
Practice questions

Question 14.4. Explain why the category of finite-dimensional vector spaces is finitely complete and finitely

cocomplete, but not complete and not cocomplete.

Question 14.5. By means of a counterexample, show that not all colimits in module categories are left

exact. Hint: your counterexample must involve an I-diagram I → R –Mod where I is not filtered (why?).

Question 14.6. Let I and C be skeletally small categories and let D be a category.

(1) Show that any functor F : I × C → D defines a functor F̂ : I → Fun(C,D) such that if I ∈ ob(I)
then F̂ (I) sends C ∈ ob(C) to Fun(I, C) and g ∈ HomC(X,Y ) to F (idI , g).

(2) Define, for any natural transformation between functors F,G : I × C → D, a natural transformation

between the functors F̂ , Ĝ : I → Fun(C,D) from (1).

Now let S : I → [C,D] be a functor.

(3) Show that for any i ∈ I(I, J) and any g ∈ C(A,B) we have S(J)(g) ◦ S(i)A = S(i)B ◦ S(I)(g).
(4) Define a functor I × C → D where ob(I × C) ∋ (I, A) 7→ (S(I))(A).

(5) Finally, prove that the categories Fun(I × C,D) and Fun(I,Fun(C,D)) are isomorphic.

Question 14.7. Recall: the category Grp of groups and the category Ab of abelian groups.

(1) For the functors P : Grp×Grp→ Grp and Q : Grp→ Grp×Grp from Question 1.5 that satisfy

P (G′, G) = G′ ×G and Q(H) = (H,H), prove that Q is right adjoint to P .

Recall from Question 1.5 the commutator [G,G] of any group G

(2) Let G ∈ Grp and A ∈ Ab. Prove any homomorphism G → A is the composition of the quotient

G→ G/[G,G] and a homomorphism G/[G,G]→ A.

(3) Show that, in the notation from Question 1.5, V is left adjoint to U .

Question 14.8. Let I be a small category, let C be a skeletally small category and let D be a category such

that the colimit of any I-diagram in D exists. Recall Question 14.6.

(1) Prove that there is a functor colim
I→D

: Fun(I,D)→ D taking any I-diagram to its colimit.

(2) Prove that colimits of I-diagrams in Fun(C,D) exists, and describe colim
I→Fun(C,D)

in terms of colim
I→D

.

Question 14.9. Let C be a (preadditive, namely a) Z-linear category. Consider the collection ob(C⊞) of

symbols of the form 0 or of the form X1 ⊞ · · ·⊞Xn with Xi ∈ ob(C).

(1) Define a category C⊞ whose objects are ob(C⊞) by defining morphisms, composition and identity

morphisms. Do so in such a way that C⊞ is additive with zero object 0 and direct sums given by ⊞.

(2) Construct a(n additive, namely a) Z-linear functor iC : C → C⊞ such that, for any additive category D
and any additive functor F : C → D there is an additive functor F⊞ : C⊞ → D such that F⊞ ◦ iC = F .

Now assume C = KP where P is the category defined by a partially ordered set.

(3) Explain how a morphism between non-zero objects in C⊞ uniquely corresponds to a matrix with

entries in K, in such a way that composition corresponds to matrix multiplication.

(4) Let 0 ̸= X ∈ ob(C⊞) and f ∈ EndC⊞
(X). By considering Smith-normal form, prove that if K is a

field and if f2 = f then f = gh where hg is an identity morphism.

Thus, this exercise shows that the category KP⊞ has split idempotents when K is a field and P is a poset.

Question 14.10. Let C be a category with all coequalisers and all coproducts. Prove that C is cocomplete.



Question 14.11. Let R = HomSet(R,K), the set of functions of the form R → K, where R denotes the

(uncountable) set of real numbers, and K is some field. For any f ∈ R let Supp(f) = {x ∈ R : f(x) ̸= 0}. Let
I be the subset of R consisting of functions f : R→ K with countable support, meaning that either Supp(f) is

finite (and possibly empty) or that there is a sequence (x1, x2, x3, . . . ) ∈ RN where Supp(f) = {xi : 0 < i ∈ Z}.
(1) Prove that R is a ring where addition, multiplication and the identities are defined point-wise.

(2) Prove that I is an ideal in the ring R that is not finitely generated as an R-module.

Let S be a set, Ms be an R-module for each s ∈ S, M =
⊕

s∈S Ms, and πs : M →Ms be the projection for

each s ∈ S. Let φ : I →M be an R-module homomorphism.

(3) Prove that if S = N and if fs ∈ I for each s ∈ S then
⋃

s∈S Supp(fs) is countable and hence define

an element δ ∈ I such that fsδ = fs for each s ∈ S.
(4) Prove, by contradiction, that there can only be finitely many s ∈ S such that πsφ = 0.

(5) Prove that HomR(I,M) ∼=
⊕

s∈S HomR(I,Ms).

Thus this question provides an example of a compact module that is not finitely generated.

Question 14.12. Prove the Snake Lemma for an abelian category (that is not a module category, so without

diagram chasing). Hint: use Question 14.8(3) and its dual.

Question 14.13. Let C be an abelian category and let χi : Xi ↪→ A (i ∈ I) be a set of monomorphisms in

C. Assume the coproduct
∐

i∈I Xi, equipped with morphisms ιi : Xi →
∐

i∈I Xi, exists (as a colimit) in C.
(1) Prove that there is a morphism χ :

∐
i∈I Xi → A such that χιi for each i.

Denote the cokernel of χ by γ : A→ cok(χ). Denote the image of χ, so the kernel of γ, by δ : im(χ) ↪→ A.

(2) Prove that there is a monomorphism κi : Xi ↪→ im(χ) such that χi = δκi for each i.

(3) Suppose there exist monomorphisms µ : K → A and λi : Xi ↪→ K such that χi = µλi for each i.

(4) Prove that there is a monomorphism ε : im(χ)→ K such that µε = δ.

Thus, this exercise shows how to define the sum im(χ) :=
∑

iXi of A of subobjects.

Question 14.14. Let R be a commutative ring and let A and B be R-algebras.

(1) Prove that the R-R-bimodule A⊗R B has the structure of an R-algebra.

(2) Let 1A and 1B be the multiplicative identities of the rings A and B, respectively. Prove that if M is

an A-B-bimodule such that (r ·1A)m = m(r ·1B) thenM has the structure of a left A⊗RB
op-module.

Question 14.15. Let Q, R and S be rings, A an S-R-bimodule, B an R-Q-bimodule, and C an S-Q-

bimodule. Prove that there is an S-S-bimodule isomorphism HomQ(A⊗R B,C) ∼= HomR(A,HomQ(B,C)).

Question 14.16. LetA be an abelian category. Let L,M ∈ ob(A). Let iL : L→ L⊕M and iM : M → L⊕M
be the canonical morphisms defining the coproduct. Assume that L and M are subobjects of an object N ,

meaning there are monomorphisms jL : L→ N and jM : M → N .

(1) Prove that there is a morphism φL,M : L⊕M → N such that φL,M iL = jL and φL,M iM = jM .

(2) Let L ∩M = ker(φL,M ). Prove that if L is a subobject of M then L ∩M ∼= L.

(3) Defining L+M as in Question 14.13, prove that if L ∩M = 0 then L+M ∼= L⊕M .

(4) Define the meaning of an essential extension in A, so that it recovers the definition for modules

when A = R –Mod for a ring R.

(5) Let X,Y, Z ∈ ob(A). Suppose that Z is an essential extension of Y . Prove that if Y is an essential

extension of X then Z is an essential extension of X. Prove that if Z = X ⊕ Y then X = 0.

Question 14.17. Let A be an abelian category (if you prefer, consider instead A = R –Mod where R is a

ring). Let σ : P → L be a projective cover and a let τ : Q→ L be an epimorphism.



(1) Prove that there exists a homomorphism ρ : P → Q with τρ = σ and ker(ρ) small in P .

(2) Prove that if ker(τ) is small in Q then ρ is a projective cover.

(3) Prove that if τ is a projective cover then ρ is an isomorphism.

Question 14.18. Let A be an abelian category and let C = C(A). Let I be a set and let Mi be an object

in C for each i ∈ I. Assume that for each n ∈ Z the coproduct
⊕

i∈I M
n
i exists in A.

(1) Prove that there is an object in C of the form · · · →
⊕

i∈I M
n
i →

⊕
i∈I M

n+1
i → · · · that defines the

coproduct in C of the objects Mi. Conjecture how the product is defined.

(2) Prove that, for each n ∈ Z, there is an isomorphism Hn(
⊕

i∈I Mi) ∼=
⊕

i∈I H
n(Mi) in A.

For part (3) below assume that A = R –Mod, the category of left modules over a ring R. Let X ∈ ob(A).
(3) For each N ∈ ob(C) define N ⊗R X is a similar way to the definition that was done for chain

complexes. Thus prove that Hn((
⊕

i∈I Mi)⊗R X) ∼=
⊕

i∈I H
n(Mi ⊗R X) in A for each n ∈ Z.

Question 14.19. Continue the notation from Question 10.1.

(1) Prove that f is null-homotopic if and only if there exists e ∈ HomC(cone(idX), Y ) such that eιidX
= f .

Define and denote themapping cyclinder of a morphism a by cyl(a) := cone(Σ−1πa). Consider the morphisms

∆: X → X ⊕X and ρ : X ⊕X → X defined by ∆ := (idX , idX)t and ρ := (idX , 0).

(2) Prove that there is a monomorphism i : X ⊕X → cyl(idX) in C with cokernel cok(i) = ΣX.

(3) Prove that there is a morphism j : cyl(idX)→ cone(idX) such that ji∆ = ιidX
.

(4) Prove that f is homotopic to f ′ ∈ HomC(X,Y ) if and only if there is a morphism k : cyl(idX)→ Y

such that ki = (f,−f ′). Hint: find a morphism k : cone(idX)→ cyl(idX) such that jk = idcone(idX).

Question 14.20. Let f : A→ B be a homomorphism of rings. Recall the functor ResA from Question 6.3(1).

Prove that if P is a projective B-module then proj.dimA(ResA(P )) ≤ proj.dimA(ResA(B)).

Question 14.21. Let n ∈ Z such that n ̸= −1, 0, 1. Without calculating the image of TorZ1 (Z/nZ,−) on a

Z-module, explain why there must exist some Z-module X such that TorZ1 (Z/nZ, X) ̸= 0.

Question 14.22. Let R be a ring.

(1) Let n > 0 and X and Y be R-modules. Prove that if f ∈ HomR(R
n, X) and g ∈ HomR(Y,X) and

im(f) ⊆ im(g) then there exists h ∈ Hom(Rn, Y ) such that f = gh.

From now on assume that 0→ L→M → N → 0 is an exact sequence of R-modules.

(2) Prove that if L and N are finitely generated then so is M .

(3) Prove that if N is finitely presented and if M is finitely generated then L is finitely generated. Hint:

apply the snake lemma to the exact sequence and a given presentation of N . Then use (2).

(4) Prove that if M is finitely presented and if L is finitely generated then N is finitely presented.

(5) Prove that if L and N are finitely presented modules then so is M . Hint: use the snake lemma.

Question 14.23. Let R be a ring. Let M , P and Q be R-modules and let f ∈ HomR(P,M) and g ∈
HomR(Q,M) be surjective. Let S = {(p, q) ∈ P ⊕Q | f(p) = g(q)}.

(1) Prove that the maps h ∈ HomR(S, P ) and k ∈ HomR(Q,M) defined by h(p, q) = p and k(p, q) = q

are surjective, and prove that ker(h) ∼= ker(g) and ker(k) ∼= ker(f).

(2) Prove Schanuel’s lemma: that if P and Q are projective then P ⊕ ker(g) ∼= Q⊕ ker(f).

From now on assume I is an ideal in R.

(3) Use Schanuel’s lemma to prove that if R/I is finitely presented then I is finitely generated.

(4) Construct an example of a finitely generated module that is not finitely presented.


	Practice questions

