Question 12.1. Let K be a field and let $R = K[x]/\langle x^n \rangle$ for some integer n > 1. Consider the R-module M = R/I where I is the ideal generated by $\overline{x}^d = x^d + \langle x^n \rangle$ where $1 \leq d < n$. Hence $\dim_K(M) = d$. By computing a projective resolution of the R-module M, calculate the global dimension gl. $\dim(R)$ of R.

Question 12.2. Let $m, n \in \mathbb{Z}$ with $m, n \neq -1, 0, 1$. Prove that $\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/\operatorname{gcd}(m, n)\mathbb{Z}$.

Question 12.3. Let R be a ring and let $M \in \mathsf{Mod} - R$. Recall that $\mathsf{Tor}_n^R(M, -) = 0$ if M is flat.

- (1) Prove that $\operatorname{Tor}_n^R(M,-)\colon R\operatorname{\mathsf{-Mod}}\to \mathbf{Ab}$ is an additive functor. Using that $\operatorname{\mathsf{Mod}}-R=R^{\operatorname{\mathsf{op}}}\operatorname{\mathsf{-Mod}}$ prove that if N is a left R-module then $\operatorname{\mathsf{Tor}}_n^R(-,N)\colon \operatorname{\mathsf{Mod}}-R\to \mathbf{Ab}$ is an additive functor.
- (2) Let $\cdots \to P_2 \to P_1 \to P_0 \to M \to 0$ be a flat resolution, $\Omega_0 M = M$ and $\Omega_n M = \operatorname{im}(P_n \to P_{n-1})$ for $n \ge 1$. Prove that $\operatorname{Tor}_i^R(\Omega_{n+1}M, X) \cong \operatorname{Tor}_{i+1}^R(\Omega_n M, X)$ for all $n \ge 0$, $i \ge 1$ and $X \in R$ -Mod.
- (3) Prove that the following statements are equivalent.
 - (a) There is a flat resolution $0 \to P_n \to \cdots \to P_0 \to M \to 0$.
 - (b) $\operatorname{Tor}_m^R(M,X) = 0$ for any m > n and any $X \in R$ -Mod.
 - (c) $\operatorname{Tor}_{n+1}^R(M,X) = 0$ for any $X \in R$ -Mod.

Question 12.4. Let $f: A \to B$ be a homomorphism of rings. Recall the functor $\operatorname{Res}_A : B - \operatorname{\mathsf{Mod}} \to A - \operatorname{\mathsf{Mod}}$ from Question 6.3(1) that reconsiders any B-module as an A-module using f.

(1) Using Question 11.2 prove that if $\operatorname{Res}_A(B)$ is projective and if R is an A-module then

$$\operatorname{inj.dim}_A(R) \geq \operatorname{inj.dim}_B(\operatorname{Hom}_A(\operatorname{Res}_A(B),R))$$

(2) Prove that if $\operatorname{Res}_A(B)$ is flat then inj. $\dim_B(L) \geq \operatorname{inj.dim}_A(\operatorname{Res}_A(L))$ for any B-module L.

Question 12.5. Let C(K) denote the chain complex associated to a simplicial complex K.

- (1) Prove that if $n \in \mathbb{Z}$ then $H_n(C(K)) \cong \mathbb{Z}^{f_n} \oplus \bigoplus_{i=1}^{d(n)} \mathbb{Z}/t_{ni}\mathbb{Z}$ for some $f_n \geq 0$ and $t_{n1}, \dots t_{nd(n)} > 0$.
- (2) Prove that if M is a \mathbb{Z} -module then there is an isomorphism of \mathbb{Z} -modules

$$H^n(C(K);M) \cong M^{f_n} \oplus \left(\bigoplus_{i=1}^{d(n-1)} M/t_{(n-1)i}M\right) \oplus \left(\bigoplus_{i=1}^{d(n)} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/t_{ni}\mathbb{Z},M)\right)$$

(3) Calculate $H^n(C(K); \mathbb{Z}/p\mathbb{Z})$ and $H_n(C(K); \mathbb{Z}/p\mathbb{Z})$ where p > 0 is prime.