Question 9.1. Let A be an abelian category where every short exact sequence splits.

- (1) Recall Question 4.3. Let $f \in \text{Hom}_{\mathcal{A}}(X,Y)$ and $g \in \text{Hom}_{\mathcal{A}}(Y,Z)$ such that gf = 0. Write down the meaning of the symbol $\ker(g)/\operatorname{im}(f)$. Prove that $Y \cong \operatorname{im}(f) \oplus \operatorname{im}(g) \oplus (\ker(g)/\operatorname{im}(f))$ in \mathcal{A} .
- (2) Let C = C(A), the category of cochain complexes in A, and $L \in ob(C)$. Construct $M \in ob(C)$ and $a \in Hom_{C}(L, M)$ such that $M^{n} = H^{n}(L)$ and $H^{n}(a)$ is an isomorphism for each $n \in \mathbb{Z}$.

Question 9.2. Define an orientated simplicial complex K with 5 vertices 1, 2, 3, 4 and 5, and setting

$$\begin{aligned} x_1 &= [1], \quad x_2 &= [2], \quad x_3 &= [3], \quad x_4 &= [4], \quad x_5 &= [5], \\ y_1 &= [1,2], \quad y_2 &= [1,3], \quad y_3 &= [1,4], \quad y_4 &= [2,3], \quad y_5 &= [2,4], \quad y_6 &= [3,4], \quad y_7 &= [3,5], \quad y_8 &= [4,5], \\ z_1 &= [1,2,3], \quad z_2 &= [1,2,4], \quad z_3 &= [1,3,4], \quad z_4 &= [2,3,4]. \end{aligned}$$

Consider matrices A and B over \mathbb{Q} with null spaces K_A and K_B and column spaces I_A and I_B

$$A = \begin{pmatrix} -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 \end{pmatrix}^{t}$$

 $K_A = \operatorname{span}_{\mathbb{Q}} \{ (1, -1, 0, 1, 0, 0, 0, 0)^{t}, (1, 0, -1, 0, 1, 0, 0, 0)^{t}, (0, 1, -1, 0, 0, 1, 0, 0)^{t}, (0, -1, 1, 0, 0, 0, -1, 1)^{t} \},$ $K_B = \operatorname{span}_{\mathbb{Q}} \{ (-1, 1, -1, 1)^{t} \},$

$$I_A = \operatorname{span}_{\mathbb{Q}} \{ (-1, 1, 0, 0, 0)^t, (-1, 0, 1, 0, 0)^t, (-1, 0, 0, 1, 0)^t, (0, 0, -1, 0, 1)^t \},$$

$$I_B = \operatorname{span}_{\mathbb{Q}} \{ 1, -1, 0, 1, 0, 0, 0, 0)^t, (1, 0, -1, 0, 1, 0, 0, 0)^t, (0, 1, -1, 0, 0, 1, 0, 0)^t \}.$$

- (1) Draw a picture that describes K. Using your picture, write down the number of path connected components, the number of holes whose boundaries are edges (respectively, triangles).
- (2) For the complex $S := C(K) \otimes_{\mathbb{Z}} \mathbb{Q}$ in $C(\mathbb{Q} \mathsf{Mod})$ compute the image of each $d_1^S(y_j \otimes 1)$ (respectively, $d_2^S(z_k \otimes 1)$) as a linear combination of $x_1 \otimes 1, \ldots, x_5 \otimes 1$ (respectively, $y_1 \otimes 1, \ldots, y_8 \otimes 1$).
- (3) Using the values of A, B, K_A , K_B , I_A and I_B , compute the homology of C(K) with coefficients in \mathbb{Q} in each degree, and find an element of $\ker(d_1^S) \setminus \operatorname{im}(d_2^S)$.
- (4) Explain how your calculations in (3) relate to your sketch and observations in (1).

Question 9.3. Let \mathcal{A} be an abelian category, $\mathcal{C} = C(\mathcal{A})$, and \mathcal{B} be the category defined by $\{0,1\}$ with 0 < 1.

- (1) Prove $\operatorname{Fun}(\mathcal{B}, \mathcal{A})$ is abelian by describing the zero object, direct sums, kernels and cokernels.
- (2) Define a functor D: Fun $(\mathcal{B}, \mathcal{A}) \to \mathcal{C}$ such that, for all $F \in \text{Fun}(\mathcal{B}, \mathcal{A})$, we have that $H^0(D(F)) = \text{ker}(F(0 \to 1))$, $H^1(D(F)) = \text{cok}(F(0 \to 1))$ and $H^n(D(F)) = 0$ for all $n \in \mathbb{Z}$ with $n \neq 0, 1$.
- (3) Define a functor $E: \mathcal{A} \to \operatorname{Fun}(\mathcal{B}, \mathcal{A})$ such that $H^n(D(E(M))) = 0$ for all $M \in \operatorname{ob}(\mathcal{A})$.
- (4) Consider the category $\operatorname{Fun}(\mathcal{B},\mathcal{C})$ and suppose we have a commutative diagram in \mathcal{C} of the form

which has exact rows. Prove that there is a commutative diagram in A with exact rows of the form