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Outline

Main Theorem (Eisenbud)

Let R = S/(f ) be a hypersurface. Then

MCM(R) ∼ MFS(f )

Survey of the talk:

1 Define hypersurfaces. Explain, why they fit in our setting.

2 Define Matrix factorisations. Prove, that they form a
Frobenius category.

3 Prove the equivalence.
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Regular local rings

Definition

A Noetherian local ring S is called regular if

Kdim S = gldim S <∞.

Example

I k[X1, . . . ,Xn](X1,...,Xn)

I k[[X1, . . . ,Xn]]

Lemma

A regular local ring S is Gorenstein.

Proof.

gldim S <∞⇒ ExtiS(k ,S) = 0 for i � 0⇒ indim S <∞
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Quotients of Gorenstein rings

Let S be regular local. Let 0 6= f ∈ S be a non-unit.

Lemma

A regular local ring is a domain.

Proposition

Let S be a Noetherian local ring. Let f ∈ S be a non-unit,
non-zero divisor. Then

indimS/(f ) S/(f ) = indimS S − 1.

Corollary

S Gorenstein ⇒ S/(f ) Gorenstein.
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Hypersurfaces

Definition

Let S be a regular local ring and 0 6= f ∈ S be a non-unit. Then
R := S/(f ) is called a hypersurface.

Main Theorem (Eisenbud)

Let R = S/(f ) be a hypersurface. Then

MCM(R) ∼ MFS(f )
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Matrix factorisations

Definition

Let S be a ring, f ∈ S . A matrix factorisation of f is a pair of
maps of free S-modules

F G F
ϕ ψ

such that

F G F G
ϕ

f ·1F

ψ

f ·1G

ϕ
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Examples

Example

Let S = C[[x , y ]], f = y2 − x2. Then a matrix factorisation is
given by

S2 S2 S2

 y x

−x −y

 y x

−x −y



Example

F F F
1F f ·1F
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Morphisms of matrix factorisations

Definition

A morphism between two matrix factorisations of f is given by:

F G F

F ′ G ′ F ′

ϕ

α

ψ

β α

ϕ′ ψ′

Composition of two morphisms is given componentwise.Denote the
category of matrix factorisations by MFS(f ).
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Additive Categories

Recall

A category A is called additive if

I A has a zero object.

I Every Hom-Set is an abelian group and composition is bilinear.

I There exists a coproduct of every two objects.
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Additive Categories

Proposition

The category MFS(f ) is additive:
I A has a zero object.

• 0 0 0 is a zero object.

I Every Hom-Set is an abelian group and composition is
bilinear.

• (α, β) + (α′, β′) = (α + α′, β + β′).

I There exists a coproduct of every two objects.

• ( S0 S1 S0
ϕS ψS

) ⊕ ( T0 T1 T0
ϕT ψT

)

:= S0 ⊕ T0 S1 ⊕ T1 S0 ⊕ T0

ϕS 0

0 ϕT

 ψS 0

0 ψT
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Important Lemmas

Lemma

Let (ϕ,ψ) ∈ MFS(f ). Then ϕ is a monomorphism.

Proof.

I Let ϕ(z) = 0.

I Then 0 = ψϕ(z) = f · z .

I Thus z = 0.
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Matrix factorisations and exact sequences

Lemma

Let F G F
ϕ ψ

be a matrix factorisation. Then

· · · F G F · · ·ϕ ϕ ψ ϕ

is exact, where F = F/(fF ).

Proof.

I ϕψ = f · 1G ⇒ ϕψ = 0

I Let z ∈ kerϕ.Then ϕ(z) ∈ fG = ϕψG ⇒ z ∈ Im(ψ).
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Proposition

Up to isomorphism one can assume F = G .

Proof.

Let F G F
ϕ ψ

be a matrix factorisation. Then

· · · F G F · · ·ϕ ϕ ψ ϕ

is exact.
Localize at a minimal prime p, you get artinian modules. Thus

`(G p) = `(Imψp) + `(kerψp) = `(F p).

But here
rank(G p) = `(G p)/`(Rp).
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Proof (continued).

Thus F ∼= G , say via A.Then the following provides an
isomorphism between matrix factorisations:

F G F

F F F

ϕ

1F

ψ

A 1F

Aϕ ψA−1
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Exact categories

Recall

An additive category A with a class of short exact sequences

{ A B C } is called exact if

I B B 0
1B , 0 B B

1B

I Composition of admissible monomorphisms is admissible
monomorphism

I Composition of admissible epimorphisms is addmisible
epimorphism

I Pushout of an admissible monomorphism and an arbitrary
map yields an admissible monomorphism.

I Pullback of an admissible epimorphism and an arbitrary map
yields an admissible epimorphism.
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Exact sequences

Proposition

The category MFS(f ) is an exact category with exact sequences

given by:

S0 T0 U0

S1 T1 U1.

This means in particular:

admissible epimorphism = all epimorphisms = split epimorphisms
admissible monomorphism = split monomorphisms
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MFS(f ) is exact

Proof.

I

0 T0 T0

0 T1 T1

1T0

1T1

is exact.

I Same for the dual situation.

I ”Composition of admissible monomorphisms is admissible
monomorphism” follows from
”Composition of split monomorphisms is split monomorphism”

I Same for dual situation.
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MFS(f ) is exact (continued)

Proof (continued).

S0 S0 ⊕ S ′0

T0 T0 ⊕ S ′0

µ

1

0


µ 0

0 1


1

0


is the pushout of the ”canonical” split map and an arbitrary map
µ. That this holds for MFS(f ) as well follows componentwise.
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Exact subcategories of abelian categories

Remark (added after the talk, after remarks from R. Buchweitz, M.
Kalck and M. Severitt)

I Any exact category can be embedded into an abelian category
by an abstract ”abelian hull”-construction.

I In the case of MFS(f ) there are several possibilities to embed
it into:

• The abelian category of chain complexes, by mapping (ϕ,ψ)
to (. . . , 0, ϕ, 0, ψ, 0, . . . ).

• The category of modules over S( 1 2 ).

• The category of graded modules over the Z2-graded algebra
S [y ]/(y2 = f ), where |y | = 1.

Julian Külshammer University of Stuttgart, Germany

Matrix factorisations



Projective objects in MFS(f )

Lemma

With respect to the defined exact structure (1, f ) is projective.

Proof.

We can assume that S0 = S1 =: S ′.
Have to show every admissible epimorphism to (1, f ) splits.

S ′ S

S ′ S

α

ϕ
∃µ

1S

α′

ψ f

ϕµ
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Injective objects in MFS(f )

Lemma

With respect to the defined exact structure (1, f ) is injective.

Proof.

Have to show every admissible monomorphism from (1, f ) splits.

S S ′

S S ′

β

1S ϕ
νϕ

β′
f ψ

∃ν

Note: Every admissible monomorphism splits.
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Frobenius categories

Recall

An exact category is called Frobenius category if projective and
injective objects coincide and the category has enough projectives
and injectives.

Proposition

MFS(f ) is a Frobenius category with prinjective objects
add(1, f )⊕ (f , 1).
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MFS(f ) is a Frobenius category

Proof.

I We have already seen that (1, f )⊕ (f , 1) is prinjective.

I The following diagram shows enough prinjectives:

S0 S0 ⊕ S0 S0

S0 S0 ⊕ S0 S0

S0 S0 ⊕ S0 S0

ϕ

−ϕ
1


(−1,−ϕ)

1 0

0 f

 −ψ
−1
ψ



ψ

f 0

0 1


(ψ,1)

−ϕ
−ϕ

1


(−1,−ϕ)
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The Main Theorem again

Theorem

Let R = S/(f ) be a hypersurface. Then we have:

MFS(f )/ add(1, f ) ∼ CM(R)

and
MFS(f ) ∼ CM(R).
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The proof

Proof I: MFS(f )/ add(1, f )→ CM(R)

Let

X : MFS(f )/ add(1, f ) → CM(R)

(ϕ,ψ) 7→ Cokerϕ

This is well-defined:

I 0 F G Cokerϕ 0
ϕ

fF = ϕψF ⊆ ϕG , hence f Cokerϕ︸ ︷︷ ︸
an R-module

= 0.

I Coker(1, f ) = 0.

I The key lemma before shows: Cokerϕ has a periodic free
R-resolution.
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The proof (continued)

Recall

R Cohen-Macaulay of dimension d . Then for any n ≥ d :

Ωn(M) = 0 or Ωn(M) is Cohen-Macaulay.

Proof I (continued).

I Cokerϕ ∼= Ω2n Cokerϕ is Cohen-Macaulay.

I

F G Cokerϕ 0

F ′ G ′ Cokerϕ′ 0

ϕ

α β ∃

ϕ′

defines the functor on morphisms.
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A small amount of commutative algebra

Proposition

Let R = S/(f ) be a hypersurface.

M ∈ CM(R)⇒ prdimS M = 1.

Proof.

prdimS M = Kdim(S)− depth(M) Auslander-Buchsbaum formula

= Kdim(S)− Kdim(R) M ∈ CM(R)

= 1 Krull’s principal ideal theorem
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The other direction of the proof

Proof II: CM(R)→ MFS(f )/ add(1, f )

Let M ∈ CM(R), then prdimS M = 1:

0→ F
ϕ→ G → M → 0.

I fM = 0⇒ fS1 ⊆ ϕS0.

I ∀x ∈ S1 ∃!y ∈ S0 : fx = ϕy

I Set ψ : S1 → S0 : x 7→ y .

(ϕ,ψ) gives a matrix factorisation. Define Y(M) := (ϕ,ψ).

I fx = ϕy , fx ′ = ϕy ′ ⇒ f (x + x ′) = ϕ(y + y ′)⇒ ψ(x + x ′) =
y + y ′

I s ∈ S ⇒ fxs = ϕ(ys)⇒ ψ(xs) = ys.
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Proof II (continued).

M,M ′ ∈ CM(R).

0 F G M 0

0 F ′ G ′ M ′ 0

ϕ

∃ ∃

ϕ′

Minimal projective resolutions are unique up to isomorphism.

 Gives a functor CM(R)→ MFS(f )/ add(1, f ).

Equivalence is now obvious.
X (f , 1) = Coker(f ) = R, hence MFS(f ) ∼ CM(R).
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Interchanging ϕ and ψ

Corollary

M = X (ϕ,ψ)⇒ ΩM = X (ψ,ϕ).

Proof.

I · · · R1 R0 R0 · · ·ψ ϕ

I 0 X (ψ,ϕ) R X (ϕ,ψ) 0
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Frobenius categories and homotopy

Proposition

The equivalence before can also be written as:

H0(MFS(f )) ∼ CM(R).

Proof.

null-homotopic ⇔ factors through prinjective

S0 S0 S0

T0 T0 T0

ϕ

α

ψ

β
h

α
k

ϕ′ ψ′

with β = ϕ′h + kψ and α = ψ′k + hϕ.
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Proof of homotopy ⇒ factoring

Proof (continued)

β = ϕ′h + kψ and α = ψ′k + hϕ.

S0 S0 S0

S0 ⊕ S0 S0 ⊕ S0 S0 ⊕ S0

T0 T0 T0

ϕ

1

ϕ


ψ

ψ
1

 1

ϕ

f 0

0 1



(ψ′k,h) (k,ϕ′h)

1 0

0 f



(ψ′k,h)

ϕ′ ψ′
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Proof of factoring ⇒ homotopy

Proof (continued)

α = α2α1 + α′2α
′
1 and β = β2β1 + β′2β

′
1

S0 S0 S0

U0 ⊕ U0 U0 ⊕ U0 U0 ⊕ U0

T0 T0 T0

ϕ

α1

α′1


ψ

β1
β′1

 α1

α′1

f 0

0 1



(α2,α
′
2) (β2,β′2)

1 0

0 f



(α2,α
′
2)

ϕ′ ψ′
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The end

Proof.

α = α2α1 + α′2α
′
1 β = β2β1 + β′2β

′
1(

f α1

α′1

)
=

(
β1ϕ
β′1ϕ

) (
β1
β′1f

)
=

(
α1ψ
α′1ψ

)
(ϕ′α2, ϕ

′α′2) = (β2f , β′2) (ψ′β2, ψ
′β′2) = (α2, α

′
2f )

S0 S0 S0

T0 T0 T0

ϕ

α

ψ

β
α′2β
′
1

α
β2α1

ϕ′ ψ′
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