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Introduction: Generic Representation

Theory

Where does the name generic come from? Consider the category
F = Fun(mod -K,Mod -K), where K is a finite field of characteristic
p with q = ps elements. F (V ) becomes a K[GL(V )]-module for all
vector spaces V . So every functor gives generically rise to repre-
sentations of the general linear groups over K.
Remark: We will often abbreviate Hom(−,−) by just (−,−).

Structure of the simples and projectives

As described in [3] the indecomposable projectives as well as the
simple functors of the category F are parameterized by q-restricted
weights. These are finite sequences of non-negative integers less
than q. This is analogue to the construction of simple Fq[Mn(Fq)]-
modules Mλ for a fixed n. A simple functor Fλ is the unique top of
the projective Pλ defined via Fλ(F

n
q ) = Mλ where n is s.t. λ(m) = 0

if m > n (this n will be noted as n(λ)). A projective (Fq,−) has a
complete splitting

⊕

λ dλPλ with dλ = dimMλ.

The Artinian Conjecture

Want to prove the Artinian Conjecture. Or at least get closer to it.
Conjecture (L. Schwartz) : The representable functors, so the projectives of finite type, in the category F are noetherian. Dually: The
corresponding injectives are artinian.
Such a projective will look like this:

n
⊕

i=1

(Vi,−), Vi ∈ mod -K

Where the Vi need not be distinct.
The conjecture has several equivalent formulations. The one that is most practical to do calculations with is the following: Every finitely
generated object in F has a resulution by projectives of finite type. So:

If F ∈ F s.t. ∃φ :

n
⊕

i=1

(Vi,−) ։ F → 0, with dimVi <∞∀i,

then

∃m ∈ N and Wj ∈ mod -K, s.t.ψ :

m
⊕

j=1

(Wj,−) ։ Ker(φ) → 0

A First Approach

First try to prove that the projectives of finite type are coherent. That is: If we got a finitely presented functor, then it admits a resulution
by projectives of finite type.

Given
m
⊕

j=1

(Wj,−)
([f ],−)
−−−−→

n
⊕

i=1

(Vi,−) ։ F → 0,

then Ker([f ],−) is again finitely generated.

([f ],−) comes from [f ] :
⊕n

i=1 Vi →
⊕m

j=1Wj. So, we are on the search for a cokernel. But a weak cokernel will do already. A weak
cokernel has basically the same properties as a cokernel, it just does not need to be unique.
Now why is the homomorphism f in those brackets? We have:

F = Fun(mod -K,Mod -K) ∼= Add(K[mod -K],Mod -K)

The Objects in K[mod -K] are the same as in mod -K but the morphism spaces are defined as follows:

HomK[mod -K](V,W ) = K[HomK(V,W )] =







∑

fin

[fi]

∣

∣

∣

∣
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This means in terms of dimension for K = Fq: dimHomK[mod -K](F
s
q,F

t
q) = qst.

Algorithm

We first assume n = 1 in
⊕n

i=1(Vi,−) for reasons of simplicity.

1. Fix the input-data: p, q,Wj ∀ j, V, [f ] and a testspace U .

2. Translate ([f ], U) in matrix form and calculate its kernel.

3. Decompose the kernel into direct summands if possible.

4. Calculate the dimension that is needed to provide projective covering of the kernel.

5. Calculate the space of all ([g], U), s.t. ([f ], U) ◦ ([g], U) = 0.

6. Then try to find one with dim Im([g], U) = dimKer([f ], U).

7. If that fails, try other decomposition of the kernel or other dimension of the cover.

Problems

1. The instances get very big. Namely qst-dimensional, for every projective.

2. This leads to very small test-examples.

3. The map [g] needs to be independent of the testspace U .

4. The algorithm does not need to terminate since it is not clear if a weak cokernel exits.

Examples

It is a first easy result from the algorithm that the weak cokernel of a map [f ], in the case (Fmq ,F
t
q)

([f ],Ftq)
−−−−→ (Fnq ,F

t
q), where [f ] is just a basis

vector and the rank of the matrix f is r , is given by (Fmq ,F
t
q) and a map given by the sum [g1] + (p− 1)[g2]. With [g1] a map of full rank and

[g2] a map of rank n− r. For sums of basis vektors or direct sums of projectives, this is not as easy.

Partial Results

Schwartz showed this resolution to exist if the functor F has only
finitely many simple composition factors or when the difference endo-
functor ∇ (∇(F ) is defined via the split exact sequence 0 → F →

∆F → ∇F → 0, with ∆(F )(V ) = F (V ⊕Fq)) returns a projective after
finitely many iterations [5].
(Fq,−) known to be noetherian for all q [1].
In the case p = q = 2 Powell proved the conjecture to be true for
factor modules of (F22,−) [2].

Resolutions for simple Functors

Since it is not clear whether a weak cokernel exists for a given rep-
resentable functor F we turn to simple functors first. The work of
Auslander [6] gives us not only that a resolution of a simple functor
always exists, but also how it looks like: F is simple then

0 → (C,−) → (B,−) → (A,−) → F → 0

is a minimal projective resolution if

0 → A→ B → C → 0

is an almost split or Auslander-Reiten sequence in the underlying
category.
In our case this means we get a sequence

0 → Pβ →
⊕

ν

Pν → Pµ → Fµ → 0.

Given this we can use homological algebra to determine the exten-
sion groups between two given simple functors. We get

Ext1F(Fµ, Fλ)
∼= HomF(ΩFµ, Fλ)

The dimension of the latter is just the number of copies of Fλ in
top(ΩFµ). The structure of the projectives allows us to simplify even
further

HomF(ΩFµ, Fλ)
∼= HomF

(

⊕

ν

Fν, Fλ

)

Our problem with this is now that the decomposition of a projective
functor (Fnq ,−) is not that canonical that we can just plug it in like
that. We will need to work from the smallest Functor (Fnq ,−) thats top

contains Fµ. By definition this is (F
n(µ)
q ,−). Using the properties of

AR-sequences, the second projective in the projective presentation
of Fµ will be (F

n(µ)+1
q ,−).

So we will need to find a map [f ] : F
n(µ)
q → F

n(µ)+1
q s.t. the cokernel

of ([f ],−) is Fµ. Once we got that we can use the algorithm for
calculation of the weak cokernels to get the next projective in this
resolution. A result from [4] shows that for a simple functor F the
dimension of F (Fkq ) is always a polynomial in k. This gives us that
the dimension of the kernel of ([f ],Fkq ) will be “close to a polynomial
function“. So basic combinatorics gives that we will only need to look
at a finite number of test spaces F

k
q to get indeed a weak cokernel

that will hold for all Fkq .
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