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Introduction: Generic Representation The Artinian Conjecture
Theory Want to prove the Artinian Conjecture. Or at least get closer to it.

Conjecture (L. Schwartz) : The representable functors, so the projectives of finite type, in the category F are noetherian. Dually: The
corresponding injectives are artinian.

Such a projective will look like this:

Where does the name generic come from? Consider the category
F = Fun(mod- K, Mod-K), where K is a finite field of characteristic

p with ¢ = p® elements. F (V) becomes a K|GL(V')]-module for all n

vector spaces V. So every functor gives generically rise to repre- EB(V@" —), V: € mod-K
sentations of the general linear groups over K. i—1

Remark: We will often abbreviate Hom(—, —) by just (—, —). Where the V; need not be distinct.

The conjecture has several equivalent formulations. The one that is most practical to do calculations with is the following: Every finitely

. . . enerated object in F has a resulution by projectives of finite type. So:
Structure of the simples and projectives : J Y Pro] yp

n
As described in [3] the indecomposable projectives as well as the If i e Fst dg: EB(V@', —) = F — 0, with dim V; < ooV,
simple functors of the category F are parameterized by ¢-restricted =1
weights. These are finite sequences of non-negative integers less then
than ¢. This is analogue to the construction of simple F,|M;,(F,)]- m
modules M, for a fixed n. A simple functor F) is the unique top of Im € Nand W; € mod-K,s.t.¢) @(W]a —) — Ker(¢) — 0
the projective P, defined via F,(F;) = M) where n is s.t. A(m) =0 j=1
if m > n (this n will be noted as n(\)). A projective (F,,—) has a
complete splitting &, d) Py, with d) = dim M.
A First Approach Partial Results
First try to prove that the projectives of finite type are coherent. That is: If we got a finitely presented functor, then it admits a resulution Schwartz showed this resolution to exist if the functor /' has only
by projectives of finite type. finitely many simple composition factors or when the difference endo-
_ ([£],-) functor V (V(F') is defined via the split exact sequence 0 — F —
Given EB(W]‘» -) 5 @(Vi —) > F =0, AF — VF — 0, with A(F)(V) = F(V @F,)) returns a projective after
j=1 i=1

finitely many iterations [5].
(Fq, —) known to be noetherian for all ¢ [1].
In the case p = ¢ = 2 Powell proved the conjecture to be true for

then K ,—) Is again finitely generated.
rllf], ) 1s ag Y9 factor modules of (F2, —) [2].

([f], =) comes from [f] : B;; Vi — @), W;. So, we are on the search for a cokernel. But a weak cokernel will do already. A weak
cokernel has basically the same properties as a cokernel, it just does not need to be unique.
Now why is the homomorphism f in those brackets? We have: Resolutions for Simple Functors

F = Fun(mod- K, Mod - K) = Add(K|mod - K], Mod - K) Since it is not clear whether a weak cokernel exists for a given rep-

resentable functor F' we turn to simple functors first. The work of

The Objects in K[mod-K]| are the same as in mod - K but the morphism spaces are defined as follows: . . .
Auslander [6] gives us not only that a resolution of a simple functor

( always exists, but also how it looks like: F'is simple then
H V., W) =KH V.W)| = NWh: V=W
lmod-K (V- W) = Kltlomg(V, W)} = « %W J 0= (C.=) = (B,=) = (4, =) = F =0
\
This means in terms of dimension for K = F: dim Homg, 4 g)(Fg, Fy) = ¢ 's & minimal projective resolution if
0—+A—=B—-=>0—=0
Algorithm IS an almost split or Auslander-Reiten sequence in the underlying
category.
We first assume n = 1 in @, (V;, —) for reasons of simplicity. In our case this means we get a sequence
1. Fix the input-data: p,q,W;V j,V,|f] and a testspace U. 0— Py — EBPV Py Fy 0.
2. Translate ([f], U) in matrix form and calculate its kernel. y

3. Decompose the kernel into direct summands if possible. Given this we can use homological algebra to determine the exten-

4. Calculate the dimension that is needed to provide projective covering of the kernel. sion groups between two given simple functors. We get
5. Calculate the space of all ([g],U), s.t. ([f],U) o (lg],U) = 0.

Extl(F, Fy) = Homz(QF),, F
6. Then try to find one with dim Im([g], U) = dim Ker([f], U). trp(Eps ) omF($2F, Fy)

7. If that fails, try other decomposition of the kernel or other dimension of the cover. The dimension of the latter is just the number of copies of F) In
top(€2£7,). The structure of the projectives allows us to simplify even
further

Problems

Hom 7(QF,, Fy) = Hom g (@ E,, FA>
1%

1. The instances get very big. Namely ¢5t-dimensional, for every projective. . o . o
J Yy P9 Y4 Y prol Our problem with this is now that the decomposition of a projective

2. This leads to very small test-examples. functor (F, —) is not that canonical that we can just plug it in like
3. The map [¢] needs to be independent of the testspace U. that. We will need to work from the smallest Functor (F;/, —) thats top
4. The algorithm does not need to terminate since it is not clear If a weak cokernel exits. contains Fj,. By definition this is (Fg‘(“), —). Using the properties of

AR-sequences, the second projective in the projective presentation
of F, will be (FiW ™ )

Examples So we will need to find a map [f] : IE‘Z<“) — FZWH s.t. the cokernel
o | | (1] F) o | of (|f],—) is F,. Once we got that we can use the algorithm for
It is a first easy result from the algorithm that the weak cokernel of a map |f], in the case (IB‘}]”,IF’E]) = (FQ,F’;), where [f] is just a basis calculation of the weak cokernels to get the next projective in this
vector and the rank of the matrix f is r , is given by (F", F}) and a map given by the sum [g¢;] + (p — 1)[g2]. With [g;] a map of full rank and resolution. A result from [4] shows that for a simple functor F' the
lgo] @ map of rank n — r. For sums of basis vektors or direct sums of projectives, this is not as easy. dimension of F(IF’;) IS always a polynomial in k. This gives us that
the dimension of the kernel of ([f],IF’g) will be “close to a polynomial
function®. So basic combinatorics gives that we will only need to look
at a finite number of test spaces II:T"; to get indeed a weak cokernel

that will hold for all F?.
References [2] G. Powell; The Artinian Conjecture for 792; Journal of Pure and [S]L. Schwartz; Unstable modules over the Steenrod algebra and
Applied Algebra 128 Sullivan’s fixed point conjecture; Chicago Lecture Notes in Math-

[3] N. Kuhn; Generic Representations of the Finite General Linear matics; Univ. Chicago Press 1994

[1] G. Powell; The Structure of indecomposable Injectives in generic Groups and the Steenrod Algebra: II; K-Theory 83
Representation Theory; Transactions of the American Mathemat- 4] N, Kuhn: Generic representation the’ory of finite fields: A survey [6]1M. Auslander; Functors and morphisms determined by objects;
ical Society 350 of basic structure; K-Theory 83 Lecture Notes in Pure Appl. Math. 37






