6. Questions on $\S 2.1$ and $\S 2.2$

Question 6.1. Consider the category of abelian groups, that is, the category of \mathbb{Z} -modules.

- (1) Let $n \in \mathbb{Z}$ with $n \neq -1, 0, 1$. Without using the classification of finitely generated modules over a principal ideal domain, explain why $\mathbb{Z}/n\mathbb{Z}$ is not a projective \mathbb{Z} -module.
- For parts (2) and (3) below we consider \mathbb{Q} as a \mathbb{Z} -module.
 - (2) Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z}) = 0$ and hence explain why $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \bigoplus_{i \in I} \mathbb{Z}) = 0$ for any set I. Hence prove by contradiction that \mathbb{Q} is not projective as a \mathbb{Z} -module.
 - (3) Consider the polynomial ring $\mathbb{Z}[x_1, x_2, x_3, \dots]$ in infinitely many variables, as a \mathbb{Z} -module. Show that there is a surjective \mathbb{Z} -module homomorphism $p \colon \mathbb{Z}[x_1, x_2, x_3, \dots] \to \mathbb{Q}$ that sends x_n to $\frac{1}{n}$. Prove that there does not exist a \mathbb{Z} -module homomorphism $i \colon \mathbb{Q} \to \mathbb{Z}[x_1, x_2, x_3, \dots]$ such that $pi = \mathrm{id}_{\mathbb{Q}}$.

Question 6.2. Let Q, R, S be rings, A an S-R-bimodule, B an R-Q-bimodule and C an S-Q-bimodule.

- (1) Prove that the abelian group $A \otimes_R B$ has the structure of an S-Q-bimodule. Prove that the abelian group $\text{Hom}_S(A, C)$ has the structure of an R-Q-bimodule.
- (2) Prove that there is an Q-Q-bimodule isomorphism $\operatorname{Hom}_S(A \otimes_R B, C) \cong \operatorname{Hom}_R(B, \operatorname{Hom}_S(A, C))$.
- (3) Assume that B is projective as a left R-module, and that A is projective as a left S-module. Prove that $A \otimes_R B$ is projective as a left S-module.

Question 6.3. Let $f: A \to B$ be a homomorphism of rings.

- (1) Prove that any left B-module N has the structure of an A-module, denoted $\operatorname{Res}_A(N)$, and defined by $a \cdot n := f(a)n$. Explain why this defines a functor $\operatorname{Res}_A : B \operatorname{\mathsf{Mod}} \to A \operatorname{\mathsf{Mod}}$.
- (2) Explain how B can be considered as a B-A-bimodule. Prove that for any $M \in \text{ob}(A-\mathsf{Mod})$ and $\theta \in \mathsf{Hom}_B(B \otimes_A M, N)$ there exists $\varphi \in \mathsf{Hom}_A(M, \mathrm{Res}_A(N))$ given by $\varphi(m) = \theta(1_B \otimes m)$.
- (3) Prove that for any $N \in \text{ob}(B-\mathsf{Mod})$ and $\varphi \in \text{Hom}_A(M, \operatorname{Res}_A(N))$ there exists an A-balanced map $B \times M \to N$ given by $(b,m) \mapsto b\varphi(m)$. Show that this defines a morphism $B \otimes_A M \to N$ in $B-\mathsf{Mod}$.
- (4) Prove that Res_A and $\operatorname{Hom}_B(B,-)$ are naturally isomorphic as functors $B-\operatorname{\mathsf{Mod}}\to A-\operatorname{\mathsf{Mod}}$.