
3. Questions on §1.3 and §1.4.

Question 3.1. Consider the set N>0 as a partially ordered set, and consider the category Nop
>0.

(1) To each relation n ≤ n + 1 assign the function πn : Z/pn+1Z → Z/pnZ given by πn(a + pn+1Z) =
a+ pnZ. Explain why this defines an Nop

>0-diagram ρ in the category Ring of rings.

Let Ẑp := {(an + pnZ) ∈
∏

n>0 Z/pnZ | an − an+1 ∈ pnZ for all n > 0}.
(2) Explain why Ẑp is a subring of

∏
n>0 Z/pnZ and prove that there exist ring homomorphisms τn : Ẑp →

Z/pnZ such that πnτn+1 = τn for each n > 0.

(3) Prove that Ẑp equipped with (τn : n > 0) defines a limit of ρ.

Thus this exercise shows that the p-adic integers Ẑp are the inverse limit of Z/pZ← Z/p2Z← Z/p3Z← · · ·

Question 3.2. Let C be a preadditive category.

(1) Prove that for any X ∈ ob(C) the set EndC(X) := HomC(X,X) of endomorphisms of X is a ring.

(2) Let X,Y ∈ ob(C). Show that HomC(X,Y ) is an EndC(Y )-EndC(X)-bimodule.

(3) Let X,Y ∈ ob(C) such that their direct sum X ⊕ Y exists in C. Using that the direct sum is a

product and a coproduct, describe (in as much detail as you wish) the ring EndC(X ⊕ Y ).

(4) Let C be a K-category. So, by definition, for each X,Y, Z ∈ ob(C) the following statements hold.

(a) The set HomC(X,Y ) has the structure of a K-module.

(b) For each θ ∈ HomC(X,Y ) the map HomC(Y, Z)→ HomC(X,Z) given by φ 7→ φθ is K-linear.

(c) For each φ ∈ HomC(Y, Z) the map HomC(X,Y )→ HomC(X,Z) given by θ 7→ φθ is K-linear.

Prove that for each X ∈ ob(C) there is a ring homomorphism K → EndC(X).

Question 3.3. Let K be a commutative ring and recall the functor FreeK : Set→ K –Mod.

(1) Find a K-module isomorphism FreeK(H)× FreeK(H ′) ∼= FreeK(H ⊔H ′) for any H,H ′ ∈ ob(Set).

Now also let C be a category.

(2) By setting ob(KC) := ob(C) and HomKC(X,Y ) := FreeK(HomC(X,Y )) for each X,Y ∈ ob(C), define
a category KC. Prove that KD is a K-algebra when D is a category with only one object.

(3) Prove that KC is a K-category.

(4) Show that every functor C → K –Mod defines a of K-linear functor of the form KC → K –Mod.

Similarly, show that natural transformations between functors of the form C → K –Mod give rise to

natural transformations between K-linear functors of the form KC → K –Mod.

(5) Now assume C is the category defined by a partially ordered set. Explain how morphisms in KC
correspond to elements of K. Show that, here, the ring map from Question 3.2(4) is an isomorphism.
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