PRACTICE QUESTIONS

Question 14.4. Explain why the category of finite-dimensional vector spaces is finitely complete and finitely

cocomplete, but not complete and not cocomplete.

Question 14.5. By means of a counterexample, show that not all colimits in module categories are left

exact. Hint: your counterexample must involve an Z-diagram Z — R—Mod where Z is not filtered (why?).

Question 14.6. Let Z and C be skeletally small categories and let D be a category.
(1) Show that any functor F: Z x C — D defines a functor F': T — Fun(C, D) such that if I € ob(Z)
then F'(I) sends C € ob(C) to Fun(Z,C) and g € Home(X,Y) to F(idz, g).
(2) Define, for any natural transformation between functors F,G: Z x C — D, a natural transformation
between the functors ', G: T — Fun(C, D) from (1).
Now let S: Z — [C, D] be a functor.

(3) Show that for any ¢ € Z(I,J) and any g € C(A, B) we have S(J)(g) o S(i)a = S(¢)g o S(I)(g).
(4) Define a functor Z x C — D where ob(Z x C) 3 (I, A) — (S(I))(A).
(5) Finally, prove that the categories Fun(Z x C, D) and Fun(Z, Fun(C, D)) are isomorphic.

Question 14.7. Recall: the category Grp of groups and the category Ab of abelian groups.
(1) For the functors P: Grp X Grp — Grp and Q: Grp — Grp x Grp from Questionthat satisfy
P(G',G) =G x G and Q(H) = (H,H), prove that @ is right adjoint to P.
Recall from Question the commutator [G, G] of any group G
(2) Let G € Grp and A € Ab. Prove any homomorphism G — A is the composition of the quotient

G — G/[G,G] and a homomorphism G/[G,G] — A.
(3) Show that, in the notation from Question V is left adjoint to U.

Question 14.8. Let Z be a small category, let C be a skeletally small category and let D be a category such
that the colimit of any Z-diagram in D exists. Recall Question [14.6]
(1) Prove that there is a functor cIoli%: Fun(Z, D) — D taking any Z-diagram to its colimit.
—

(2) Prove that colimits of Z-diagrams in Fun(C, D) exists, and describe  colim  in terms of colim.
Z—Fun(C,D) I—D

Question 14.9. Let C be a (preadditive, namely a) Z-linear category. Consider the collection ob(Cg) of
symbols of the form 0 or of the form X; B---H X,, with X; € ob(C).

(1) Define a category Cm whose objects are ob(Cg) by defining morphisms, composition and identity
morphisms. Do so in such a way that Cg is additive with zero object 0 and direct sums given by H.
(2) Construct a(n additive, namely a) Z-linear functor i¢c: C — Cg such that, for any additive category D
and any additive functor F': C — D there is an additive functor Fiy: Cg — D such that Fyoic = F.

Now assume C = K'P where P is the category defined by a partially ordered set.

(3) Explain how a morphism between non-zero objects in Cgm uniquely corresponds to a matrix with
entries in K, in such a way that composition corresponds to matrix multiplication.

(4) Let 0 # X € ob(Cm) and f € Endeg(X). By considering Smith-normal form, prove that if K is a
field and if f2 = f then f = gh where hg is an identity morphism.

Thus, this exercise shows that the category KPg has split idempotents when K is a field and P is a poset.

Question 14.10. Let C be a category with all coequalisers and all coproducts. Prove that C is cocomplete.



Question 14.11. Let R = Homget (R, K), the set of functions of the form R — K, where R denotes the
(uncountable) set of real numbers, and K is some field. For any f € R let Supp(f) = {z € R: f(x) # 0}. Let
I be the subset of R consisting of functions f: R — K with countable support, meaning that either Supp(f) is
finite (and possibly empty) or that there is a sequence (21, xo, 73, ...) € RY where Supp(f) = {z;: 0 < i € Z}.

(1) Prove that R is a ring where addition, multiplication and the identities are defined point-wise.

(2) Prove that I is an ideal in the ring R that is not finitely generated as an R-module.
Let S be a set, M, be an R-module for each s € S, M = EBSGS My, and 7ws: M — M be the projection for
each s € S. Let ¢: I — M be an R-module homomorphism.

(3) Prove that if S = N and if f, € I for each s € S then | J,. g Supp(fs) is countable and hence define

an element 0 € I such that f;0 = f, for each s € S.
(4) Prove, by contradiction, that there can only be finitely many s € S such that 750 = 0.
(5) Prove that Homp(I, M) = P, .o Homp(I, My).

Thus this question provides an example of a compact module that is not finitely generated.

ses

Question 14.12. Prove the Snake Lemma for an abelian category (that is not a module category, so without
diagram chasing). Hint: use Question 3) and its dual.

Question 14.13. Let C be an abelian category and let x;: X; < A (i € I) be a set of monomorphisms in

C. Assume the coproduct [];.; X;, equipped with morphisms ¢;: X; — [, X, exists (as a colimit) in C.

(1) Prove that there is a morphism y: []..; X; — A such that y¢; for each i.

iel
Denote the cokernel of x by v: A — cok(x). Denote the image of x, so the kernel of v, by 6: im(x) — A.
(2) Prove that there is a monomorphism x;: X; < im(x) such that x; = ok; for each .
(3) Suppose there exist monomorphisms p: K — A and \;: X; < K such that y; = p); for each i.
(4) Prove that there is a monomorphism ¢: im(x) — K such that ue = 6.

Thus, this exercise shows how to define the sum im(x) := >, X; of A of subobjects.

Question 14.14. Let R be a commutative ring and let A and B be R-algebras.

(1) Prove that the R-R-bimodule A ® p B has the structure of an R-algebra.
(2) Let 14 and 1p be the multiplicative identities of the rings A and B, respectively. Prove that if M is
an A-B-bimodule such that (r-14)m = m(r-1p) then M has the structure of a left A® g B°P-module.

Question 14.15. Let @), R and S be rings, A an S-R-bimodule, B an R-Q-bimodule, and C an S-Q-
bimodule. Prove that there is an S-S-bimodule isomorphism Homg (A ®r B, C) = Homg(A, Homg (B, C)).

Question 14.16. Let A be an abelian category. Let L, M € ob(A). Letiy: L — L&M andip;: M — LOM
be the canonical morphisms defining the coproduct. Assume that L and M are subobjects of an object N,
meaning there are monomorphisms jr: L — N and jp: M — N.

(1) Prove that there is a morphism ¢y, pr: L& M — N such that ¢p, apin = jr and @op vive = ju-

(2) Let LN M = ker(or ar). Prove that if L is a subobject of M then L N M = L.

(3) Defining L + M as in Question prove that if LN M =0then L+ M = L& M.

(4) Define the meaning of an essential extension in A, so that it recovers the definition for modules
when A = R—Mod for a ring R.
(5) Let X,Y,Z € ob(A). Suppose that Z is an essential extension of Y. Prove that if Y is an essential

extension of X then Z is an essential extension of X. Prove that if Z =X &Y then X = 0.

Question 14.17. Let A be an abelian category (if you prefer, consider instead A = R—Mod where R is a
ring). Let o: P — L be a projective cover and a let 7: @ — L be an epimorphism.



(1) Prove that there exists a homomorphism p: P — Q with 7p = o and ker(p) small in P.
(2) Prove that if ker(7) is small in @ then p is a projective cover.

(3) Prove that if 7 is a projective cover then p is an isomorphism.

Question 14.18. Let A be an abelian category and let C = C(A). Let I be a set and let M; be an object
in C for each i € I. Assume that for each n € Z the coproduct €, ., M} exists in A.
(1) Prove that there is an object in C of the form -+ — @, ; M* — @, Mt — ... that defines the
coproduct in C of the objects M;. Conjecture how the product is defined.
(2) Prove that, for each n € Z, there is an isomorphism H"(D,.; M;) = @,; H"(M;) in A.
For part (3) below assume that A = R—Mod, the category of left modules over a ring R. Let X € ob(A).
(3) For each N € ob(C) define N ®p X is a similar way to the definition that was done for chain
complexes. Thus prove that H"((D,;c; Mi) ®r X) = @,.; H"(M; ®r X) in A for each n € Z.

Question 14.19. Continue the notation from Question [10.1

(1) Prove that f is null-homotopic if and only if there exists e € Home/(cone(idx ), Y) such that etiq,, = f.
Define and denote the mapping cyclinder of a morphism a by cyl(a) := cone(X~'r,). Consider the morphisms
A: X 5 X®X and p: X ® X — X defined by A = (idx, idx)? and p := (idx,0).

(2) Prove that there is a monomorphism i: X @& X — cyl(idx) in C with cokernel cok(i) = ¥ X.

(3) Prove that there is a morphism j: cyl(idx) — cone(idx) such that jiA = tiq,

(4) Prove that f is homotopic to f’ € Home(X,Y) if and only if there is a morphism k: cyl(idy) = Y

such that ki = (f, —f’). Hint: find a morphism k: cone(idy) — cyl(idx) such that j& = idcone(idy)-

Question 14.20. Let f: A — B be a homomorphism of rings. Recall the functor Res4 from Question 1).
Prove that if P is a projective B-module then proj.dim 4 (Resa(P)) < proj.dim 4 (Res4(B)).

Question 14.21. Let n € Z such that n # —1,0,1. Without calculating the image of Tor’(Z/nZ,—) on a
Z-module, explain why there must exist some Z-module X such that Tor?(Z/nZ, X) # 0.

Question 14.22. Let R be a ring.
(1) Let n > 0 and X and Y be R-modules. Prove that if f € Homg(R", X) and g € Homp(Y, X) and
im(f) C im(g) then there exists h € Hom(R",Y") such that f = gh.
From now on assume that 0 - L — M — N — 0 is an exact sequence of R-modules.
(2) Prove that if L and N are finitely generated then so is M.
(3) Prove that if N is finitely presented and if M is finitely generated then L is finitely generated. Hint:
apply the snake lemma to the exact sequence and a given presentation of N. Then use (2).
(4) Prove that if M is finitely presented and if L is finitely generated then N is finitely presented.
(5) Prove that if L and N are finitely presented modules then so is M. Hint: use the snake lemma.

Question 14.23. Let R be a ring. Let M, P and @ be R-modules and let f € Homg(P, M) and g €
Homp(Q, M) be surjective. Let S = {(p,q) e P®Q | f(p) = g(q)}.
(1) Prove that the maps h € Hompg(S, P) and k € Hompg(Q, M) defined by h(p,q) = p and k(p,q) = ¢
are surjective, and prove that ker(h) = ker(g) and ker(k) = ker(f).
(2) Prove Schanuel’s lemma: that if P and Q) are projective then P @ ker(g) = Q @ ker(f).
From now on assume [ is an ideal in R.
(3) Use Schanuel’s lemma to prove that if R/I is finitely presented then I is finitely generated.

(4) Construct an example of a finitely generated module that is not finitely presented.
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