13. Questions on §5.1, §5.2, §5.3

Question 13.1. Let K be a field, n > 0 be an integer and $R = K[x_1, \ldots, x_n]$, the power series.

- (1) Prove that, for each i = 1, ..., n, the ideal $\langle x_1, ..., x_i \rangle$ in R is a prime ideal.
- (2) Prove that the sequence $x_1, \ldots, x_n \in R$ is regular for R.
- (3) Prove that Kdim(R) = n.

Question 13.2. Let R be a commutative ring and n > 0.

(1) Let $a_1, \ldots, a_n \in R$, let $I = \langle a_1, \ldots, a_n \rangle$, the ideal generated by these elements, and let d > 0. Explain why every element $r \in I^d$ defines a homogeneous polynomial $f_d(x_1, \ldots, x_n) \in R[x_1, \ldots, x_n]$ of degree d such that $r = f_d(x_1, \ldots, x_n)$. State Hilbert's basis theorem from Algebra II.

From now on assume R is a noetherian ring.

- (2) Prove that there exists t > 0 and $g_1, \ldots, g_t \in R[x_1, \ldots, x_n]$ such that $f_{t+1} = g_1 f_1 + \cdots + g_t f_t$. Hence prove that there exists $h_1, \ldots, h_t \in R[x_1, \ldots, x_n]$, where each h_d is homogeneous of degree t + 1 d, such that $f_{t+1} = h_1 f_1 + \cdots + h_t f_t$. Hint: define h_d to be the degree t + 1 d part of g_d .
- (3) Let I be an ideal of R and let $r \in \bigcap_{d>0} I^d$. Prove that $r \in \langle r \rangle I$.

From now on, for simplicity, assume R is a local noetherian ring with maximal ideal \mathfrak{m} .

(4) Prove Krull's intersection theorem, that says that $\bigcap_{d>0} J^d = 0$ for any ideal J such that $J \subseteq \mathfrak{m}$.

Question 13.3. Let R be a commutative ring and let M be an R-module. Let $r, s \in R$ where r is regular for M and if s is regular for M/rM.

- (1) Prove that r is regular for M/sM.
- (2) Prove that if sm = 0 for some $m \in M$ then for each d > 0 we have $m = r^d m_d$ for some $m_d \in M$.

From now on assume that R is local noetherian with maximal ideal \mathfrak{m} , and assume M is finitely generated.

- (3) Prove that if $r, s \in \mathfrak{m}$ then s is regular for M and r is regular for M/sM.
- (4) Prove that if $x_1, \ldots, x_n \in R$ is a regular sequence for M and if σ is a permutation of $\{1, \ldots, n\}$ then the permuted sequence $x_{\sigma(1)}, \ldots, x_{\sigma(n)}$ is regular for M.

Question 13.4. Let $R = \mathbb{C}[x, y, z]$.

- (1) Prove that (x, y(1-x), z(1-x)) is a regular sequence for R considered as a module over itself.
- (2) Prove that (y(1-x), z(1-x), x) is not a regular sequence for R.