Matrix factorisations

Julian Külshammer

University of Stuttgart, Germany

28.08.2013

Julian Külshammeı

University of Stuttgart, Germany

Outline

Main Theorem (Eisenbud)

Let R = S/(f) be a hypersurface. Then

 $\underline{\mathsf{MCM}}(R) \sim \underline{\mathsf{MF}}_{S}(f)$

Survey of the talk:

- 1 Define hypersurfaces. Explain, why they fit in our setting.
- Define Matrix factorisations. Prove, that they form a Frobenius category.
- Or Prove the equivalence.

Regular local rings

Definition

A Noetherian local ring S is called **regular** if

$$\mathsf{Kdim}\,S=\mathsf{gldim}\,S<\infty.$$

Example

•
$$k[X_1, ..., X_n]_{(X_1,...,X_n)}$$

• $k[[X_1, ..., X_n]]$

Lemma

A regular local ring S is Gorenstein.

Proof.

$$\mathsf{gldim}\, S < \infty \Rightarrow \mathsf{Ext}^i_{\mathcal{S}}(k,S) = 0 \,\, \mathsf{for}\,\, i \gg 0 \Rightarrow \mathsf{indim}\, S < \infty$$

Julian Külshamme

Matrix factorisations

University of Stuttgart, Germany

Quotients of Gorenstein rings

Let S be regular local. Let $0 \neq f \in S$ be a non-unit.

Lemma

A regular local ring is a domain.

Proposition

Let S be a Noetherian local ring. Let $f \in S$ be a non-unit, non-zero divisor. Then

$$\operatorname{indim}_{S/(f)} S/(f) = \operatorname{indim}_{S} S - 1.$$

Corollary

S Gorenstein
$$\Rightarrow$$
 S/(f) Gorenstein.

Julian Külshammei

Hypersurfaces

Definition

Let S be a regular local ring and $0 \neq f \in S$ be a non-unit. Then R := S/(f) is called a **hypersurface**.

Main Theorem (Eisenbud)

Let R = S/(f) be a hypersurface. Then

 $\underline{\mathsf{MCM}}(R) \sim \underline{\mathsf{MF}}_{\mathcal{S}}(f)$

Julian Külshammeı

Matrix factorisations

Definition

Let S be a ring, $f \in S$. A matrix factorisation of f is a pair of maps of free S-modules

$$\mathsf{F} \stackrel{\varphi}{\longrightarrow} \mathsf{G} \stackrel{\psi}{\longrightarrow} \mathsf{F}$$

such that

Julian Külshammer

University of Stuttgart, Germany

Examples

Example

Let $S = \mathbb{C}[[x, y]]$, $f = y^2 - x^2$. Then a matrix factorisation is given by

$$S^{2} \xrightarrow{\begin{pmatrix} y & x \\ -x & -y \end{pmatrix}} S^{2} \xrightarrow{\begin{pmatrix} y & x \\ -x & -y \end{pmatrix}} S^{2}$$

Example

$$F \xrightarrow{1_F} F \xrightarrow{f \cdot 1_F} F$$

Julian Külshammeı

Matrix factorisations

University of Stuttgart, Germany

Morphisms of matrix factorisations

Definition

A morphism between two matrix factorisations of f is given by:

Composition of two morphisms is given componentwise. Denote the category of matrix factorisations by $MF_S(f)$.

Julian Külshammer

Additive Categories

Recall

A category ${\mathcal A}$ is called ${\textbf additive}$ if

- ▶ A has a zero object.
- Every Hom-Set is an abelian group and composition is bilinear.
- There exists a coproduct of every two objects.

Julian Külshammer

Additive Categories

Proposition

The category $MF_S(f)$ is **additive**:

 $\blacktriangleright \mathcal{A}$ has a zero object.

•
$$0 \longrightarrow 0 \longrightarrow 0$$
 is a zero object.

 Every Hom-Set is an abelian group and composition is bilinear.

•
$$(\alpha,\beta) + (\alpha',\beta') = (\alpha + \alpha',\beta + \beta').$$

There exists a coproduct of every two objects.

•
$$(S_0 \xrightarrow{\varphi_S} S_1 \xrightarrow{\psi_S} S_0) \oplus (T_0 \xrightarrow{\varphi_T} T_1 \xrightarrow{\psi_T} T_0)$$

$$:= S_0 \oplus T_0 \xrightarrow{\begin{pmatrix} \varphi_S & 0 \\ 0 & \varphi_T \end{pmatrix}} S_1 \oplus T_1 \xrightarrow{\begin{pmatrix} \psi_S & 0 \\ 0 & \psi_T \end{pmatrix}} S_0 \oplus T_0$$

Julian Külshammer

Important Lemmas

Lemma

Let $(\varphi, \psi) \in MF_{\mathcal{S}}(f)$. Then φ is a monomorphism.

Proof.

• Let
$$\varphi(z) = 0$$
.

• Then
$$0 = \psi \varphi(z) = f \cdot z$$
.

Julian Külshammer

Matrix factorisations and exact sequences

Lemma

Let
$$F \xrightarrow{\varphi} G \xrightarrow{\psi} F$$
 be a matrix factorisation. Then

$$\cdots \longrightarrow \overline{\varphi} \longrightarrow \overline{F} \longrightarrow \overline{\varphi} \longrightarrow \overline{G} \longrightarrow \overline{\phi} \longrightarrow \overline{F} \longrightarrow \overline{\varphi} \cdots$$

is exact, where
$$\overline{F} = F/(fF)$$
.

Proof.

$$\blacktriangleright \varphi \psi = f \cdot \mathbf{1}_{\mathcal{G}} \Rightarrow \overline{\varphi} \overline{\psi} = \mathbf{0}$$

• Let
$$\overline{z} \in \ker \overline{\varphi}$$
. Then $\varphi(z) \in fG = \varphi \psi G \Rightarrow z \in \operatorname{Im}(\psi)$.

Julian Külshammer

mathemati physik

Proposition

Up to isomorphism one can assume F = G.

Proof.

Let
$$F \xrightarrow{\varphi} G \xrightarrow{\psi} F$$
 be a matrix factorisation. Then
 $\cdots \xrightarrow{\overline{\varphi}} \overline{F} \xrightarrow{\overline{\varphi}} \overline{G} \xrightarrow{\overline{\psi}} \overline{F} \xrightarrow{\overline{\varphi}} \cdots$

is exact.

Localize at a minimal prime p, you get artinian modules. Thus

$$\ell(\overline{G}_{\mathfrak{p}}) = \ell(\operatorname{\mathsf{Im}} \overline{\psi}_{\mathfrak{p}}) + \ell(\operatorname{\mathsf{ker}} \overline{\psi}_{\mathfrak{p}}) = \ell(\overline{F}_{\mathfrak{p}}).$$

But here

$$\operatorname{rank}(\overline{G}_{\mathfrak{p}}) = \ell(\overline{G}_{\mathfrak{p}})/\ell(R_{\mathfrak{p}}).$$

Julian Külshammei

Proof (continued).

Thus $F \cong G$, say via A. Then the following provides an isomorphism between matrix factorisations:

Julian Külshammer

Exact categories

Recall

An additive category ${\mathcal A}$ with a class of short exact sequences

- $\{ A \longrightarrow B \longrightarrow C \}$ is called **exact** if
 - $\blacktriangleright \quad B \xrightarrow{1_B} B \longrightarrow 0 \quad , \qquad 0 \longrightarrow B \xrightarrow{1_B} B$
 - Composition of admissible monomorphisms is admissible monomorphism
 - Composition of admissible epimorphisms is addmisible epimorphism
 - Pushout of an admissible monomorphism and an arbitrary map yields an admissible monomorphism.
 - Pullback of an admissible epimorphism and an arbitrary map yields an admissible epimorphism.

Exact sequences

Proposition

The category $MF_S(f)$ is an exact category with exact sequences

This means in particular:

admissible epimorphism = all epimorphisms = split epimorphisms admissible monomorphism = split monomorphisms

Julian Külshammer

$MF_{S}(f)$ is exact

Proof.

- Same for the dual situation.
- "Composition of admissible monomorphisms is admissible monomorphism" follows from "Composition of split monomorphisms is split monomorphism"
- Same for dual situation.

$MF_S(f)$ is exact (continued)

Proof (continued).

is the pushout of the "canonical" split map and an arbitrary map μ . That this holds for $MF_S(f)$ as well follows componentwise.

Julian Külshammer

Exact subcategories of abelian categories

Remark (added after the talk, after remarks from R. Buchweitz, M. Kalck and M. Severitt)

- Any exact category can be embedded into an abelian category by an abstract "abelian hull"-construction.
- In the case of MF_S(f) there are several possibilities to embed it into:
 - The abelian category of chain complexes, by mapping (φ, ψ) to $(\ldots, 0, \varphi, 0, \psi, 0, \ldots)$.
 - The category of modules over $S(1 \xrightarrow{\longrightarrow} 2)$.
 - The category of graded modules over the \mathbb{Z}_2 -graded algebra $S[y]/(y^2 = f)$, where |y| = 1.

Projective objects in $MF_S(f)$

Lemma

With respect to the defined exact structure (1, f) is projective.

Proof.

We can assume that $S_0 = S_1 =: S'$.

Have to show every admissible epimorphism to (1, f) splits.

Injective objects in $MF_S(f)$

Lemma

With respect to the defined exact structure (1, f) is injective.

Proof.

Have to show every admissible monomorphism from (1, f) splits.

Note: Every admissible monomorphism splits.

Julian Külshammer

Frobenius categories

Recall

An exact category is called **Frobenius category** if projective and injective objects coincide and the category has enough projectives and injectives.

Proposition

 $MF_S(f)$ is a Frobenius category with prinjective objects $add(1, f) \oplus (f, 1)$.

Julian Külshammer

University of Stuttgart, Germany

$MF_S(f)$ is a Frobenius category

mathematik physik

Proof.

- We have already seen that $(1, f) \oplus (f, 1)$ is prinjective.
- The following diagram shows enough prinjectives:

Julian Külshammer

The Main Theorem again

Theorem

Let R = S/(f) be a hypersurface. Then we have:

 $\mathsf{MF}_{\mathcal{S}}(f)/\operatorname{add}(1,f)\sim\mathsf{CM}(R)$

and

 $\underline{\mathsf{MF}}_{S}(f) \sim \underline{\mathsf{CM}}(R).$

Julian Külshammer

The proof

Proof I: $MF_{\mathcal{S}}(f) / add(1, f) \rightarrow CM(R)$

Let

$$egin{array}{lll} \mathcal{X}: \mathsf{MF}_{\mathcal{S}}(f)/\operatorname{\mathsf{add}}(1,f) & o \mathsf{CM}(R) \ & (arphi,\psi) & \mapsto \operatorname{\mathsf{Coker}} arphi \end{array}$$

This is well-defined:

$$\bullet \quad 0 \longrightarrow F \xrightarrow{\varphi} G \longrightarrow \operatorname{Coker} \varphi \longrightarrow 0$$

$$fF = \varphi \psi F \subseteq \varphi G, \text{ hence } f \underbrace{\operatorname{Coker} \varphi}_{\operatorname{an } R-\operatorname{module}} = 0.$$

- ▶ Coker(1, f) = 0.
- The key lemma before shows: Coker φ has a periodic free *R*-resolution.

Julian Külshammer

The proof (continued)

Recall

R Cohen-Macaulay of dimension *d*. Then for any $n \ge d$:

 $\Omega^n(M) = 0$ or $\Omega^n(M)$ is Cohen-Macaulay.

Proof I (continued).

• Coker $\varphi \cong \Omega^{2n}$ Coker φ is Cohen-Macaulay.

defines the functor on morphisms.

Julian Külshammer

A small amount of commutative algebra

Proposition

Let R = S/(f) be a hypersurface.

 $M \in CM(R) \Rightarrow \operatorname{prdim}_{S} M = 1.$

Proof.

$$\begin{array}{ll} \operatorname{prdim}_{\mathcal{S}} M = \operatorname{Kdim}(\mathcal{S}) - \operatorname{depth}(\mathcal{M}) & \operatorname{Auslander-Buchsbaum formula} \\ & = \operatorname{Kdim}(\mathcal{S}) - \operatorname{Kdim}(\mathcal{R}) & \mathcal{M} \in \operatorname{CM}(\mathcal{R}) \\ & = 1 & \operatorname{Krull's principal ideal theorem} \end{array}$$

Julian Külshammer

The other direction of the proof

Proof II: $CM(R) \rightarrow MF_S(f) / add(1, f)$

Let $M \in CM(R)$, then prdim_S M = 1:

$$0 \to F \stackrel{\varphi}{\to} G \to M \to 0.$$

•
$$fM = 0 \Rightarrow fS_1 \subseteq \varphi S_0.$$

$$\blacktriangleright \quad \forall x \in S_1 \exists ! y \in S_0 \colon fx = \varphi y$$

• Set
$$\psi \colon S_1 \to S_0 \colon x \mapsto y$$
.

 (φ, ψ) gives a matrix factorisation. Define $\mathcal{Y}(M) := (\varphi, \psi)$.

►
$$fx = \varphi y, fx' = \varphi y' \Rightarrow f(x + x') = \varphi(y + y') \Rightarrow \psi(x + x') = y + y'$$

►
$$s \in S \Rightarrow fxs = \varphi(ys) \Rightarrow \psi(xs) = ys.$$

Julian Külshammer

Proof II (continued).

 $M, M' \in CM(R).$

Minimal projective resolutions are unique up to isomorphism.

 \rightsquigarrow Gives a functor $CM(R) \rightarrow MF_S(f)/add(1, f)$.

Equivalence is now obvious. $\mathcal{X}(f, 1) = \operatorname{Coker}(f) = R$, hence $\underline{\mathsf{MF}}_{S}(f) \sim \underline{\mathsf{CM}}(R)$.

Julian Külshammer

Interchanging φ and ψ

Corollary

$$M = \mathcal{X}(\varphi, \psi) \Rightarrow \Omega M = \mathcal{X}(\psi, \varphi).$$

Proof. $\cdots \longrightarrow R_1 \xrightarrow{\overline{\psi}} R_0 \xrightarrow{\overline{\varphi}} R_0 \longrightarrow \cdots$ $0 \longrightarrow \mathcal{X}(\psi, \varphi) \longrightarrow R \longrightarrow \mathcal{X}(\varphi, \psi) \longrightarrow 0$

Julian Külshammeı

Frobenius categories and homotopy

Proposition

The equivalence before can also be written as:

 $H^0(\mathsf{MF}_S(f)) \sim \underline{\mathsf{CM}}(R).$

Proof.

null-homotopic \Leftrightarrow factors through prinjective

with
$$\beta = \varphi' h + k \psi$$
 and $\alpha = \psi' k + h \varphi$.

Julian Külshamme

$\mathsf{Proof} \text{ of homotopy} \Rightarrow \mathsf{factoring}$

Proof (continued)

$$\beta = \varphi' h + k \psi$$
 and $\alpha = \psi' k + h \varphi$.

Julian Külshammer

University of Stuttgart, Germany

Proof of factoring \Rightarrow homotopy

Proof (continued)

 $\alpha = \alpha_2 \alpha_1 + \alpha_2' \alpha_1' \text{ and } \beta = \beta_2 \beta_1 + \beta_2' \beta_1'$

Julian Külshammer

University of Stuttgart, Germany

The end

Proof.

$$\alpha = \alpha_2 \alpha_1 + \alpha'_2 \alpha'_1 \qquad \beta = \beta_2 \beta_1 + \beta'_2 \beta'_1$$
$$\begin{pmatrix} f \alpha_1 \\ \alpha'_1 \end{pmatrix} = \begin{pmatrix} \beta_1 \varphi \\ \beta'_1 \varphi \end{pmatrix} \qquad \begin{pmatrix} \beta_1 \\ \beta'_1 f \end{pmatrix} = \begin{pmatrix} \alpha_1 \psi \\ \alpha'_1 \psi \end{pmatrix}$$
$$(\varphi' \alpha_2, \varphi' \alpha'_2) = (\beta_2 f, \beta'_2) \qquad (\psi' \beta_2, \psi' \beta'_2) = (\alpha_2, \alpha'_2 f)$$

Julian Külshammer