Matrix factorisations

Julian Külshammer
University of Stuttgart, Germany
28.08.2013

Outline

Main Theorem (Eisenbud)

Let $R=S /(f)$ be a hypersurface. Then

$$
\operatorname{MCM}(R) \sim \operatorname{MF}_{S}(f)
$$

Survey of the talk:
(1) Define hypersurfaces. Explain, why they fit in our setting.
(2) Define Matrix factorisations. Prove, that they form a Frobenius category.
(3) Prove the equivalence.

Regular local rings

Definition

A Noetherian local ring S is called regular if

$$
K \operatorname{dim} S=\operatorname{gldim} S<\infty
$$

Example

$$
\begin{aligned}
& \Rightarrow k\left[X_{1}, \ldots, X_{n}\right]_{\left(X_{1}, \ldots, X_{n}\right)} \\
& >k\left[\left[X_{1}, \ldots, X_{n}\right]\right]
\end{aligned}
$$

Lemma

A regular local ring S is Gorenstein.

Proof.

$\operatorname{gldim} S<\infty \Rightarrow \operatorname{Ext}_{S}^{i}(k, S)=0$ for $i \gg 0 \Rightarrow \operatorname{indim} S<\infty$

Quotients of Gorenstein rings

Let S be regular local. Let $0 \neq f \in S$ be a non-unit.

Lemma

A regular local ring is a domain.

Proposition

Let S be a Noetherian local ring. Let $f \in S$ be a non-unit, non-zero divisor. Then

$$
\operatorname{indim}_{S /(f)} S /(f)=\operatorname{indim}_{S} S-1
$$

Corollary
S Gorenstein $\Rightarrow S /(f)$ Gorenstein.

Hypersurfaces

Definition

Let S be a regular local ring and $0 \neq f \in S$ be a non-unit. Then $R:=S /(f)$ is called a hypersurface.

Main Theorem (Eisenbud)

Let $R=S /(f)$ be a hypersurface. Then

$$
\operatorname{MCM}(R) \sim \operatorname{MF}_{S}(f)
$$

Matrix factorisations

Definition

Let S be a ring, $f \in S$. A matrix factorisation of f is a pair of maps of free S-modules

$$
F \xrightarrow{\varphi} G \xrightarrow{\psi} F
$$

such that

Examples

Example

Let $S=\mathbb{C}[[x, y]], f=y^{2}-x^{2}$. Then a matrix factorisation is given by

$$
S^{2} \xrightarrow{\left(\begin{array}{cc}
y & x \\
-x & -y
\end{array}\right)} S^{2} \xrightarrow{\left(\begin{array}{cc}
y & x \\
-x & -y
\end{array}\right)} S^{2}
$$

Example

$$
F \xrightarrow{1_{F}} F \xrightarrow{f \cdot 1_{F}} F
$$

Morphisms of matrix factorisations

Definition

A morphism between two matrix factorisations of f is given by:

Composition of two morphisms is given componentwise. Denote the category of matrix factorisations by $\mathrm{MF}_{S}(f)$.

Additive Categories

Recall

A category \mathcal{A} is called additive if

- \mathcal{A} has a zero object.
- Every Hom-Set is an abelian group and composition is bilinear.
- There exists a coproduct of every two objects.

Additive Categories

Proposition

The category $\mathrm{MF}_{S}(f)$ is additive:

- \mathcal{A} has a zero object.
- $0 \longrightarrow 0 \longrightarrow 0$ is a zero object.
- Every Hom-Set is an abelian group and composition is bilinear.

$$
(\alpha, \beta)+\left(\alpha^{\prime}, \beta^{\prime}\right)=\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime}\right)
$$

- There exists a coproduct of every two objects.

$$
\begin{gathered}
\text { - }\left(S_{0} \xrightarrow{\varphi_{S}} S_{1} \xrightarrow{\psi_{S}} S_{0}\right) \oplus\left(T_{0} \xrightarrow{\varphi_{T}} T_{1} \xrightarrow{\psi_{T}} T_{0}\right) \\
:=S_{0} \oplus T_{0} \xrightarrow{\left(\begin{array}{cc}
\varphi_{S} & 0 \\
0 & \varphi_{T}
\end{array}\right)} S_{1} \oplus T_{1} \xrightarrow{\left(\begin{array}{cc}
\psi_{S} & 0 \\
0 & \psi_{T}
\end{array}\right)} S_{0} \oplus T_{0}
\end{gathered}
$$

Important Lemmas

Lemma

Let $(\varphi, \psi) \in \mathrm{MF}_{S}(f)$. Then φ is a monomorphism.
Proof.

- Let $\varphi(z)=0$.
- Then $0=\psi \varphi(z)=f \cdot z$.
- Thus $z=0$.

Matrix factorisations and exact sequences

Lemma

Let $F \xrightarrow{\varphi} G \xrightarrow{\psi} F \quad$ be a matrix factorisation. Then
$\cdots \xrightarrow{\bar{\varphi}} \bar{F} \xrightarrow{\bar{\varphi}} \bar{G} \xrightarrow{\bar{\psi}} \bar{F} \xrightarrow{\bar{\varphi}} \cdots$
is exact, where $\bar{F}=F /(f F)$.
Proof.

- $\varphi \psi=f \cdot 1_{G} \Rightarrow \bar{\varphi} \bar{\psi}=0$
- Let $\bar{z} \in \operatorname{ker} \bar{\varphi}$. Then $\varphi(z) \in f G=\varphi \psi G \Rightarrow z \in \operatorname{Im}(\psi)$.

Proposition

Up to isomorphism one can assume $F=G$.

Proof.

Let $F \xrightarrow{\varphi} G \xrightarrow{\psi} F$ be a matrix factorisation. Then

$$
\cdots \xrightarrow{\bar{\varphi}} \bar{F} \xrightarrow{\bar{\varphi}} \bar{G} \xrightarrow{\bar{\psi}} \bar{F} \xrightarrow{\bar{\varphi}} \cdots
$$

is exact.
Localize at a minimal prime \mathfrak{p}, you get artinian modules. Thus

$$
\ell\left(\bar{G}_{\mathfrak{p}}\right)=\ell\left(\operatorname{Im} \bar{\psi}_{\mathfrak{p}}\right)+\ell\left(\operatorname{ker} \bar{\psi}_{\mathfrak{p}}\right)=\ell\left(\bar{F}_{\mathfrak{p}}\right) .
$$

But here

$$
\operatorname{rank}\left(\bar{G}_{\mathfrak{p}}\right)=\ell\left(\bar{G}_{\mathfrak{p}}\right) / \ell\left(R_{\mathfrak{p}}\right)
$$

Proof (continued).

Thus $F \cong G$, say via A. Then the following provides an isomorphism between matrix factorisations:

$$
\begin{aligned}
& F \xrightarrow{\varphi} G \xrightarrow{\psi} F \\
& \downarrow_{1_{F}} \\
& F \xrightarrow{A} \stackrel{\left.\right|_{1}}{F} \xrightarrow{\psi A^{-1}} \stackrel{\downarrow_{F}}{F}
\end{aligned}
$$

Exact categories

Recall

An additive category \mathcal{A} with a class of short exact sequences
$\{A \longmapsto B \longrightarrow C$ \} is called exact if

- $B \stackrel{1_{B}}{\longrightarrow} B \longrightarrow 0$,
$0 \succ B \xrightarrow{1_{B}} B$
- Composition of admissible monomorphisms is admissible monomorphism
- Composition of admissible epimorphisms is addmisible epimorphism
- Pushout of an admissible monomorphism and an arbitrary map yields an admissible monomorphism.
- Pullback of an admissible epimorphism and an arbitrary map yields an admissible epimorphism.

Exact sequences

Proposition

The category $\mathrm{MF}_{S}(f)$ is an exact category with exact sequences

This means in particular:
admissible epimorphism $=$ all epimorphisms $=$ split epimorphisms admissible monomorphism $=$ split monomorphisms

$\mathrm{MF}_{S}(f)$ is exact

Proof.

- Same for the dual situation.
- "Composition of admissible monomorphisms is admissible monomorphism" follows from
"Composition of split monomorphisms is split monomorphism"
- Same for dual situation.

$\mathrm{MF}_{S}(f)$ is exact (continued)

Proof (continued).

$$
\begin{aligned}
& S_{0} \xrightarrow{\binom{1}{0}} S_{0} \oplus S_{0}^{\prime} \\
& T_{0} \xrightarrow[\binom{1}{0}]{\downarrow} T_{0} \oplus\left(\begin{array}{ll}
\mu & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

is the pushout of the "canonical" split map and an arbitrary map
μ. That this holds for $\mathrm{MF}_{S}(f)$ as well follows componentwise.

Exact subcategories of abelian categories

Remark (added after the talk, after remarks from R. Buchweitz, M. Kalck and M. Severitt)

- Any exact category can be embedded into an abelian category by an abstract "abelian hull"-construction.
- In the case of $\mathrm{MF}_{S}(f)$ there are several possibilities to embed it into:
- The abelian category of chain complexes, by mapping (φ, ψ) to $(\ldots, 0, \varphi, 0, \psi, 0, \ldots)$.
- The category of modules over $S(1 \rightleftarrows 2)$.
- The category of graded modules over the \mathbb{Z}_{2}-graded algebra $S[y] /\left(y^{2}=f\right)$, where $|y|=1$.

Projective objects in $\mathrm{MF}_{S}(f)$

Lemma

With respect to the defined exact structure $(1, f)$ is projective.

Proof.

We can assume that $S_{0}=S_{1}=: S^{\prime}$.
Have to show every admissible epimorphism to $(1, f)$ splits.

Injective objects in $\mathrm{MF}_{s}(f)$

Lemma
With respect to the defined exact structure $(1, f)$ is injective.

Proof.

Have to show every admissible monomorphism from $(1, f)$ splits.

Note: Every admissible monomorphism splits.

Frobenius categories

Recall

An exact category is called Frobenius category if projective and injective objects coincide and the category has enough projectives and injectives.

Proposition
$\mathrm{MF}_{S}(f)$ is a Frobenius category with prinjective objects $\operatorname{add}(1, f) \oplus(f, 1)$.

$\mathrm{MF}_{S}(f)$ is a Frobenius category

Proof.

- We have already seen that $(1, f) \oplus(f, 1)$ is prinjective.
- The following diagram shows enough prinjectives:

$$
\begin{aligned}
& S_{0} \xrightarrow{\binom{-\varphi}{1}} S_{0} \oplus S_{0} \xrightarrow{(-1,-\varphi)} S_{0} \\
& \begin{array}{l}
\varphi \downarrow \\
S_{0} \\
\binom{-1}{\psi} \\
\\
S_{0} \\
\left.\oplus S_{0} \xrightarrow{\downarrow} \xrightarrow{\downarrow} \begin{array}{ll}
1 & 0 \\
0 & f
\end{array}\right) \\
(\psi, 1) \\
S_{0}
\end{array} \\
& \left.{ }_{\psi}^{\downarrow}{ }_{0}^{\downarrow} \xrightarrow{\binom{-\varphi}{1}} S_{0} \oplus S_{0}^{\downarrow} \xrightarrow{\downarrow} \begin{array}{ll}
f & 0 \\
0 & 1
\end{array}\right) \downarrow-\varphi
\end{aligned}
$$

The Main Theorem again

Theorem

Let $R=S /(f)$ be a hypersurface. Then we have:

$$
\mathrm{MF}_{S}(f) / \operatorname{add}(1, f) \sim \mathrm{CM}(R)
$$

and

$$
\mathrm{MF}_{S}(f) \sim \underline{\mathrm{CM}}(R)
$$

The proof

Proof I: $\mathrm{MF}_{s}(f) / \operatorname{add}(1, f) \rightarrow \mathrm{CM}(R)$

Let

$$
\begin{aligned}
\mathcal{X}: \operatorname{MF}_{S}(f) / \operatorname{add}(1, f) & \rightarrow \operatorname{CM}(R) \\
(\varphi, \psi) & \mapsto \operatorname{Coker} \varphi
\end{aligned}
$$

This is well-defined:
$\triangleright 0 \longrightarrow F \xrightarrow{\varphi} G \longrightarrow \operatorname{Coker} \varphi \longrightarrow 0$

$$
f F=\varphi \psi F \subseteq \varphi G \text {, hence } f \underbrace{\operatorname{Coker} \varphi}_{\text {an } R \text {-module }}=0 \text {. }
$$

- Coker $(1, f)=0$.
- The key lemma before shows: Coker φ has a periodic free R-resolution.

The proof (continued)

Recall

R Cohen-Macaulay of dimension d. Then for any $n \geq d$:

$$
\Omega^{n}(M)=0 \text { or } \Omega^{n}(M) \text { is Cohen-Macaulay. }
$$

Proof I (continued).

- Coker $\varphi \cong \Omega^{2 n}$ Coker φ is Cohen-Macaulay.

defines the functor on morphisms.

A small amount of commutative algebra

Proposition

Let $R=S /(f)$ be a hypersurface.

$$
M \in \mathrm{CM}(R) \Rightarrow \operatorname{prdim}_{S} M=1
$$

Proof.

$$
\begin{array}{rlrl}
\operatorname{prdim}_{S} M & =K \operatorname{dim}(S)-\operatorname{depth}(M) & \text { Auslander-Buchsbaum formula } \\
& =K \operatorname{dim}(S)-\mathrm{K} \operatorname{dim}(R) & & M \in \mathrm{CM}(R) \\
& =1 & & \text { Krull's principal ideal theorem }
\end{array}
$$

The other direction of the proof

Proof II: $\mathrm{CM}(R) \rightarrow M F_{S}(f) / \operatorname{add}(1, f)$
Let $M \in \mathrm{CM}(R)$, then $\operatorname{prdim}_{S} M=1$:

$$
0 \rightarrow F \xrightarrow{\varphi} G \rightarrow M \rightarrow 0 .
$$

- $f M=0 \Rightarrow f S_{1} \subseteq \varphi S_{0}$.
- $\forall x \in S_{1} \exists!y \in S_{0}: f x=\varphi y$
- Set $\psi: S_{1} \rightarrow S_{0}: x \mapsto y$.
(φ, ψ) gives a matrix factorisation. Define $\mathcal{Y}(M):=(\varphi, \psi)$.
- $f x=\varphi y, f x^{\prime}=\varphi y^{\prime} \Rightarrow f\left(x+x^{\prime}\right)=\varphi\left(y+y^{\prime}\right) \Rightarrow \psi\left(x+x^{\prime}\right)=$ $y+y^{\prime}$
- $s \in S \Rightarrow f x s=\varphi(y s) \Rightarrow \psi(x s)=y s$.

Proof II (continued).
$M, M^{\prime} \in \mathrm{CM}(R)$.

Minimal projective resolutions are unique up to isomorphism.
\rightsquigarrow Gives a functor $\mathrm{CM}(R) \rightarrow \mathrm{MF}_{S}(f) / \operatorname{add}(1, f)$.
Equivalence is now obvious.
$\mathcal{X}(f, 1)=\operatorname{Coker}(f)=R$, hence $\underline{M F}_{S}(f) \sim \underline{\mathrm{CM}}(R)$.

Interchanging φ and ψ

Corollary
 $M=\mathcal{X}(\varphi, \psi) \Rightarrow \Omega M=\mathcal{X}(\psi, \varphi)$.

Proof.

$$
\begin{aligned}
& \triangleright \cdots \longrightarrow R_{1} \xrightarrow{\bar{\psi}} R_{0} \xrightarrow{\bar{\varphi}} R_{0} \longrightarrow \cdots \\
& \triangleright 0 \longrightarrow \mathcal{X}(\psi, \varphi) \longrightarrow R \longrightarrow \mathcal{X}(\varphi, \psi) \longrightarrow 0
\end{aligned}
$$

Frobenius categories and homotopy

Proposition

The equivalence before can also be written as:

$$
H^{0}\left(\mathrm{MF}_{S}(f)\right) \sim \underline{\mathrm{CM}}(R) .
$$

Proof.
null-homotopic \Leftrightarrow factors through prinjective

with $\beta=\varphi^{\prime} h+k \psi$ and $\alpha=\psi^{\prime} k+h \varphi$.

Proof of homotopy \Rightarrow factoring

Proof (continued)

$$
\beta=\varphi^{\prime} h+k \psi \text { and } \alpha=\psi^{\prime} k+h \varphi .
$$

Proof of factoring \Rightarrow homotopy

Proof (continued)

$$
\alpha=\alpha_{2} \alpha_{1}+\alpha_{2}^{\prime} \alpha_{1}^{\prime} \text { and } \beta=\beta_{2} \beta_{1}+\beta_{2}^{\prime} \beta_{1}^{\prime}
$$

$$
\begin{aligned}
& S_{0} \xrightarrow{\varphi} S_{0} \xrightarrow{\psi} S_{0} \\
& \begin{array}{c}
\binom{\alpha_{1}}{\alpha_{1}^{\prime}} \downarrow \\
U_{0} \oplus U_{0} \xrightarrow{\left(\begin{array}{ll}
f & 0 \\
0 & 1
\end{array}\right)} \xrightarrow{\binom{\beta_{1}}{\beta_{1}^{\prime}}} \downarrow U_{0} \oplus U_{0} \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0 & f
\end{array}\right)} \underset{0}{\downarrow} U_{0} \stackrel{\binom{\alpha_{1}}{\alpha_{1}^{\prime}}}{U_{0}}
\end{array} \\
& \left(\alpha_{2}, \alpha_{2}^{\prime}\right) \downarrow \\
& \left(\beta_{2}, \beta_{2}^{\prime}\right) \downarrow
\end{aligned}
$$

The end

Proof.

$$
\begin{aligned}
& \alpha=\alpha_{2} \alpha_{1}+\alpha_{2}^{\prime} \alpha_{1}^{\prime} \\
& \binom{f \alpha_{1}}{\alpha_{1}^{\prime}}=\binom{\beta_{1} \varphi}{\beta_{1}^{\prime} \varphi} \\
& \beta=\beta_{2} \beta_{1}+\beta_{2}^{\prime} \beta_{1}^{\prime} \\
& \binom{\beta_{1}}{\beta_{1}^{\prime} f}=\binom{\alpha_{1} \psi}{\alpha_{1}^{\prime} \psi} \\
& \left(\varphi^{\prime} \alpha_{2}, \varphi^{\prime} \alpha_{2}^{\prime}\right)=\left(\beta_{2} f, \beta_{2}^{\prime}\right) \\
& \left(\psi^{\prime} \beta_{2}, \psi^{\prime} \beta_{2}^{\prime}\right)=\left(\alpha_{2}, \alpha_{2}^{\prime} f\right)
\end{aligned}
$$

