1. Questions on §1.1.

Question 1.1. Show that in any category, every isomorphism is both a monomorphism and an epimorphism.

Question 1.2. Let \mathcal{C} be a category and write $\mathcal{C}^{\mathsf{op}}$ for the opposite category. Let $f \in \mathrm{Hom}_{\mathcal{C}}(X,Y)$, a morphism in \mathcal{C} , with corresponding morphism $f^{\mathsf{op}} \in \mathrm{Hom}_{\mathcal{C}^{\mathsf{op}}}(Y,X)$.

- (1) Prove that f^{op} is a monomorphism in \mathcal{C}^{op} if and only if f is an epimorphism in \mathcal{C} . Let f = gh for $h \in \text{Hom}_{\mathcal{C}}(X, \mathbb{Z})$ and $g \in \text{Hom}_{\mathcal{C}}(Z, Y)$.
 - (2) Prove that if f is an epimorphism (in \mathcal{C}) then g is an epimorphism. Using \mathcal{C}^{op} and what you have already shown, prove that if f is a monomorphism then h is a monomorphism.

Question 1.3. Let C be the category defined by a partially ordered set. Prove that every morphism is both a monomorphism and an epimorphism, and that the only isomorphisms are the identity morphisms.

Question 1.4. Let R be a unital ring. Let $ob(C) := \{*\}$, a singleton *, and let $Hom_{C}(*,*) = R$.

- (1) Using multiplication in R, make \mathcal{C} into a category. Show that any left R-module defines a functor of the form $\mathcal{C} \to \mathbf{Ab}$. Show that any R-module homomorphism defines a natural transformation between functors of the form $\mathcal{C} \to \mathbf{Ab}$.
- (2) Let $r \in R$. Show that r is a monomorphism (respectively, epimorphism) in C, if and only if, r is not a left (respectively, right) zero-divisor. Give an example of C and $0 \neq r \in R$ which is not a monomorphism and not an epimorphism.

Question 1.5. Let Grp be the category of groups and consider the product $Grp \times Grp$ of Grp with itself.

- (1) Show that there is a functor $P \colon \mathbf{Grp} \times \mathbf{Grp} \to \mathbf{Grp}$ sending any pair (G', G) of groups to their product $G' \times G$. Show that there is a functor $Q \colon \mathbf{Grp} \to \mathbf{Grp} \times \mathbf{Grp}$ sending a group H to (H, H).
- (2) Show that forgetting that a group is abelian defines a full and faithful functor $U: \mathbf{Ab} \to \mathbf{Grp}$.

Recall that for any $G \in \mathbf{Grp}$ the *commutator* is the subgroup [G, G] defined by finite products of the form $[x_1, y_1] \dots [x_n, y_n]$ where $n \geq 1$, $x_i, y_i \in G$ and $[x, y] := x^{-1}y^{-1}xy$. You are given [G, G] is normal in G.

(3) Show that sending $G \in \text{ob}(\mathbf{Grp})$ to $G/[G,G] \in \text{ob}(\mathbf{Ab})$ defines a dense functor $V : \mathbf{Grp} \to \mathbf{Ab}$.

Question 1.6. Let \mathcal{C} and \mathcal{D} be categories and let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ be functors such that $FG = \mathrm{Id}_{\mathcal{D}}$ and $GF = \mathrm{Id}_{\mathcal{C}}$. Prove that F is an equivalence of categories.