Question 11.1. Let R be a ring and fix the following short exact sequences in the category  $R-\mathsf{Mod}$ ,

$$\xi \colon 0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0, \quad \theta \colon 0 \longrightarrow A \xrightarrow{f'} B' \xrightarrow{g'} C \longrightarrow 0.$$

- (1) Consider  $(f, -f')^{\mathbf{t}} \colon A \to B \oplus B'$  and  $(g, -g') \colon B \oplus B' \to C$ . Let  $L \coloneqq \operatorname{im}((f, -f')^{\mathbf{t}})$  and  $N = \ker((g, -g'))$ . Prove that  $L \subseteq N$ . Define  $M \coloneqq N/L$ ,  $f''(a) \coloneqq (f(a), 0) + L$  and  $g''((b, b') + L) \coloneqq g(b)$  for  $a \in A$ ,  $b \in B$  and  $b' \in B$ . Show that the sequence  $\psi \colon 0 \to A \to M \to C \to 0$  is short exact.
- (2) Prove that if f' = -f and g' = g then  $\psi$  is split. Prove that if  $\xi$  is split then  $0 \to A \to B \to C \to 0$  is split then  $\theta$  and  $\psi$  are equivalent.

Let P be a projective module and  $z \colon P \to C$  be an epimorphism with kernel  $i \colon K \to P$ .

- (3) Prove that there exist  $x \in \operatorname{Hom}_R(P, B)$  and  $x' \in \operatorname{Hom}_R(P, B')$  such that gx = g'x' = z. Explain why  $\operatorname{im}((x, x')^t) \subseteq N$ . Prove that there exist  $y, y' \in \operatorname{Hom}_R(K, A)$  such that fy = xi and f'y' = x'i.
- (4) Define  $h: P \to M$  by h(p) := (x(p), x'(p)) + L for each  $p \in P$ . Show g''h = z and f''(y + y') = hi.
- (5) Carefully following the proof of the Theorem on page 66, prove that  $\hat{\xi} + \hat{\theta} = \hat{\psi}$  in  $\operatorname{Ext}_R^1(C, A)$ .

The operation discussed here is called the *Baer sum*. There is a version for  $\operatorname{Ext}_R^n(C,A)$ .

**Question 11.2.** Let  $f: A \to B$  be a homomorphism of rings. Recall the functor  $\operatorname{Res}_A : B - \operatorname{\mathsf{Mod}} \to A - \operatorname{\mathsf{Mod}}$  from Question 6.3(1) that reconsiders any B-module as an A-module using f.

(1) For any B-module M define a B-balanced map  $\operatorname{Res}_A(B) \times M \to \operatorname{Res}_A(M)$  and thus prove that  $\operatorname{Res}_A$  and  $\operatorname{Res}_A(B) \otimes_B -$  are naturally isomorphic. Hence explain why there is an adjunction

$$\operatorname{Hom}_A(\operatorname{Res}_A(M), T) \cong \operatorname{Hom}_B(M, \operatorname{Hom}_A(\operatorname{Res}_A(B), T)), \quad (M \in \operatorname{ob}(B - \operatorname{\mathsf{Mod}}), T \in \operatorname{ob}(A - \operatorname{\mathsf{Mod}})).$$

(2) Using that B is finitely presented in  $B-\mathsf{Mod}$ , Question 6.3(4), and a result in the notes, explain why  $\mathrm{Res}_A$  preserves colimits. Hence prove that  $\mathrm{Res}_A$  is an exact functor.

From now on assume that  $Res_A(B)$  is a projective A-module.

(3) Prove that  $\operatorname{Res}_A(P)$  is a projective A-module for any projective B-module P. Prove that if  $\cdots \to P^2 \to P^1 \to P^0 \to M \to 0$  is a projective resolution of a B-module M then applying  $\operatorname{Res}_A$  gives a projective resolution  $\cdots \to \operatorname{Res}_A(P^2) \to \operatorname{Res}_A(P^1) \to \operatorname{Res}_A(P^0) \to \operatorname{Res}_A(M) \to 0$  of  $\operatorname{Res}_A(M)$ .

Let S and T be A-modules, let M and N be B-modules, let  $\theta \colon \mathrm{Res}_A(M) \to S$  be an A-module homomorphism, and let  $\varphi \colon \mathrm{Hom}_A(\mathrm{Res}_A(B), T) \to N$  be a B-module homomorphism.

(4) Let  $\cdots \to Q^2 \to Q^1 \to Q^0 \to S \to 0$  and  $\cdots \to P^2 \to P^1 \to P^0 \to M \to 0$  be projective resolutions (in different module categories). Construct a commutative diagram of abelian groups of the form

(5) Construct, for each integer  $n \geq 0$ , a homomorphism  $\operatorname{Ext}_{\operatorname{Res}}^n(\theta, \varphi) \colon \operatorname{Ext}_A^n(S, T) \to \operatorname{Ext}_B^n(M, N)$ . Deduce the  $\operatorname{Eckmann-Shapiro\ lemma}$  for rings, which states that

$$\operatorname{Ext}_A^n(\operatorname{Res}_A(L), R) \cong \operatorname{Ext}_B^n(L, \operatorname{Hom}_A(\operatorname{Res}_A(B), R)), \quad (L \in \operatorname{ob}(B - \operatorname{\mathsf{Mod}}), R \in \operatorname{ob}(A - \operatorname{\mathsf{Mod}})).$$