Universität Bielefeld

Funktionentheorie II

Sommersemester 2022

Übungsblatt 9

(33) Zeigen Sie, dass $p(t) = (\cos(t), \sin(t))$ als Abbildung die universelle Überlagerung von \mathbb{S}^1 in der Form von \mathbb{R} definiert.

(2 Punkte)

(34) Beweisen Sie den Fixpunktsatz für die Kompositionsquadrate ganzer Funktionen.

Hinweis: Betrachten Sie
$$g(z) = \frac{f(f(z)) - z}{f(z) - z}$$
.

(3 Punkte)

- (35) Sei \mathcal{F} eine Familie von Funktionen, die auf einem gegebenen Gebiet G holomorph sind. Zeigen Sie:
 - (a) Ist \mathcal{F} auf G beschränkt, so ist \mathcal{F} lokal beschränkt, aber die Umkehrung gilt i.A. nicht.
 - (b) \mathcal{F} ist lokal beschränkt genau dann, wenn \mathcal{F} auf beliebigen kompakten Teilmengen von G beschränkt ist.

(2 Punkte)

(36) Komplettieren Sie die Beweisskizze für den Satz von Montel für Folgen.

(3 Punkte)

(37) Beweisen Sie das Konvergenzkriterium von Montel:

Eine in G lokal beschränkte Folge $(f_n)_{n\in\mathbb{N}}$ holomorpher Funktionen konvergiert auf G kompakt gegen eine holomorphe Funktion f, wenn jede auf G kompakt konvergente Teilfolge von (f_n) gegen f konvergiert.

(2 Punkte)