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Generic representation theory

Where does the name generic come from?

Consider the category
F = Fun(mod - K,Mod - K), where K is a finite field of
characteristic p with q = ps elements. F (V ) becomes a
K[GL(V )]-module for all vector spaces V . So every functor F
gives generically rise to representations of the general linear groups
over K.
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Partial Results

General Goal

Want to prove the Artinian Conjecture.

Or at least get closer to it.
Conjecture (L. Schwartz) : The representable functors, so the
projectives of finite type, in the category F are noetherian.
Dually: The corresponding injectives are artinian.
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Partial Results

General Goal

Equivalently: Every finitely generated object in F has a resulution
by projectives of finite type.

So:

If F ∈ F s.t. ∃φ :
m⊕

i=1

(Vi ,−) � F → 0, with dim Vi <∞∀i ,

then

∃m ∈ N and Wj ∈ mod - K, s.t.ψ :
m⊕

j=1

(Wj ,−) � Ker(φ)→ 0
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Partial Results

Schwartz showed this resolution to exist if the functor F has only
finitely many simple composition factors

or when the difference
endo-functor ∇ (∇(F ) is defined via the split exact sequence
0→ F → ∆F → ∇F → 0, with ∆(F )(V ) = F (V ⊕ Fq)) returns a
projective after finitely many iterations.
In the case p = q = 2 Powell proved the conjecture to be true for
factor modules of (F2,−) and (F2

2,−)
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Current Approach

First try to prove that the projectives of finite type are coherent.

That is: If we got a finitely presented functor, then it admits a
resulution by projectives of finite type.

Given
m⊕

j=1

(Wj ,−)
([f ],−)−−−−→

n⊕
i=1

(Vi ,−) � F → 0,

then Ker([f ],−) is again finitely generated.
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Current Approach

([f ],−) comes from [f ] :
⊕n

i=1 Vi →
⊕m

j=1 Wj .

So, we are on the
search for a cokernel. But a weak cokernel will do already.
A weak cokernel has basically the same properties as a cokernel, it
just does not need to be unique.
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Why [f ]

F = Fun(mod - K,Mod - K)∼= Add(K[mod - K],Mod - K)
The Objects in K[mod - K] are the same as in mod - K but the
morphism spaces are defined as follows:

HomK[mod - K](V ,W ) = K[HomK(V ,W )] =

{∑
fin

[fi ]

∣∣∣∣∣ fi : V →W

}

This means in terms of dimension for K = Fq:
dim HomK[mod - K](Fs

q,Ft
q) = qst .
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Algorithm

We first assume n = 1 in
⊕n

i=1(Vi ,−) for reasons of simplicity.

1 Fix the input-data: p, q,Wj ∀ j ,V , [f ] and a testspace U.

2 Translate ([f ],U) in matrix form and calculate its kernel.

3 Decompose the kernel into direct summands if possible.

4 Calculate the dimension that is needed to provide projective
covering of the kernel.

5 Calculate the space of all ([g ],U), s.t. ([f ],U) ◦ ([g ],U) = 0.

6 Then try to find one with dim Im([g ],U) = dim Ker([f ],U).

7 If that fails, try other decomposition of the kernel or other
dimension of the cover.
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Examples

It is a first easy result from the algorithm that the weak cokernel of

a map [f ], in the case (Fm
q ,Ft

q)
([f ],Ft

q)
−−−−→ (Fn

q,Ft
q), where [f ] is just a

basis vector and the rank of the matrix f is r

, is given by (Fm
q ,Ft

q)
and a map given by the sum [g1] + (p − 1)[g2]. With [g1] a map of
full rank and [g2] a map of rank n − r .For sums of basis vektors or
direct sums of projectives, this is not as easy.
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Problems

1 The instances get very big. Namely qst-dimensional, for every
projective.

2 This leads to very small test-examples.

3 The map [g ] needs to be independent of the testspace U.

Solution for the last problem maybe in combinatorics. To reduce
memory and time consumption, look at the fibers of

HomF ((V ,−), (W ,−)) ∼= HomK[mod - K](V ,W ) � HomK(V ,W ).
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The End

Thank you for you attention!
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