3. Questions on $\S 1.3$ and $\S 1.4$.

Question 3.1. Consider the set $\mathbb{N}_{>0}$ as a partially ordered set, and consider the category $\mathbb{N}_{>0}^{\mathsf{op}}$.

- (1) To each relation $n \leq n+1$ assign the function $\pi_n \colon \mathbb{Z}/p^{n+1}\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ given by $\pi_n(a+p^{n+1}\mathbb{Z}) = a+p^n\mathbb{Z}$. Explain why this defines an $\mathbb{N}_{>0}^{\mathsf{op}}$ -diagram ρ in the category **Ring** of rings.
- Let $\widehat{\mathbb{Z}}_p := \{(a_n + p^n \mathbb{Z}) \in \prod_{n>0} \mathbb{Z}/p^n \mathbb{Z} \mid a_n a_{n+1} \in p^n \mathbb{Z} \text{ for all } n > 0\}.$
 - (2) Explain why $\widehat{\mathbb{Z}}_p$ is a subring of $\prod_{n>0} \mathbb{Z}/p^n\mathbb{Z}$ and prove that there exist ring homomorphisms $\tau_n \colon \widehat{\mathbb{Z}}_p \to \mathbb{Z}/p^n\mathbb{Z}$ such that $\pi_n \tau_{n+1} = \tau_n$ for each n > 0.
 - (3) Prove that $\widehat{\mathbb{Z}}_p$ equipped with $(\tau_n : n > 0)$ defines a limit of ρ .

Thus this exercise shows that the *p-adic integers* $\widehat{\mathbb{Z}}_p$ are the inverse limit of $\mathbb{Z}/p\mathbb{Z} \leftarrow \mathbb{Z}/p^2\mathbb{Z} \leftarrow \mathbb{Z}/p^3\mathbb{Z} \leftarrow \cdots$

Question 3.2. Let \mathcal{C} be a preadditive category.

- (1) Prove that for any $X \in ob(\mathcal{C})$ the set $End_{\mathcal{C}}(X) := Hom_{\mathcal{C}}(X, X)$ of endomorphisms of X is a ring.
- (2) Let $X, Y \in ob(\mathcal{C})$. Show that $Hom_{\mathcal{C}}(X, Y)$ is an $End_{\mathcal{C}}(Y)$ - $End_{\mathcal{C}}(X)$ -bimodule.
- (3) Let $X, Y \in ob(\mathcal{C})$ such that their direct sum $X \oplus Y$ exists in \mathcal{C} . Using that the direct sum is a product and a coproduct, describe (in as much detail as you wish) the ring $\operatorname{End}_{\mathcal{C}}(X \oplus Y)$.
- (4) Let \mathcal{C} be a K-category. So, by definition, for each $X, Y, Z \in ob(\mathcal{C})$ the following statements hold.
 - (a) The set $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ has the structure of a K-module.
 - (b) For each $\theta \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$ the map $\operatorname{Hom}_{\mathcal{C}}(Y,Z) \to \operatorname{Hom}_{\mathcal{C}}(X,Z)$ given by $\varphi \mapsto \varphi \theta$ is K-linear.
 - (c) For each $\varphi \in \operatorname{Hom}_{\mathcal{C}}(Y, Z)$ the map $\operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{C}}(X, Z)$ given by $\theta \mapsto \varphi \theta$ is K-linear. Prove that for each $X \in \operatorname{ob}(\mathcal{C})$ there is a ring homomorphism $K \to \operatorname{End}_{\mathcal{C}}(X)$.

Question 3.3. Let K be a commutative ring and recall the functor $\text{Free}_K \colon \mathbf{Set} \to K - \mathsf{Mod}$.

- (1) Find a K-module isomorphism $\operatorname{Free}_K(H) \times \operatorname{Free}_K(H') \cong \operatorname{Free}_K(H \sqcup H')$ for any $H, H' \in \operatorname{ob}(\mathbf{Set})$. Now also let $\mathcal C$ be a category.
 - (2) By setting ob(KC) := ob(C) and $Hom_{KC}(X, Y) := Free_K(Hom_C(X, Y))$ for each $X, Y \in ob(C)$, define a category KC. Prove that KD is a K-algebra when D is a category with only one object.
 - (3) Prove that KC is a K-category.
 - (4) Show that every functor $\mathcal{C} \to K$ Mod defines a of K-linear functor of the form $K\mathcal{C} \to K$ Mod. Similarly, show that natural transformations between functors of the form $\mathcal{C} \to K$ Mod give rise to natural transformations between K-linear functors of the form $K\mathcal{C} \to K$ Mod.
 - (5) Now assume C is the category defined by a partially ordered set. Explain how morphisms in KC correspond to elements of K. Show that, here, the ring map from Question 3.2(4) is an isomorphism.