cycles.

Let r1, . . . , rs be a set of polynomials in kQ and denote Λ := kQ/I the quotient algebra by the two-
sided ideal I = ⟨r1, . . . , rs⟩. If kQ is finite-dimensional, then so is Λ. However, the converse is not true
in general.

Given a quiver with cycles, to determine whether a set of relations yields a finite-dimensional quotient
algebra can be a tricky business.

Example 1.1: Consider the following quiver:

1 2w
x

y

z

and the following relations: w3, (xy)3, z3. As these relations are monomial, they already form a Gröbner
basis. Obviously, the algebra kQ/⟨w3, (xy)3, z3⟩ is not finite-dimensional, as, e.g. for n ≥ 1, (xzy)n is
not divisible by any of these monomials . We could now proceed by adding more relations of this kind,
such as (xzy)3, (xz2y)3, (xzyw)3,

Now consider the following cycles a := xzy, b := xz2y and their compositions

abbabaabbaababbaba . . .

following the prefixes of the Thue-Morse sequence [Slo, A010060]. This sequence is known to contain no
triple repetitions of any pattern of any length. As any such prefix represents a cycle in Q, this implies
that we cannot make Λ finite-dimensional by uniformly adding relations of the type c3 for cycles c in Q.

Of course, we can eliminate these Thue-Morse prefixes by simply adding a or b to the relations. It
would be interesting to have an explicit understanding what are the necessary cycle cancellations needed
to ensure finite-dimensionality.

In this note we will describe an algorithm due to Green and Sølberg that determines whether Λ is
finite-dimensional for any given quiver with relations for which a Gröbner basis can be computed. This
algorithm has been implemented in the GAP package QPA [GS+24]. For general reference on Gröbner
bases, we refer to [FFG93], [Kel97]̧ [Gre99], [Gre00].

We will assume throughout that, given some monomial well-ordering on kQ, we can compute and fix
a reduced Gröbner basis g1, . . . , gt for I. For any polynomial p in kQ, we denote lm(p) its lead monomial.
When no ambiguity arises, we will identify monomials in kQ with their corresponding paths in Q. In
particular, any directed cycle in Q corresponds to a monomial in kQ. We also consider loops (i.e. arrows
that start and end at the same node) as directed cycles.

This is our first observation:
1

2 MARKUS PERLING

Lemma 1.2: Given a Gröbner basis g1, . . . , gt for I, then the set of monomials in KQ that are not
divisible by any lm(gi) represent a basis of Λ. In particular, Λ is finite-dimensional if and only if there
exist only finitely many monomials in kQ that are not divisible by some lm(gi).

Proof. Denote {bi | i ∈ A} (for some index set A) monomials in kQ that represent a basis for Λ. Recall
(e.g. [Gre99, §2.2.3]) that ⟨bi | i ∈ A⟩k = ⟨NonTip(I)⟩k, and KQ = I ⊕ ⟨NonTip(I)⟩k as k-vector
spaces. This splitting is compatible with the choice of the set of monomials of kQ as basis for kQ as a
k-vector space. Then by using Buchberger reduction we can bring any monomial into the form:

c =

t∑
i=1

figihi +

finite∑
j∈A

αjbj ,

where αj ∈ k and fi, hi ∈ kQ. Because the gi are a Gröbner basis for I, the remainder of c modulo the
gi is unique and therefore the αj are.

If at least one of the terms figihi is nonzero, then at least one Buchberger reduction step has been
performed, hence lm(gi) divides c for at least one i.

If all terms figihi are zero, then c is not divisible by any lm(gi) and therefore coincides with one of
the bj .

It follows that the complete reduction algorithm yields a unique representative for each nonzero
monomial in Λ such that none of the representative’s term’s are divisible by any lm(gi). Equivalently,
we obtain a natural isomorphism of k-vector spaces Λ ≃ ⟨NonTip(I)⟩k and the lemma follows. □

With this observation, we can rephrase the problem of determining the finite-dimensionality of Λ as
follows:

Given a quiver Q and a Gröbner basis g1, . . . , gt for I, can we determine whethere there are only
finitely many monomials in kQ that are not divisible by any lm(gi)?

The Green-Sølberg algorithm very elegantly solves this problem by using dictionary trees (tries). Here,
we consider each label in the quiver Q (including both the labels for arrows and idempotents) as a symbol
in a formal alphabet and a monomial in Q as a word of that alphabet.

Given a list of words, such as lm(g1), . . . , lm(gt), it is natural to consider dictionary data structures
that efficiently support basic path algebra arithmetics. For example, division with remainder with respect
to a Gröbner basis generally involves a great deal of substring searches. It has been proposed by Benjamin
Keller [Kel97] to use tree-like data structures for this purpose, so-called tries.

So, the Green-Sølberg algorithm performs the following steps:

(1) From a given Gröbner basis G = {g1, . . . , gt}, construct a dictionary trie TG (more precisely, a
trie with failure nodes, as used in the Aho-Corasick algorithm [AC75]).

(2) From TG construct a directed multigraph SG that contains all the non-root nodes of TG and a
distinguished source node ◦.

(3) We consider SG as a state machine where ◦ is the single start node and any other node is a
possible stop node. Proposition 3.1 will show that the words generated by SG coincide with the
monomials of kQ.

(4) In a finite step, the truncated state machine SG,tr is obtained by removing the nodes of SG
corresponding to the leaf nodes of TG .

(5) Theorem 3.2 will show that the words generated by SG,tr coincide with a monomial basis for Λ.
In particular, Λ is finite-dimensional if and only if SG,tr has no directed cycles.

Veryfing whether SG,tr has oriented cycles can be done e.g. by straightforward depth-first search in
the underlying multigraph. Other uses of SG,tr are:

• It can produce a full monomial basis of Λ if SG,tr has no directed cycles.
• It can produce partial monomial bases of Λ, e.g. by bounding the length of words, regardless
whether SG,tr has cycles or not.

• Using standard algorithms such as Johnson’s [Joh75], we can detect all remaining irreducible
cycles in Λ.

In Section 2 we will give a number of explicit examples for constructing TG , TG , and SG,tr. In Section
3 we will fill out the details of the Green-Sølberg algorithm as outlined above.

THE GREEN-SØLBERG ALGORITHM 3

2. Examples of quivers, tries, and state machines

For simplicity, the examples in this section will only deal with monomial relations. As a set of
monomials that are not mutually divisible already constitutes a reduced Gröbner basis for the ideal they
generate, this will save us any discussion of well-orderings and Gröbner basis computations.

A crucial part of the algorithm is that we consider monomial normalized with respect to leading
idempotents. That is, whenever we consider a word in a trie or state machine, we (implicitly) assume
that it is prefixed by its source idempotent with multiplicity 1. E.g. in Example 2.1, we have the
monomials e1, x, x

2, . . . as a basis of kQ, but whenever we add some xi into a trie, it will be normalized
to e1x

i. Likewise, we will always assume that interior or ending idempotents are being absorbed, e.g.
we will never consider words of the form e1x

iej1x
kel1 with j, k > 0. However, to simplify presentation,

if the monomial is not idempotent, we will almost always suppress the leading idempotent, e.g. write
e1, x, x

2, . . . instead of e1, e1x, e1x
2,

Example 2.1: Consider the quiver

1x

and the relation x3. Then the monomial base of Λ is given by e1, x, x
2. A trie without failure nodes

containing the single word e1x
3 = x3 looks like this:

◦

e1

x

xx

xxx

e1

x

x

x

Removing the leaf node 1xxx, we get:

◦

e1

x

xx

e1

x

x

Considered as a state machine with start node ◦ and any stop node except ◦, it can generate the following
paths:

e1, e1x, e1x
2.

Absorbing e1, we get a little more conveniently: e1, x, x
2.

4 MARKUS PERLING

Example 2.2: Now consider

1 yx

These are the dictionary tries when successively adding x2, y2, xy:

◦

e1

x

xx

e1

x

x

◦

e1

x y

xx yy

e1

x y

x y

◦

e1

x y

xx xy yy

e1

x y

x y y

As we can see, none of these tries represent all the nonzero monomials in the quotient algebra. For these,
we must make use of another feature of tries: failure nodes. That is, for each prefix in a trie (i.e. each
string represented by a node), its failure node is the node corresponding to the longest proper suffix of
that string (normalized wrt. leading idempotent). E.g., the longest proper suffix of e1x

2 is x = e1x, that
of e1xy is y = e1y, and that of y is e1. The resulting failure nodes are indicated by the dashed lines:

◦

e1

x

xx

e1

x

x

◦

e1

x y

xx yy

e1

x y

x y

◦

e1

x y

xx xy yy

e1

x y

x y y

These failure nodes facilitate the completion of the trie into a directed multigraph that, considered as
a state machine with starting node ◦ and arbitrary end nodes, produces the same paths as the original
quiver. Given any node in the trie representing a path p, we have a number (possibly zero) of outgoing
arrows labeled ai1 , . . . , aik , being a subset of all possible letters a1, . . . , ak such that pai for 1 ≤ i ≤ k is
a valid path in the original quiver. So, the idea now is to top-down add arrows as follows:

Denote f the failure node of p.

• If f is undefined (equivalently, p = ei for some i), then for each al that is not one of the aik , add
an arrow labelled al starting at ei and ending at the node ej , where j is the target of al in the
original quiver.

• If f = i for some i, then for each al that is not one of the aik , add an arrow labelled al starting
at ei and ending at the node ejj, where j is the target of al in the original quiver.

• Otherwise, for each ai that is not one of the aik , add an arrow labelled ai starting at p and
ending at the target of the arrow starting at f and labelled ai.

THE GREEN-SØLBERG ALGORITHM 5

The existence of an arrow starting at f and labelled ai is guaranteed by going top-down. Here are
the resulting graphs:

◦

e1

x

xx

e1

x

y

x

y

y

x

◦

e1

x y

xx yy

e1

x y

x

y

y

x

y
x

x

y

◦

e1

x y

xx xy yy

e1

x y

x
y

x

y

y
x

x

y

x

y

It is straightforward to see that starting from ◦, each of these graphs produces all possible paths as in the
original quiver. These graphs therefore necessarily contain directed cycles. Now, to obtain graphs that
can produce all nonzero paths of the quotient algebra, we simply remove the leaf nodes of the original
trie:

◦

e1

x

e1

x

y

y

◦

e1

x y

e1

x y

y

x

◦

e1

x y

e1

x y

x

We see that these graphs produce the path bases of kQ/⟨x2⟩, kQ/⟨x2, y2⟩, and kQ/⟨x2, y2, xy⟩, respec-
tively, where only the last one has no directed cycles.

Example 2.3: Consider again:

1 2w

x

y

z

with relations

w3, wxyw2, z3.

These relations yield the following trie, with the failure nodes indicated by dotted arrows.

◦

e1 e2

w z

ww wx zz

www wxy zzz

wxyw

wxyww

e1 e2

w z

w
x z

w y z

w

w

6 MARKUS PERLING

The same procedure as in the previous example yields the following directed graph that produces precisely
a basis for in the infinite-dimensional quotient algebra Λ:

◦

e1 e2

w z

ww wx zz

wxy

wxyw

e1 e2

w
x

z

y

w x
z

y

x

y

z

y

w

x

x

Example 2.4: Consider again:

1 2w

x

y

z

with relations w2, xy, z2, xzy. The resulting state machine is:

◦

e1 e2

w x z

xz

e1 e2

w
x

y

z

x

z

y

It is cycle free and generates the following paths:

e1, e2, w, wx,wxz, x, xz, z, zy, zyw, zywx, zywxz, zyx, zyxz, y, yw, ywx, ywxz, yx, yxz.

So dimΛ = dim kQ/⟨w2, xy, z2, xzy⟩ = 20.

3. The algorithm

We are given a quiver Q, the path algebra kQ, and a reduced Gröbner basis G = {g1, . . . , gt} for some
ideal I in kQ. We will mostly use the terms path, monomial, and word interchangeably. However, as in
the previous section, we assume that prefixes are normalized with respect to leading idempotents. That
is, given a path p, we consider the associated prefix to be of the form source(p)p′, where p′ does not
contain any symbol corresponding to a node in Q, and p = p′ as monomials in kQ. We will implicitly
assume that any subword of a given p will be normalized like this when considered as a prefix.

Following the outline given in the introduction, we start with describing the trie data structure TG .
We will deviate a little from the list-based implementation in QPA and for simplicity we will represent
the trie using dict data structures, as are available in the standard libraries of many programming
languages such as Julia or Python.

Thus TG consists of key-value pairs, where the keys are the prefixes in TG . For a given prefix p,
its associated value TG [p] is a (possibly empty) set {a1, . . . , ak} such that pa1, . . . , pak are precisely all
prefixes in TG that extend p by one letter.

In parallel, using another dict dict FG , we keep track of failure nodes (or suffix links, respectively).
For some idempotent normalized prefix p of length > 1, FG [p] returns the idempotent normalized prefix

THE GREEN-SØLBERG ALGORITHM 7

source(q)q in TG where q represents longest proper suffix of p that is available in TG . We use the
conventions that ∅ always is a proper suffix, and for an idempotent normalized prefix source(p)p, p is not
a proper suffix.

In the algorithms described below, we use the following helper functions:

• head(p) returns the first symbol in a word p.
• tail(p) returns the remaining word of p after the first symbol.
• suffix(p, k) returns the suffix of the word p of length k.
• append(p, a) for a prefix p and an arrow a returns the word pa.
• We do not use any prepend function, i.e. for the concatination of an idempotent e symbol and

a path p we will write ep.

We initialize TG such that TG [∅] := {ei | i ∈ Q0}. Algorithm 1 shows the trie insertion procedure
insert that is applied to each monomial lm(gi).

Algorithm 1 Insert path into TG

Input: An idempotent normalized path p in Q and TG .
1: procedure insert(p, TG)
2: prefix := head(p)

3: while length(p) > 0 do
4: if prefix /∈ keys(TG) then
5: TG [prefix] := ∅

6: p := tail(p)

7: if length(p) > 0 then
8: arrow := head(p)

9: if arrow /∈ TG [prefix] then
10: TG [prefix] := TG [prefix] ∪ {arrow}

11: prefix := append(prefix , arrow)

After all lm(gi) have been inserted into TG , we initialize FG as an empty dict. Then, doing a
breadth-first traversal, we call

createFailureNode(p, TG , FG)

(see Algorithm 2) for each prefix p in TG .
Next, Algorithm 3 creates the state machine SG from TG and FG . We choose to represent SG as a

dict whose keys are prefixes and values are sets of pairs (symbol, target), where symbol ∈ Q0 ∪Q1 and
target is a prefix. For sake of exposition, we have earlier denoted the starting node in SG by ◦, which we
should consider as an alias for ∅, i.e. let ◦ := ∅.

8 MARKUS PERLING

Algorithm 2 Create failure node

Input: An idempotent normalized path p in the quiver Q, a complete trie TG for G, and FG .
1: procedure createFailureNode(p, TG , FG)
2: if length(p) > 1 then
3: FG [p] := target(p) ▷ Default when no proper suffix in TG

4: suffixLength := 1

5: while suffixLength < length(p)− 1 do ▷ Proper suffix after idempotent absorption
6: sfx := suffix(p, suffixLength)
7: sfx := source(sfx) sfx ▷ Idempotent normalization

8: if sfx ∈ keys(TG) then
9: FG [p] := sfx

10: suffixLength := suffixLength+1

Algorithm 3 Create state machine SG from TG and FG

Input: A trie TG and its failure nodes FG .
Output: A state machine SG
1: function createStateMachine(TG , FG)
2: SG := an empty dict.

3: for p ∈ keys(TG) \ {∅} do ▷ Initialize nodes of SG
4: SG [p] := ∅

5: SG [∅] := {(ei, ei) | ei ∈ Q0} ▷ Set successors of start node

6: for ei ∈ Q0 do ▷ Special initialization procedure for top level nodes.
7: for each arrow a in Q1 with source a = ei do
8: if eia ∈ keys(TG) then
9: SG [ei] := SG [ei] ∪ {(a, eia)}

10: else
11: SG [ei] := SG [ei] ∪ {(a, target(a))}

12: trieDepth := max{length(p) | p ∈ keys(TG)}

13: for i = 2 to trieDepth do ▷ This is a very naive breadth-first implementation - improve at will.
14: for p ∈ keys(SG) do
15: if length(p) = i then
16: for a ∈ Q1 with source(a) = target(p) do
17: if a ∈ TG [p] then
18: SG [p] := SG [p] ∪ {(a, append(p, a))}
19: else
20: SG [p] := SG [p] ∪ {(a, append(FG [p], a))}

21: return SG

Note that by construction in Algorithm 3, the nodes of TG are a subset of those of SG . The latter
contains all prefix nodes of TG and additionally all ei that are not the source of any lm(gi). We call a
node in SG a leaf node if it is a leaf node in TG . The following summarizes the most important properties
of SG :

THE GREEN-SØLBERG ALGORITHM 9

Proposition 3.1: (i) The words generated by the state machine SG returned by Algorithm 3 are in
one-to-one correspondence with the monomials in kQ.

(ii) For any monomial in kQ that is divisible by some lm(gi), the corresponding word in the state
machine SG passes through a leaf node.

(iii) Conversely, if a monomial is not divisible by any lm(gi), then corresponding word in the state
machine SG does not pass through a leaf node.

Proof. (i) We refer to line numbers of Algorithm 3. By line 5, we see that SG generates all idempotents.
Also, these are the only arrows labelled by the ei, hence the assertion is true for monomials ei. Now, in
the loop of lines 6 and 13, for any prefix p (including the ei), the node in SG labelled p has the same
number of outgoing arrows as the node target p in Q0, with the same labels. It follows that any monomial
in kQ can be represented by a unique word of SG . So the assertion follows.

(ii) Let p be any monomial that factorizes as alm(gj)b for some j, where without loss of generality
assume that a is not divisible by any lm(gi). If the stop node of a in SG is source(gj) then p will pass
through the leaf node of lm(gj) and the assertion holds. Otherwise, denote q the prefix that represents
the stop node of a. Moreover, denote lm(gij = c1 · · · ck the arrow decomposition of lm(gj). Then the
target of c1 starting at q is a prefix that ends in c1. We claim that for any 1 ≤ l ≤ k the stop node of
ac1 · · · cl corresponds to a prefix that has a suffix c1 · · · cl. Then for l = k we conclude by the reducedness
of G that the stop node of alm(gi) coincides with that of lm(gi), hence is a leaf node.

We have proven the claim for l = 1. By induction, for 1 ≤ l < k, assume that the stop node of the
word ac1 · · · cl is some qlc1 · · · cl. Then the stop node of ac1 · · · cl+1 is of the form q′cl+1, where q′ is the
longest proper suffix of qlc1 · · · cl that is a prefix in TG . By the induction assumption, the set of prefixes
that contain a suffix of qlc1 · · · cl contains the prefix c1 · · · cl (which is a prefix of lm(gi) and therefore in
TG). Hence q′cl+1 indeed must be of the form ql+1c1 · · · cl+1 and the assertion follows.

(iii) Let p be a monomial that is not divisible by any lm(gi). First we show that if p shares a prefix
with any of the lm(gi), then without loss of generality we can replace p by a proper suffix. Denote by q
the longest prefix of p TG . As p is not divisible by any lm(gi), q does not coincide with one of the lm(gi),
hence q does not pass through any leaf node. If we write p = qaq′, where a is a single arrow or one of the
ei, and q′ is possibly empty, then the state of qa in SG is represented by a path ra, where r is a proper
suffix of q. Therefore, if p passes through a leaf node, then so does p′ := raq′. So we can replace p by
p′. Repeating this replacement a finite number of times, we obtain a polynomial q that share no prefix
with any of the lm(gi) and, if p passes throught a leafe node, then so does q.

Next, we show that without loss of generality we can assume that p does share a prefix with one of the
lm(gi). Denote p = p′p′′, where q′′ is the longest (possibly empty) proper suffix such that target(p′)p′′

shares a prefix with one of the lm(gi). Then p′ cannot pass through a leaf node. Hence, if p passes
through a leaf node, then so does p′′. So we can replace p by p′′.

Each of these replacements produces each time a shorter path and can always be applied to any
nonempty path p whose corresponding monomial is not divisible by any of the lm(gi). This implies that
without loss of generality we can assume that the path p is empty. Hence, p cannot pass through a leaf
node. □

Now, as a final step we want to apply these results to understand the quotient ring Λ. By 3.1(i), the
words generated by SG naturally be identified with the basis of kQ as a k-vector space. By Lemma 1.2
and 3.1(ii) & (iii), the monomials in ⟨NonTip(I)⟩k are one-to-one with words of SG that do not factor
through a leaf node of SG . So, in order to only generate these monomials, we can use a smaller state
machine with the leaf nodes removed.

Definition: We construct the truncated state machine SG,tr from SG by removing its leaf nodes and
arrows starting or ending at leaf nodes.

We now obtain the following theorem:

Theorem 3.2: Let Q be a finite quiver, kQ its path algebra over a field k, I an ideal in kQ, G a reduced
Gröbner basis of I, and SG,tr the truncated state machine obtained from G. Then the words generated by
SG,tr can naturally be identified with a monomial basis of kQ/I. Moreover, kQ/I is finite-dimensional
if and only if SG,tr has no directed cycles.

10 MARKUS PERLING

Remark 3.3: Note that from the assumption that G is reduced, it follows that a leaf node can never
be a failure node in FG . Therefore, instead of first adding leaf nodes to SG and then remove them to get
SG,tr, it is equivalent and more efficient to skip the creation of leaf nodes in Algorithm 3. This can be
achieved by replacing line 6 with

if ei ∈ Q0 and ei is not a leaf in TG then

. line 13 with

for i = 2 to trieDepth−1 do

. and line 15 with

if length(p) = i and p is not a leaf in TG then

The output of Algorithm 3 will then be SG,tr.

4. Some remarks on the use of tries

The use of tries as outlined in Section 3 relies on incorporating idempotent normalization, which in
turn requires a somewhat custom tailored trie implementation. In practice, it may be preferable to use a
general purpose trie implementation. Let us make the assumption that there is no idempotent ei among
the lm(g1), . . . , lm(gt). Then we can produce a trie T ′

G and failure nodes F ′
G using text book functions

insert and createFailureNode for trie creation. Assuming that these functions operate on the same
dict data structures as ours, the outcome will be:

• T ′
G [∅] = {head(lm(gi)) | gi ∈ G}, keys(T ′

G) does not contain any ei and all other keys of T ′
G

coincide with that of TG with absorbed idempotents.
• For any nonempty path p in T ′

G , we have either F ′
G [p] = ∅ if FG [source(p)p] = ei for some i, or

otherwise F ′
G [p] = the idempotent absorption of FG [source(p)p].

With this outcome, to call Algorithm 3 with T ′
G and F ′

G , we can modify it as follows. We replace line 4
with:

SG [source(p)p] := ∅
and lines 13 to 20 with:

for i = 1 to trieDepth do
for p ∈ keys(SG) do

if length(p) = i+ 1 then
for a ∈ Q1 with source(a) = target(p) do

if a ∈ TG [p] then
SG [p] := SG [p] ∪ {(a, append(p, a))}

else
f := FG [p]

if f = ∅ then
f := target(p)

else
f := source(f)f

SG [p] := SG [p] ∪ {(a, append(f, a))}
The optimizations mentioned in Remark 3.3 can be incorporated in the obvious way.

References

[AC75] A. Aho and M. J. Corasick, Efficient string matching: an aid to bibliographic search, Communicatinos of the

ACM 18 (1975), no. 6, 333–340.
[FFG93] D. R. Farkas, C. D. Feustel, and E. L. Green, Synergy in the theories of Gröbner bases and path algebras, Can.

J. Math. 45 (1993), no. 4, 727–739.

[Gre00] E. L. Green, Multiplicative bases, Gröbner bases, and right Gröbner bases, J. Symb. Comp. 29 (2000), 601–623.
[Gre99] , Noncommutative Gröbner bases, and projective resolutions, Computational methods for representations

of groups and algebras, 1999, pp. 29–60.
[GS+24] E. L. Green, O. Sølberg, et al., GAP Package QPA, 2024. Version 1.35, https://www.gap-system.org/Packages/

qpa.html.

https://www.gap-system.org/Packages/qpa.html
https://www.gap-system.org/Packages/qpa.html

THE GREEN-SØLBERG ALGORITHM 11

[Joh75] D. B. Johnson, Finding all the elementary circuits of a directed graph, SIAM J. Comput. 4 (1975), no. 1, 77–84.

[Kel97] B. Keller, Algorithms and Orders for Finding Noncommutative Gröbner Bases, Ph.D. Thesis, Virginia Polytechnic
Institute and State University, 1997.

[Slo] N. J. A Sloane, The Online Encyclopedia of Integer Sequences. http://oeis.org.

http://oeis.org

	1. Introduction
	2. Examples of quivers, tries, and state machines
	3. The algorithm
	4. Some remarks on the use of tries
	References

