Question 2.1. Let **Domain** be the category of integral domains (commutative rings for which 0 is the only zero-divisor) with <u>injective</u> ring homomorphisms. Let **Field** be the category of fields with field homomorphisms. Any integral domain R has a field of fractions $Frac(R) = \{\frac{r}{s} \mid 0 \neq s \in R \ni r\}$.

- (1) Show that objects and morphisms in **Field** define objects and morphisms in **Domain**, and hence explain why there is a full and faithful functor $I: \mathbf{Field} \to \mathbf{Domain}$. Explain why I is not dense.
- (2) Prove that any morphism $R \to R'$ in **Domain** defines a morphism $\operatorname{Frac}(R) \to \operatorname{Frac}(R')$ in **Field**.
- (3) Show that there is a dense functor Frac: **Domain** \rightarrow **Field** taking any domain to its field of fractions.
- (4) Prove that Frac is left adjoint to I.

Question 2.2. Let \mathcal{C} , \mathcal{D} and \mathcal{E} be categories, let $E, F \colon \mathcal{C} \to \mathcal{D}$ and $G, H \colon \mathcal{D} \to \mathcal{E}$ be functors, and let $\alpha \colon E \to F$ and $\beta \colon G \to H$ be natural transformations.

- (1) Show that the morphisms $G(\alpha_X)$ with $X \in ob(\mathcal{C})$ define a natural transformation $G(\alpha_-): GE \to GF$.
- (2) Show that the morphisms $\beta_{F(X)}$ with $X \in ob(\mathcal{C})$ define a natural transformation $\beta_{F(-)} : GF \to HF$.
- (3) Show that there are functors $G(?_-)$: Fun $(\mathcal{C}, \mathcal{D}) \to \text{Fun}(\mathcal{C}, \mathcal{E})$ and $?_{F(-)}$: Fun $(\mathcal{D}, \mathcal{E}) \to \text{Fun}(\mathcal{C}, \mathcal{E})$.

Question 2.3. Let \mathcal{C} be a category with one object * and assume that every morphism in \mathcal{C} is an isomorphism.

- (1) Prove that the set $G := \text{Hom}_{\mathcal{C}}(*,*)$ is a group, and that any functor from \mathcal{C} to the category **Set** of sets defines a G-set (meaning a set equipped with a G-action).
- (2) Describe the G-set corresponding to the functor $\operatorname{Hom}_{\mathcal{C}}(*,-)$. What does an equivariant function between G-sets correspond to? Translate Yoneda's lemma into the language of groups and actions.

Question 2.4. Let \mathcal{C} and \mathcal{D} be categories and let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ be functors. Consider the functors $\operatorname{Hom}_{\mathcal{D}}(F(-),?)$ and $\operatorname{Hom}_{\mathcal{C}}(-,G(?))$, both of the form $\mathcal{C}^{\mathsf{op}} \times \mathcal{D} \to \mathbf{Set}$. Let $\alpha: \operatorname{Hom}_{\mathcal{D}}(F(-),?) \to \operatorname{Hom}_{\mathcal{C}}(-,G(?))$ be a natural transformations (and hence a morphism in $\operatorname{Fun}(\mathcal{C}^{\mathsf{op}} \times \mathcal{D}, \mathbf{Set})$).

- (1) Show that, by setting $\eta_X := \alpha_{X,F(X)}(\mathrm{Id}_{F(X)})$ for any $X \in \mathrm{ob}(\mathcal{C})$, one defines a natural transformation $\eta \colon \mathrm{Id}_{\mathcal{C}} \to GF$ of functors of the form $\mathcal{C} \to \mathcal{C}$.
- (2) Prove that $\alpha_{X,Y}(p) = G(p)\eta_X$ for all $X \in ob(\mathcal{C}), Y \in ob(\mathcal{D})$ and $p \in Hom_{\mathcal{D}}(F(X), Y)$.
- (3) Let $\beta \colon \operatorname{Hom}_{\mathcal{C}}(-, G(?)) \to \operatorname{Hom}_{\mathcal{D}}(F(-), ?)$ be a natural transformation. Define a natural transformation $\varepsilon \colon FG \to \operatorname{Id}_{\mathcal{D}}$ with $\beta_{X,Y}(q) = \varepsilon_Y F(q)$ for all $X \in \operatorname{ob}(\mathcal{C})$, $Y \in \operatorname{ob}(\mathcal{D})$ and $q \in \operatorname{Hom}_{\mathcal{C}}(X, G(Y))$.

Now assume also that β is an inverse of α in the category Fun($\mathcal{C}^{\mathsf{op}} \times \mathcal{D}, \mathbf{Set}$), so F is left adjoint to G.

- (4) In terms of Question 2.2, prove that $(G\varepsilon_{-}) \circ \eta_{G(-)} = \operatorname{Id}_{G}$ and $\varepsilon_{F(-)} \circ (F\eta_{-}) = \operatorname{Id}_{F}$.
- (5) Prove that any functor that is right adjoint to F is naturally isomorphic to G. Similarly, prove that any functor that is left adjoint to G is naturally isomorphic to F.

Hint: begin by assuming that $G' : \mathcal{D} \to \mathcal{C}$ is another functor which is right adjoint to F. This means (F, G) and (F, G') are adjoint pairs. Hence $\alpha' : \operatorname{Hom}_{\mathcal{D}}(F(-), ?) \to \operatorname{Hom}_{\mathcal{C}}(-, G'(?))$ and $\beta' : \operatorname{Hom}_{\mathcal{C}}(-, G'(?)) \to \operatorname{Hom}_{\mathcal{D}}(F(-), ?)$ are natural isomorphisms such that $\alpha' = (\beta')^{-1}$ giving a diagram

$$\operatorname{Hom}_{\mathcal{C}}(X, G(Y)) \xleftarrow{\beta_{X,Y}} \operatorname{Hom}_{\mathcal{D}}(F(X), Y) \xleftarrow{\alpha'_{X,Y}} \operatorname{Hom}_{\mathcal{C}}(X, G'(Y))$$

for all objects $X \in \mathcal{C}$ and $Y \in \mathcal{D}$. It follows that, for any such Y, specifying X = G(Y) and considering Id_X on the left-hand side produces a morphism $G(Y) \to G'(Y)$ on the right-hand side.