SPECIFICATION OF
DjVu IMAGE COMPRESSION FORMAT

Version of 1999 -04-29 15:46 EDT

Copyright notice
Copyright (© 1999 by AT&T.

1 Scope

This document defines a non-bit-preserving (lossy) compression method and file format for
coding color, grayscale, and bilevel images. It is particularly suitable for compound images
consisting of foreground text and background photographic or graphic images.

The compression method and file format are called “DjVu”. DjVu is pronounced like the
French words déja vu.

The algorithms specified in DjVu are designed for efficient storage, retrieval, and display
of scanned document images on the World Wide Web. DjVu provides high compression
rates by handling text and images differently, each in a highly efficient way. It provides
progressivity, allowing an application to first display the text, then to display the images using
a progressive buildup. It is designed to be implemented using data structures appropriate
for efficient navigation within an image. It is lightweight: the decoder and data can reside
in a small amount of memory, even for large images.

2 Definitions

DjVu is the name of this compression method and file format. It is always written with an
upper case ‘D’ and ‘V’, and a lower case ‘j’ and ‘u’.

IFF format. After a four-octet preamble, a DjVu file consists of a subfile coded using
the EA IFF 85 format, Electronic Arts’ public domain IFF standard for Interchange File
Format, released in January, 1985. In this document, the EA IFF 85 format is referred to as
“IFF” or “the IFF format”. The parts of the IFF format used with DjVu are described as
needed in this document.

Chunks are the basic unit of data in the IFF format. A DjVu file consists of a four-octet
preamble followed by a single chunk whose type is FORM. The FORM chunk contains
chunks of other types.

Arithmetic coding is a bit-level entropy coding method. An arithmetic encoder encodes
a sequence of events. For each event it takes as input a set of possible values for the event
and a probability associated with each possible event, along with the identity of the event
that is to be encoded; it produces a bitstream. An arithmetic decoder decodes a sequence of
events. For each event it takes as input a set of possible values for the event and a probability
associated with each possible event, along with the previously encoded bitstream. It produces
the identity of the event that was encoded.

Binary arithmetic coding is a special case of arithmetic coding in which each event
may have only two possible values.

The Z'-Coder is the binary arithmetic coder used in DjVu.

1999-04-29 15:46 EDT © 1999 AT&T

Page 2 of 39 DjVu Image Compression Format

The multivalue extension to the Z'-Coder is used in DjVu to use a binary arithmetic
coder to code events for which more than two values are possible.

Image layers are defined relative to a three-layer image model. In the three-layer model
defined for DjVu, an image consists of a foreground layer, typically containing printed text or
line art, a background layer, typically containing photographic images, texture, and colored
graphics, and a selection layer that specifies which image pixels are in the foreground layer
and which pixels are in the background layer. A single-layer model is also defined for DjVu.
In this model, an image consists of a single graphic layer.

Image types are defined in DjVu according to the image model used (one-layer or
three-layer) and the number of layers actually coded.

The preamble is a four-octet header at the beginning of a DjVu file. It precedes the
IFF-coded data.

A chunk header is an 8-octet header at the beginning of each IFF chunk. It identifies
the chunk type and specifies the length of the chunk.

An INFO chunk is a chunk present in some image types that describes some features
of the image, such as its size and spatial resolution.

A data header is part of the data within a chunk. When present it describes some
features of the image. In chunks of type Sjbz, the data header is arithmetically coded. In
chunks of other types, it is not arithmetically coded.

The wavelet transform is a method of transforming image data by dividing the image
into sub-bands. The result of the transformation is a set of wavelet coefficients, which
are then coded using an appropriate entropy coder. DjVu uses the Dubuc- Deslauriers -
Lemire (4,4) Interpolative Wavelet Transform, and codes the coefficients with the Z'-Coder.

Symbol-based coding is a method of coding textual image data by dividing the image
into characters. Character bitmaps are put into a symbol bitmap library. The image is
coded by referring to characters in the library and specifying where they are placed in the
image. In DjVu, the selection layer is coded using symbol-based coding. The bitmaps and
locations are coded using the Z’-Coder.

3 Conventions

3.1 Typeface conventions

IFF chunk types are shown in a bold typeface. Examples: FORM, Sjbz, BG44.

Secondary identifiers for FORM chunks are shown in a typewriter typeface. Examples:
DJVU, PM44, BM44. Note that the DJVU identifier is not the same as DjVu, the name of the
compression method and file format.

The names of image types are written in small capital letters. Examples: IW44, DJVU.
Note that the DJVU image type is not the same as DjVu, the name of the compression
method and file format.

Color component identifiers are shown in a bold typeface. Examples: Y, Cy,, C,.

The names of decisions to be decoded are shown in lower case letters in an italic typeface.
Example: the decode buckets decision.

The names of flags are shown in upper case letters in a sans serif typeface. Example: the
ACTIVE flag.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 3 of 39

Flag values are shown in upper case letters in a sans serif typeface, enclosed in a small

flag-like box. Examples: , , .

Decision values are shown in upper case letters in a sans serif typeface, enclosed in a
small rectangular box. Examples: [NOJ, [WHITE].

Bit values are shown in a bold typeface. Examples: bz, 1.

Names of contexts to be used for arithmetic coding are shown in lower case letters in an
italic typeface. Examples: the record type context, the offset type context.

Record type identifiers in an Sjbz chunk are shown in lower case letters in a sans serif
type face. Example: the start of image record.

Hexadecimal numbers are shown in a typewriter typeface, preceded by the charac-
ters “0x”. Example: The value 2000, written as a 16-bit hexadecimal number, is 0x07DO.
In pseudo-code, the symbol “:=" represents assignment. Example: A := Z means that
variable A takes on the current value of variable Z.

3.2 Mathematical notation

Standard mathematical notation is used where appropriate. In particular, the following
symbols are used.

|n| means the absolute value of n. Example: |- 3| = 3.

|z] means the floor of z, that is, the largest integer that is less than or equal to z.
Examples: |3.5] =3, [2] =2, |-3.5] = —4.

[z] means the ceiling of z, that is, the smallest integer that is greater than or equal to
z. Examples: [3.5] =4, [2] =2, [-3.5] = -3.

[a,b) means the the interval from a to b including a but not including b. The interval
may consist only of integer values, in which case the largest value is b — 1.

(a,b] means the the interval from a to b including b but not including a. The interval
may consist only of integer values, in which case the smallest value is a + 1.

(a,b) means the the interval from @ to b including neither a nor . The interval may
consist only of integer values, in which case the smallest value is a + 1 and the largest value
isb—1.

n (mod 2) is 0 if n is even and 1 if n is odd.

min(a, b) means the smaller value of a and b. Example: min(7,11) = 7.

The median of three values is the second largest of the values. In case two or all three

values are equal, any of the equal values may be taken to be the median. Examples: the
median of 4, 1, and 2 is 2; the median of 3, 1, and 3 is 3.

4 Introduction

This document specifies the DjVu compression method and file format. The format is de-
signed to allow the efficient representation and transmission of documents containing color,
grayscale, and bilevel text and images.

This document specifies a description of a compliant DjVu bitstream together with the
semantics that permit interpretation of the bitstream and rendering of the corresponding
decompressed image.

1999-04-29 15:46 EDT © 1999 AT&T

Page 4 of 39 DjVu Image Compression Format

4.1 Image models

DjVu supports both a multi-layer image model and a single-layer image model.

4.1.1 Multi-layer model

In the multi-layer model a document image is divided into two color layers: a foreground layer
and a background layer. Text coloring information is typically put into the foreground layer.
Other image data, including texture and photographic images, is put into the background
layer. The foreground and background layers use the same coding syntax, but are coded
independently.

A third layer, called the selection layer, is used to determine, for each pixel, whether
that pixel should be rendered using the color in the background layer or the color in the
foreground layer. The selection layer is coded independently from the color layers, using a
different coding syntax.

It is possible to omit some layers in a DjVu file. If only the selection layer is present, the
foreground is assumed to be solid black, and the background is assumed to be solid white.
This permits efficient coding of pure text images. If only a single color layer is present, it is
assumed to the background layer, and the background layer is selected for all pixels.

4.1.2 Single layer model

When the single-layer model is used, the only layer is an image layer. It may be a color layer
or a grayscale layer.

4.2 File format

The bitstream is coded using the EA IFF 85 format, preceded by a four-octet preamble. The
format consists of a file header and chunks. Each chunk consists of a chunk header followed
by chunk data. The chunk header consists of a four-octet type ID followed by a four-octet
integer specifying the number of octets of chunk data in the chunk.

In DjVu, chunk data consists of a short header whose length is determined by the chunk
type, followed by a stream of arithmetically coded data. The arithmetic coder used is the
Z'-Coder, a binary arithmetic coder. The Z'-Coder may be used in an adaptive mode, in
which probability estimates for binary choices are adapted, or in a pass-through mode, in
which the probability estimates are fixed. When exactly two choices are possible for a given
data element, the Z'-Coder is used without modification. When more than two choices are
possible for a given data element, a multivalue extension to the Z’-Coder is used.

4.3 Precedence of reference library

A source code reference library is provided that implements a DjVu-compliant decoder.
Every effort has been made to ensure that the written specification and the source code
library define identical decoders. In case of disagreement between the written specification
and the source code library, the source code library is to be considered correct.

5 Requirements: DjVu image types

DjVu supports DJVU Images, which are images coded according to the three-layer model.
DjVu also supports IW44 Images, which are images coded according to the single-layer

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 5 of 39

model.

5.1 DJVU image types
DjVu supports three three-layer image types, called DJVU Images.

5.1.1 Compound DJVU Image

A Compound DJVU Image contains a selection layer, a foreground layer, and a background
layer. The foreground layer may consist of one or three color components. Independently,
the background layer may consist of one or three color components.

5.1.2 Bilevel DJVU Image

A Bilevel DJVU Image contains only a selection layer; the foreground layer is implicitly
entirely black, and the background layer is implicitly entirely white.

5.1.3 Photo DJVU Image

A Photo DJVU Image contains only a background layer. The background layer may consist
of one or three color components.

5.2 IW44 image types
DjVu supports two single-layer image types, called IW44 Images.

5.2.1 Color IW44 Image

A Color IW44 Image contains only a single layer, consisting of three color components.

5.2.2 Grayscale IW44 Image

A Grayscale IW44 Image contains only a single layer, consisting of one color component.

6 Requirements: Structure of DjVu files

6.1 DjVu file format

6.1.1 Preamble to identify DjVu files

The first four octets of a DjVu file are 0x41 0x54 0x26 0x54. This preamble is not part of
the EA IFF 85 format, but it is required in order to identify DjVu files.

6.1.2 Use of IFF format

After the four-octet preamble, a DjVu file consists of a subfile coded using the EA IFF 85
format. The parts of the IFF format used within DjVu are described as needed in this
document.

6.2 IFF chunk structure
6.2.1 IFF file structure

An IFF file consists of a number of chunks. Each chunk has a header and data. The header
of a chunk consists of a four-octet chunk-type field and a four-octet length field. The length
is coded most significant octet first. The strings that identify the types of the chunks in

1999 -04-29 15:46 EDT © 1999 AT&T

Page 6 of 39 DjVu Image Compression Format

Secondary
FORM chunk Number of chunks of each type
Image type identifier INFO Sjbz BG44 FG44 PM44 BM44
Compound DJVU DJVU 1 1 >1 1 — —
Bilevel DJVU DJVU 1 1 — — — —
Photo DJVU DJVU 1 - >1 — — —
Color IW44 PM44 — — — — >1 —
Grayscale IW44 BM44 — — — — — >1

Table 1: DjVu image types

an IFF file are defined by the application. A chunk whose type is not recognized by the
application is to be ignored.

In the IFF format, chunks may be nested: a chunk may contain other chunks as part
of its data. In the DjVu format, there is only one chunk at the outermost nesting level, a
FORM chunk. All other chunks appear within the FORM chunk, sequentially, with no
nesting.

Each chunk, including those nested within another chunk, must begin on an even octet
boundary; that is, the number of octets in the file before the beginning of the chunk must
be an even integer. If necessary to ensure that a chunk begins on a even octet boundary, a
single padding octet whose value is 0x00 is placed before a chunk.

6.2.2 IFF headers

An IFF header consists of a four-octet ASCII string identifying the chunk type, a four-octet
integer containing the length of the data, most significant octet first, and the data. The
length of the data includes only the actual data in the chunk. It does not include the eight-
octet IFF header. It does not include the padding octet that may be present after the data.
It does include data headers that may be present in the data. The length of a FORM chunk
includes the padding octets that may be present between chunks nested within the FORM
chunk.

6.3 IFF chunk sequence

The IFF chunk types used in DjVu are the following: FORM, INFO, Sjbz, BG44, FG44,
PM44, and BM44. All files contain a FORM chunk, inside which all the other chunks are
nested. The first four data octets of the FORM chunk are a secondary identifier. In DjVu,
the secondary identifier gives some information about the image type. The types of other
chunks used in a single DjVu file, and the permitted number of each type, depend on the
image type according to the Table 1.

In a DJVU Image, an INFO chunk is present. The INFO chunk is the first chunk within
the FORM chunk. In a Compound DJVU Image, the chunks after the INFO chunk may
occur in any order, although the order of the BG44 chunks, if there are more than one, is
significant.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 7 of 39

6.4 IFF chunk types
6.4.1 FORM chunk type

The FORM chunk type is used to encapsulate the entire image content of a DjVu file. The
FORM chunk is the first chunk in the file. The data in the FORM chunk consists of a
four-octet ASCII string, called the secondary identifier, followed by all the image data.

The secondary identifier is DJVU for a Compound DJVU Image, Bilevel DJVU Image,
or Photo DJVU Image. The secondary identifier is PM44 for a Color IW44 Image. The
secondary identifier is BM44 for a Grayscale IW44 Image.

6.4.2 INFO chunk type

The INFO chunk type is used in the Compound DJVU Image, Bilevel DJVU Image, and
Color DJVU Image file types to convey information about the image as a whole, and about
the coding used. The INFO chunk data consists of six fields in nine octets:

e Image width. A two-octet unsigned integer, most significant octet first, specifying
the width of the image in pixels.

e Image height. A two-octet unsigned integer, most significant octet first, specifying
the height of the image in pixels.

e Minor version number. A one-octet unsigned integer, specifying the minor version
number of the encoder being used.

e Major version number. A one-octet unsigned integer, specifying the major version
number of the encoder being used.

e Spatial resolution. A two-octet unsigned integer, least significant octet first, speci-
fying the spatial resolution of the image in dots per inch (dots per 2.54 cm).

e Gamma. A one-octet unsigned integer, equal to 10 times the gamma, of the device on
which the image is expected to be rendered.

Any additional data in the INFO chunk is to be ignored.

6.4.3 Sjbz chunk type

The Sjbz chunk type is used to code selection layer data when the image consists of multiple
layers. The Sjbz chunk type is also used to code a bilevel image when the image consists of
a single bilevel layer. A file may contain at most one Sjbz chunk. The structure of an Sjbz
chunk is described in Section 8.

6.4.4 BG44 chunk type

The BG44 chunk type is used to code color image data for the background of the image. A
file may contain more than one BG44 chunk. The structure of a BG44 chunk is described
in Section 7.

1999 -04-29 15:46 EDT © 1999 AT&T

Page 8 of 39 DjVu Image Compression Format

6.4.5 FG44 chunk type

The FG44 chunk type is used to code color image data for the foreground of the image. A
file may contain at most one FG44 chunk. The structure of an FG44 chunk is described in
Section 7.

6.4.6 PM44 chunk type

The PM44 chunk type is used to code color image data. It is used when the image consists
of a single layer with three color components. A file may contain more than one PM44
chunk. The structure of a PM44 chunk is described in Section 7.

6.4.7 BM44 chunk type

The BM44 chunk type is used to code grayscale image data. It is used when the image
consists of a single layer with one color component. A file may contain more than one BM44
chunk. The structure of a BM44 chunk is described in Section 7.

6.5 Alignment of layers

The different color layers may be coded at different resolutions. During image reconstruction,
layers are aligned according to the bottom left corner of their bottom left pixels.

7 Requirements: Color and grayscale image coding

7.1 Scope of color and grayscale image coding

This section describes the coding of chunks of type BG44, FG44, PM44, and BM44.
Chunks of type BG44 and FG44 may be color or grayscale chunks. Chunks of type PM44
are color chunks. Chunks of type BM44 are grayscale chunks.

All of these color and grayscale chunk types have the same structure. The chunk con-
sists of a chunk header followed by arithmetically coded wavelet coefficient updates. The
coefficients are organized in a hierarchical fashion.

7.2 Definitions

e Color component. Compound DJVU Images and Photo DJVU Images contain color or
grayscale image data. Color IW44 Images contain color image data. Grayscale IW44
Images contain grayscale image data.

Color image data is coded using three color components, called Y, Cy,, and C,. These
correspond to the usual YC,C, color space, adjusted to facilitate transformation to
the RGB color space.

Grayscale image data is coded using one color component, called Y. This corresponds
to the grayscale intensity of the image.

e Color layer. A color layer is either:

1. The foreground layer of a Compound DJVU Image, coded in one F(G44 chunk,
or

2. The background layer of a Compound DJVU Image, coded in one or more BG44
chunks, or

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 9 of 39

Band Coefficient Bucket

number indices indices
0 0-—-15 0
1 16 — 31 1
2 32 — 47 2
3 48 — 63 3
4 64 — 127 4 -7
5 128 — 191 8—11
6 192 — 255 12 —-15
7 256 — 511 16 — 31
8 512 — 767 32 —47
9 768 — 1023 48 — 63

Table 2: Wavelet coefficient bands.

3. The only layer of a Photo DJVU Image, coded in one or more B(G44 chunks, or
4. The only layer of a Color IW44 Image, coded in one or more PM44 chunks, or
5. The only layer of a Grayscale IW44 Image, coded in one or more BM44 chunks.

e Color chunk. A color chunk is a chunk of type BG44, FG44, PM44, or BM44.
A color chunk contains wavelet coefficient update information for one or three color
components.

e Block. A rectangular array of pixels of size 32 x 32 or less. The blocks are numbered
starting in the lower left corner of the image. All blocks are 32x 32 except possibly those
along the right edge or top edge; those blocks may be smaller if the image dimensions
are not divisible by 32.

e Block count. The number of blocks in the image, denoted by Np.

e Wayvelet block. The set of coefficients associated with one block of the image, in one
color component. There are 1024 wavelet coefficients in a wavelet block, numbered 0
through 1023. The coeflicients in a wavelet block have effects on the reconstruction of
other blocks in the image, but for coding purposes they are considered to be localized
within the block in which they are coded.

e Bucket. A particular set of 16 wavelet coefficients within a wavelet block. A wavelet
block consists of 64 buckets, numbered 0 through 63. Table 2 gives the correspondence
between coefficients and buckets.

e Band. A subset of wavelet coefficients for a given color component. There are 10 bands.
The correspondence among band numbers, coefficient coefficients, and bucket coeffi-
cients is given by Table 2.

1999 -04-29 15:46 EDT © 1999 AT&T

Page 10 of 39 DjVu Image Compression Format

Cycle. Data for one color component consisting of coefficient updates for all coefficients,
that is, for all 10 bands, starting with band 0. Within one band, only some coefficients
are updated, but within a cycle, all coefficients are updated. The last cycle of a color
component may have fewer than 10 bands.

e Color band number. The current band number for a color component. Each color
component’s color band number starts at 0, and increases by 1 at the end of selected
slices until it reaches 9; then it is reset to 0.

e Color band. A collection of update information for a subset of the coefficients of one
color component of the image, consisting of updates of all the coefficients in the image
whose indices within their respective blocks are those corresponding to the current
color band’s color band number.

e Slice. A slice is the highest level subdivision of a color chunk. A slice contains data
for one color band for each of the color components in a color layer, that is, for three
color components for a color image, or for one color component for a grayscale image.

e Block band. A collection of update information for a subset of the coefficients of one
color component of a wavelet block, consisting of updates of the coefficients in the
block whose indices are those corresponding to a given band.

e Chrominance delay counter. An integer counter that indicates how many slices in a
color layer contain a color band only for the Y color component, and not for the Cy
and C; color components. The chrominance delay counter is initially set to the value
specified in the INFO chunk for the color layer, and decremented by 1 after each slice
in the color layer until it reaches 0. See Section 7.5.1.1.

e Step size table. A table that indicates the precision to which each coefficient in a color
component is currently stored. There are three such tables for a given color layer,
one for each color component. Each such table has 16 entries. Each entry specifies
the current step size for 1, 4, 16, 64, or 256 different coefficient indices, according to
Table 3.

7.3 Color chunks within an DjVu file

There may be more than one BG44 or PM44 or BM44 chunks in a DjVu file. If there is
more than one such color chunk, the coefficient updating is continuous across the chunks,
and the data is taken from the chunks in the order in which they appear in the file. Nothing
is reinitialized at the beginning of chunks after the first color chunk of these types, except
for the low level arithmetic coder. The probability estimates for the arithmetic coder are
not reinitialized.

In a Compound DJVU Image file, in which both an FG44 chunk and one or more BG44
chunks appear in the same file, the coding of the foreground layer, using the FG44 chunk,
is independent of the coding of the background layer, using the B(G44 chunks.

Each color layer is coded using a Dubuc- Deslauriers - Lemire (4, 4) Interpolative Wavelet
Transform. Each layer of the image is transformed into a set of wavelet coefficients, one

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 11 of 39

wavelet coefficient for each pixel in the original image. This transform is especially effective
for coding images at high compression ratios.

The value of each coefficient is coded in a distributed fashion, through a number of cycles.
Within one cycle, each coefficient is updated once (that is, in only one of the 10 bands), and
receives approximately one additional bit of information. Specifically, from cycle to cycle the
absolute value of a coefficient is first narrowed down by eliminating possible values for the
most significant non-zero bit until the correct most significant non-zero bit is found. The
sign is coded in the same cycle in which the most significant non-zero bit is found. Then in
each subsequent cycle, one additional bit of the value is coded.

7.4 Color chunk data headers

A color chunk begin with a data header consisting of 2 or 9 octets, as follows:

e Serial number. A one-octet unsigned integer. The serial number of the first chunk
of a given chunk type is 0. Successive chunks are assigned consecutive serial numbers.

e Number of slices. A one-octet unsigned integer. The number of slices coded in the
chunk.

e Major version number and color type. One octet containing two values, present
only if the serial number is 0. The least significant seven bits designate the major
version number of the standard being implemented by the decoder. For this version of
the standard, the major version number is 1. The most significant bit is the color type
bit. The color type bit is 0 if the chunk describes three color components. The color
type bit is 1 if the chunk describes one color component.

e Minor version number. A one-octet unsigned integer, present only if the serial
number is 0. This octet designates the minor version number of the standard being
implemented by the decoder. For this version of the standard, the minor version
number is 2.

e Image width. A two-octet unsigned integer, most significant octet first, present only
if the serial number is 0. This field indicates the number of pixels in each row of the
image described by the current chunk. The image width will be less than the width
of the original image if the chunk describes a layer coded at lower resolution than the
original image. For a BG44 or FG44 chunk, if W is the width of the original image
specified in the INFO chunk, and w is the width of the image described by the current
chunk, then the allowable values of w are:

S ELELELELSEELELS] G e]

For a BM44 or PM44 chunk, there are no restrictions on the image width.

e Image height. A two-octet unsigned integer, most significant octet first, present only
if the serial number is 0. This field indicates the number of pixels in each column of the
image described by the current chunk. The image height will be less than the height
of the original image if the chunk describes a layer coded at lower resolution than the

1999-04-29 15:46 EDT © 1999 AT&T

Page 12 of 39 DjVu Image Compression Format

original image. For a BG44 or FG44 chunk, if H is the height of the original image
specified in the INFO chunk, and A is the height of the image described by the current
chunk, then the allowable values of h are:

SLELELELELELFEE] G R e]

For a BG44 or F(G44 chunk, It must be the case that

Wl =5

For a BM44 or PM44 chunk, there are no restrictions on the image width.

e Initial value of chrominance delay counter. A one-octet unsigned integer, present
only if the serial number is 0. Only the least significant seven bits are used. The most
significant bit is ignored, but should be set to 1 by an encoder. This field specifies the
initial value of the chrominance delay counter, used as described below.

7.5 Color chunk data
7.5.1 Hierarchical structure of a coded color layer

The data coded in a color chunk consists of information needed to reconstruct wavelet coef-
ficients. There are one or three color components; each color component has its own set of
wavelet coefficients. Within a color component, there are 1024 wavelet coefficients for each
32 x 32 block of the image.

Within one layer (background or foreground for a DJVU Image, or the only layer for an
IW44 Image), coding is divided into a series of slices. All the slices may be coded in one
chunk, or they may be separated into a number of chunks. The only difference it makes
whether the slices are coded in one chunk or in several chunks is in the order of progressive
rendering; the final reconstructed image will be the same. The number of slices in each chunk
is specified in the color chunk data header. One slice contains refinement data for one color
band for each color component. Within a color component, all coefficients in a slice are in
the same band.

A color chunk describes the full image at the spatial resolution implied by the image
width and image height fields in the data header of the first chunk of the same type as the
current color chunk.

The sequence of color components within a slice is: first Y, then Cy, then C,, although
the Cy, and C, components are not present in a slice if the chunk describes grayscale data
or if the chrominance delay counter is not equal to 0 at the time the slice is coded.

A color band is made up of coefficient updates for all blocks in the image, but only for
coefficients that are in the currently active band for the color component. Each block’s set
of updates within a color band is called a block band. The block bands are coded block by
block, first from left to right within the bottom row, then by rows moving up the image, left
to right within each row.

Within a block band, there are 16, 64, or 256 coefficient updates. The coefficients being
updated are divided into buckets, each bucket containing 16 coefficients. Thus, a block band
contains 1, 4, or 16 buckets. The buckets and coefficients being updated are determined by
the color band number according to Table 2.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 13 of 39

7.5.1.1 Band counting. The header of the first color chunk contains an initial value for
the chrominance delay counter. It may be 0 or a positive integer.

At the beginning of the first color chunk, the color band number for each of the three
color components is set to 0.

At the beginning of each slice, the chrominance delay counter is tested. If the chrominance
delay counter is 0 and if the slice describes color image data, then all three color components
are present. If the chrominance delay counter is greater than 0 or if the chunk describes
grayscale image data, only the Y color component is present for the slice.

At the end of a slice, the following actions take place:

e The color band number is increased by 1 for the Y component. If the new color band
number exceeds 9, it is set to 0.

e If the chrominance delay counter is 0, the color band numbers for the Cy, and C,
components are increased by 1. If the new color band numbers exceed 9, they are set
to 0. (Note: The color band numbers for the Cy, and C, components are always equal
to each other.)

e If the chrominance delay counter is greater than 0, it is decreased by 1.

A color chunk ends when the number of slices specified in the color chunk header have
been coded.

At the beginning of each color chunk after the first for a given color layer, the chrominance
delay counter and color band numbers retain the values they had at the end of the previous
color chunk.

7.5.2 Quantization of coeflicients

At each point during the decoding process, each wavelet coefficient has been determined to
a certain precision. The current value a of the coefficient is stored, and a current step size S
is associated with the coefficient. The current step size for each coefficient is governed by a
step size table. The index of the entry in the step size table that contains the step size for
a given coefficient is given in Table 3.

If a # 0, the coefficient is said to be “active”. If @ > 0, the range of possible actual
values of the coefficient is [a — S,a + S). If a < 0, the range of possible actual values of the
coefficient is (a — S,a + S]. If a = 0, the coefficient is not active, and the range of possible
actual values of the coefficient is (—25, 25).

When the value of a given coefficient is updated, there are three cases.

1. If the coefficient is not active (a = 0), then there are three possibilities for the next
current interval: (—2S5,—S], (=S, S), or [S,2S). If the coefficient remains not active,
then the next interval is (—S5, S). Otherwise, the sign of the coefficient is decoded to
choose between the other two intervals.

2. If the coefficient is active and a > 0, then there are two possibilities for the next current
interval: [a — S,a) or [a,a + S). The next decision for the coefficient is the increase
coefficient absolute value decision. If this decision is [YES], then [a,a + S) is the next
interval. If the decision is [NOJ, then [a — S, a) is the next interval.

1999-04-29 15:46 EDT © 1999 AT&T

Page 14 of 39 DjVu Image Compression Format

Coefficient Index into

index step size table
0 0
1 1
2 2
3 3
4-7 4
8—11 5}
12—15 6
16—31 7
32—47 8
48—63 9
64—127 10
128—191 11
192—255 12
256—511 13
512—-767 14
768—1023 15

Table 3: Step size table indices related to wavelet coefficient indices.

3. If the coefficient is active and a < 0, then there are two possibilities for the next current
interval: (a — S,a] or (a,a + S]. The next decision for the coefficient is the increase
coefficient absolute value decision. If this decision is [YES], then (a — S, a] is the next
interval. If the decision is [NOJ, then (a,a + S] is the next interval.

7.5.2.1 Initialization of step sizes. The initial values of the step sizes are given in Table 4.
There is a separate table of step sizes for each color component. Each color component’s
table is given the same initial values.

7.5.2.2 Reduction of step sizes. Each slice contains one band of coefficient update infor-
mation for each color component. At the end of a slice, the step sizes are divided by 2 for
the current band for each color component. The indices of the step sizes to be reduced for
each band are given in Table 5. For a given color band, either 1 or 7 step sizes are reduced.

Non-zero step sizes are always integer powers of 2. When a step size of 1 is divided by 2,
the result is set to 0.

7.6 Coefficient updating

Within a block band, each coefficient in the block band may be updated. A block band
is decoded by a preliminary flag computation followed by four passes. One or more of the
passes may be skipped or may not require any decoding, depending on conditions present at
the beginning of the block band’s coding and on tests made during the decoding of previous
passes with the block band. The 4 passes are:

1. Decoding the decode buckets decision for the block band.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 15 of 39

Step size Initial

table index value
0 0x04000
1 0x08000
2 0x08000
3 0x10000
4 0x10000
5 0x10000
6 0x20000
7 0x20000
8 0x20000
9 0x40000
10 0x40000
11 0x40000
12 0x80000
13 0x40000
14 0x40000
15 0x80000

Table 4: Initialization of step sizes.

2. Decoding the decode coefficients decision for buckets in the block band.

3. Decoding the activate coefficient decision for coefficients in the block band, and deter-
mining the sign of newly activated coefficients.

4. Decoding the update decisions for previously active coefficients.

During the coefficient updating process, a number of binary decisions are decoded. Each
decision is decoded using the Z'-Coder. Decoding a decision using the Z'-Coder may be
done with a conditioning context, or it may be done using the pass-through mode of the
Z'-Coder. For color chunk decoding, there are up to 584 conditioning contexts, that is, up
to 294 conditioning contexts for the background layer and up to 294 conditioning contexts
for the foreground layer. Within a layer, there are 98 conditioning contexts for each color
component; one or three color components may be present for each layer. The contexts are
as follows:

e 1 context in each color component is for the decode buckets decision.

e 80 contexts in each color component are for the decode coefficients decision, 8 for each
of the 10 bands.

e 16 contexts in each color component are for the activate coefficient decision.

e 1 context in each color component is for the increase coefficient absolute value decision.

1999 -04-29 15:46 EDT © 1999 AT&T

Page 16 of 39 DjVu Image Compression Format

Band Step size
number table indices
0-6

7
8
9

10

11

12

13

14

15

o

© 00 ~1TO O W~

Table 5: Step size reduction schedule.

The coefficient sign is decoded using the pass-through mode of the Z'-Coder without
a context. For all occurrences of the increase coefficient absolute value decision for any
coefficient after the first such decision, the increase coefficient absolute value decision is
coded using the pass-through mode of the Z'-Coder.

7.6.1 Preliminary flag computation.

Flags are computed for each coefficient in the block band, for each bucket in the block band,
and for the block band as a whole.

1. Flag computation for coefficients. For each coefficient in a block band, there is a value
of the step size. For each coefficient, there are two flag values, based on the value of
the coefficient and the value of the coefficient’s step size. The flags are called ACTIVE
and POTENTIAL. At most one of the flag values may be for a coefficient in a given
cycle. If the coefficient’s step size is either 0 or greater than or equal to 0x8000, then

both flag values are . The two flag values are:

(a) ACTIVE: The coefficient’s ACTIVE flag value is if the coefficient’s step size is
greater than 0 and less than 0x8000, and the coefficient’s value is not 0. Otherwise
the coefficient’s ACTIVE flag value is . The sign of the coefficient is known,
and the position of the most significant non-zero bit of its absolute value is known.

(b) POTENTIAL: The coefficient’s POTENTIAL flag value is if the coefficient’s
step size is greater than 0 and less than 0x8000, and the coefficient’s value is 0.
Otherwise the coefficient’s POTENTIAL flag value is . It is possible that
the value of this coefficient will become non-zero during this cycle.

2. Flag computation for buckets. Each bucket has two flag values associated with it
depending on the flags of the 16 coefficients in the bucket. The bucket flags have the
same names as the coefficient flags. Both, one, or neither of the bucket flags may be

for a bucket in a given cycle.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 17 of 39

(a) ACTIVE: The bucket’s ACTIVE flag is if any of the coefficients in the bucket

have ACTIVE flags . Otherwise the bucket’s ACTIVE flag value is .

(b) POTENTIAL: The bucket’s POTENTIAL flag is if any of the coefficients in
the bucket have POTENTIAL flags [SET]. Otherwise the bucket’s POTENTIAL flag

value is [CLEAR].

3. Flag computation for the block band. The block band has two flag values associated
with it depending on the flags of the buckets in the block band. The block band flags
have the same names as the bucket flags. Both, one, or neither of the block band flags
may be for a block band in a given cycle. The block band flag values are not
needed if the number of buckets in the block band is less than 16.

(a) ACTIVE: The block band’s ACTIVE flag is if any of the buckets in the block
band have ACTIVE flags . Otherwise the block band’s ACTIVE flag value is
(b) POTENTIAL: The block band’s POTENTIAL flag is if any of the buckets in the
block band have POTENTIAL flags . Otherwise the block band’s POTENTIAL

flag value is .

7.6.2 Block-band-decoding pass.

If the block band contains fewer than 16 buckets, the block-band-decoding pass is skipped
and the bucket decoding pass is performed. If the block band’s ACTIVE flag is , the block-
band-decoding pass is skipped and the bucket decoding pass is performed. If the block band
contains 16 buckets, and if the block band’s ACTIVE flag is , and if the block band’s
POTENTIAL flag is , then the decode buckets decision is decoded. If the decode buckets
decision is [YES], the bucket-decoding pass is performed for the block band. If the decode
buckets decision is [NOJ, the bucket-decoding pass and the newly-active-coefficient-decoding
pass are skipped for the block band.

7.6.2.1 Arithmetic decoding. For each color component, there is a single context for use
in decoding the decode buckets decision.

If the value returned by the Z'-Coder for the decode buckets decision is 1, then the value
of the decode buckets decision is [YES]. If the value returned by the Z'-Coder is 0, then the
value of the decode buckets decision is [NOJ.

The Z'-Coder context for the decode buckets decision for each color component is initially
set to 0.

7.6.3 Bucket-decoding pass.

Each bucket has a flag called the coefficient-decoding flag. If the bucket-decoding pass is
not skipped, then for each bucket in the block band, if the bucket’s POTENTIAL flag is ,
then the decode coefficients decision for the bucket is decoded. If the the decode coefficients

decision is [YES], then the bucket’s coefficient-decoding flag is [SET]; otherwise it is .

7.6.3.1 Arithmetic decoding. For each color component, there are 80 contexts for use in
decoding the decode coefficients decision. For each of the 10 bands in a color component,
there are 8 contexts. There are four contexts that may be used if the block band’s ACTIVE

1999-04-29 15:46 EDT © 1999 AT&T

Page 18 of 39 DjVu Image Compression Format

flag is [SET), and four contexts that may be used if the block band’s ACTIVE flag is [CLEAR].
The index of the context to be used among the 4 possible contexts is computed as follows.
If the band number is 0, then ny = 0. Otherwise, the value of ng is computed as follows:

1. The bucket number is multiplied by 4, giving a result .

2. The coefficients numbered £, t + 1, £ + 2, and £ + 3 are examined, and the number ng
of coefficients with value 0 among the four coefficients is counted.

3. If ng = 4, nyg is reduced to 3.

Then the value of ng is used as the index to one of the four contexts, for the given color
component, band, and block band ACTIVE flag value.

If the value returned by the Z'-Coder for the decode coefficients decision is 1, then the
value of the decode coefficients decision is [YES|. If the value returned by the Z'-Coder is 0,
then the value of the decode coefficients decision is [NO.

Each of the 80 Z’-Coder contexts for the decode coefficients decision for each color com-
ponent is initially set to 0.

7.6.4 Newly-active-coefficient-decoding pass.

If the newly-active-coefficient-decoding pass is not skipped, then for each bucket in the block
band, the coefficient-decoding flag is tested. For a given bucket, if the bucket’s coefficient-
decoding flag is , then the following procedure is followed for each coefficient in the
bucket: If the coefficient’s POTENTIAL flag is , then the activate coefficient decision is
decoded. If the the activate coefficient decision is [YES], then the sign of the coefficient s,
with value +1 or —1, is decoded. Then the coefficient is set equal to

3 . .
3 X s+ X coefficient’s step size.

7.6.4.1 Arithmetic decoding. For each color component, there are 16 contexts for use in
decoding the activate coefficient decision. There are eight contexts that may be used if the
block’s ACTIVE flag is , and eight contexts that may be used if the block’s ACTIVE flag is
. The index of the context to be used from among the 8 possible contexts is computed
as follows:

1. The coefficients in the bucket are examined, and the number n, of them whose PO-
TENTIAL flag is is computed.

2. Loop through the coefficients whose POTENTIAL flag is .

(a) Compute 3, = min(7,n,).

(b) Use i, as the index into the set of 8 possible contexts, given the color component
and value of the block’s ACTIVE flag.

(c) Decode the activate coefficient decision using the context; if the activate coefficient
decision is [YES|, decode the sign using the pass-through mode of the Z'-Coder,
and set n, = 0.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 19 of 39

(d) If n, > 0, decrement n, by 1.

If the value returned by the Z'-Coder for the activate coefficient decision is 1, then the
value of the activate coefficient decision is [YES|. If the value returned by the Z'-Coder is 0,
then the value of the activate coefficient decision is [NO.

The decoding of the sign s, of a newly activated coefficient uses the pass-through mode
of the Z'-Coder. If the value returned by the Z'-Coder is 1, then sy = —1. If the value
returned by the Z'-Coder is 0, then s = +1.

Each of the 16 Z'-Coder contexts for the activate coefficients decision for each color
component is initially set to 0.

7.6.5 Previously-active-coefficient-decoding pass.

For all coefficients in the block band, the following procedure is followed: If the coefficient’s
ACTIVE flag is , the increase coefficient absolute value decision is decoded. If the decision
is [NOJ, the absolute value of the coefficient is reduced by half of the coefficient’s step size. If
the decision is [YES], the absolute value of the coefficient is increased by half of the coefficient’s
step size. A step size of 1 is a special case. If the step size is 1 and the decision is [NO|, the
absolute value of the coefficient is reduced by 1. If the step size is 1 and the decision is [YES],
the value of the coefficient is unchanged.

7.6.5.1 Arithmetic decoding. For each color component, there is a single context for use in
decoding the increase coefficient absolute value decision. This context is used to decode the
increase coefficient absolute value decision if the absolute value of the coefficient is less than
or equal to 3 times the value of the step size for the coefficient. Otherwise, the pass-through
mode of the Z'-Coder is used. (Note: the effect of this test is that only the second most
significant bit of a coefficient’s value is decoded using this context; other less significant bits
are decoded using the pass-through mode of the Z'-Coder, with no context.)

Whether the context or the pass-through mode is used, if the value returned by the Z'-
Coder for the increase coefficient absolute value decision is 1, then the value of the increase
coefficient absolute value decision is [YES]|. If the value returned by the Z'-Coder is 0, then
the value of the increase coefficient absolute value decision is [NOJ.

The Z'-Coder context for the increase coefficient absolute value decision for each color
component is initially set to 0.

7.7 Image reconstruction

At any time during the decoding process, an image may be reconstructed from the current
values of the wavelet coefficients already decoded. The wavelet coefficients are stored in
three two-dimensional arrays one for each of the Y, C;,, and C, color components. Each
array has one entry for each image block. Each entry itself is a 1024-element one-dimensional
array. The elements of each one-dimensional array are the wavelet coefficients. The wavelet
coefficients are signed fixed-point numbers with six fractional bits.

7.7.1 Sequence of operations

To reconstruct the image from the coefficients, the following steps must be performed:

1999-04-29 15:46 EDT © 1999 AT&T

Page 20 of 39 DjVu Image Compression Format

1. Reordering coefficients. For each color component, each of the 1024-element coeffi-
cient arrays is converted into a 32 x 32 coefficient array. These square coefficient arrays
are embedded into a larger reconstruction array whose size is the size of the image.

2. Inverse wavelet transform. For each color component, the inverse wavelet trans-
form is applied to the larger reconstruction array. The inverse transform is applied
at progressively finer scales, and within each scale in each of the two directions, first
vertically, then horizontally.

3. Precision reduction. For each color component, the data values in the reconstruction
array are reduced to eight bits.

4. Conversion to RGB color space. For color images, the eight-bit values of each
pixel in the YC,,C, color space are converted to the corresponding eight-bit values in
the RGB color space.

7.7.2 Coordinate system

For indexing the blocks within a color component, the origin (0, 0) is at the lower left corner
of the image. Horizontal indices increase rightward, and vertical indices increase upward.

For indexing the coefficients within a 32 x 32 block coefficient array, the origin (0, 0) is at
the lower left corner of the block. Horizontal indices increase rightward, and vertical indices
increase upward.

For indexing the coefficients and color values within the image in the reconstruction
array, the origin (0,0) is at the lower left corner of the image. Horizontal indices increase
rightward, and vertical indices increase upward.

When the array of coefficients for a block is embedded into the reconstruction array, the
origin of the block coefficient array is placed into the lower left corner of the section of the
reconstruction array that corresponds to the block.

7.7.3 Reordering coefficients

Within each color component, the coefficients in each block are moved from a 1024-element
linear array into a 32 x 32 square array. The square array from each block is embedded in a
reconstruction array the size of the full image.

The mapping from indices in the linear array to indices in the square array is as follows:
if the ten bits of the index in the linear array are bgbgb7bgbsbsbgbsbibg, bg being the
most significant bit of the index, then the bits of the row index of the square array are
b;bgbsb7bg, by being the most significant bit of the row index, and the bits of the column
index of the square array are bgbabgbgbs, bg being the most significant bit of the column
index.

If the number of rows in the image is not a multiple of 32, then blocks along the top
edge of the image have fewer than 32 rows. If the number of columns in the image is not a
multiple of 32, then blocks along the right edge of the image have fewer than 32 columns. For
all such blocks, all coefficients are coded; however, coefficients that fall outside the boundary
of the image after the coefficient mapping described above are never used, regardless of their
value.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 21 of 39

7.7.4 Inverse wavelet transform

The inverse transformation from wavelet coefficients to color values is done independently
for the three color components. Within a color component the transformation is done for a
decreasing sequence of scale parameters s. For a given scale parameter s, the transformation
is done first for columns, then for rows. Within a column or row, the transformation is done
in two passes, a lifting pass and then a prediction pass.

The scale parameter’s initial value is s = 16. After the vertical and horizontal trans-
formations have been done with a given value of s, the value of s is divided by 2 and the
next pair of transformations is performed. After the vertical and horizontal transformations
have been performed with s = 1, the inverse wavelet transform for the color component is
complete.

The pair of transformations for a given value of s involve only rows and columns whose
indices are multiples of s. The vertical transformation involves transforming the coefficients
in column 0 whose row indices are multiples of s, then repeating the transformation for all
other columns whose column indices are multiples of s. Some of the coefficients transformed
by the vertical transformation will already have been transformed during earlier iterations
with larger values of the scale parameter s.

The horizontal transformation involves transforming the coefficients in row 0 whose col-
umn indices are multiples of s, then repeating the transformation for all other rows whose
row indices are multiples of s. The coefficients transformed by the horizontal transformation
will have been transformed by the vertical transformation during the first pass for the cur-
rent scale parameter s. Some of the coefficients transformed by the horizontal transformation
will already have been transformed during earlier iterations with larger values of the scale
parameter s.

To transform one column or row of coefficients:

1. If transforming a column, select the coefficients in the current column that come from
rows whose indices are multiples of s. The coefficient from the row whose index is ks
is referred to as c;. The largest value of & is referred to as kpyax-

If transforming a row, select the coefficients in the current row that come from columns
whose indices are multiples of s. The coefficient from the column whose index is ks is
referred to as c;. The largest value of k is referred to as kyax-

2. Lifting. For each even-numbered subscript &, 0 < k& < knax, replace coefficient ¢z with
9(Ck—1 + Ck-H) - (Ck_3 + Ck+3) + 16
32 '

Special cases: If k —3 < 0,use cx_3=0. Ifk—1<0,usecp_1 =0. f k+1> knpax,
use cxy1 = 0. If £ + 3 > kpax, use cgr3 = 0.

3. Prediction. For each odd-numbered subscript &, 0 < k < knax, modify coefficient ¢z
as follows:

(a) If £k —3 >0 and k 4+ 3 < kmax, replace ¢ with

9(ck—1 + Cry1) — (Ck—s + Crys) + 8

cr + 16

1999-04-29 15:46 EDT © 1999 AT&T

Page 22 of 39 DjVu Image Compression Format

(b) Otherwise, if k£ + 1 < kyay, replace ¢ with

Cr—1+ Cpy1 + 1J

Ck+{ 9

(c) Otherwise, replace ¢ with
Cr + Cp—1.

7.7.5 Precision reduction for color image data

After the inverse transformation, a color value in the reconstruction array for each color
component is a signed fixed-point value with 6 fractional bits. This value is to be rounded

to the nearest integer V. Then if V' < —128, V is set to —128. If V' > 128, V is set to 127.
Finally, in the luminance (Y) color component only, V' is increased by 128.

7.7.6 Precision reduction for grayscale image data

After the inverse transformation, a grayscale value in the reconstruction array is a signed
fixed-point value with 6 fractional bits. This value is to be rounded to the nearest integer V.
Then if V < —128, V is set to —128. If V > 128, V is set to 127. Finally, V is replaced by
127 - V.

7.7.7 Conversion from YC,,C, color space to RGB color space

For a color image, each pixel has a value in each of the color component reconstruction
buffers. To convert a pixel’s YC,C, values to the corresponding RGB values, perform the
following transformation:

G =Y —(1/4)Cy, —(3/4)C:
B = Y +(7/4)Cs

8 Requirements: Selection layer and black and white coding

8.1 General considerations.

Selection layer coding is used in Compound DJVU Images. In such images, there are three
layers. The foreground layer is coded in one F(G44 chunk, and is rendered as described in
Section 7. The background layer is coded in one or more BG44 chunks, and is rendered as
described in Section 7. The selection layer is coded using one Sjbz chunk. Black pixels in
the selection layer specify those pixels that are to be rendered using the foreground color.
All other pixels are to be rendered using the background color.

Black and white coding is used in Bilevel DJVU Images. In such images, there are three
layers. The foreground layer is black. The background layer is white. The selection layer
is coded using one Sjbz chunk. The selection layer specifies those pixels that are to be
rendered in black. All other pixels are to be rendered in white.

An Sjbz chunk contains a single arithmetically encoded data stream, coded using the
Z'-Coder. All data, including headers and record types, is coded in this arithmetically coded
stream.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 23 of 39

8.2 Arithmetic coding

The arithmetically coded data in an Sjbz chunk consists logically of records. The record
types are listed in Table 6, and described in Section 8.4. The records consist of fields. The
fields present for records of each record type are listed in Table 6. The fields within a record
are coded in the order listed in Table 6 for records of that type. Details of the coding for
each field appear in Section 8.5.

A field may contain one or more data elements. The data elements consist of flags, pixel
colors, and integers. Because of the nature of arithmetic coding, the records, fields, and data
elements are not of fixed sizes, and do not necessarily begin on bit boundaries within the
data stream.

Flags are binary decisions, each coded using the Z'-Coder with a particular context.
There are two different contexts for flags, the eventual image refinement context and the
offset type context.

Pixel colors are binary decisions, coded using the Z'-Coder with a particular context.
For pixel colors, there are 3072 different contexts. There are 1024 contexts used for direct
coding of bitmaps; these correspond to the 29 = 1024 different combinations of values
that the pixels in the direct coding template can assume. There are 2048 contexts used for
refinement coding of bitmaps; these correspond to the 2! = 2048 different combinations of
values that the pixels in the refinement coding template can assume.

Integers are coded using the multivalue extension to the Z'-Coder, described in Sec-
tion 8.2.2. There are 15 contexts for coding multivalued integers, as described in Table 7.

8.2.1 Initialization of the Z’-Coder

All Z'-Coder contexts are initialized to the value 0. This applies both to contexts used to
encode single bit values, including pixel colors, and to contexts that are part of an integer
context used by the multivalue extension to the Z'-Coder.

8.2.2 The multivalue extension to the Z'-Coder for coding of numeric data

Quantities that can take on multiple values are coded as integers using the multivalue ex-
tension to the Z’-Coder. This extension of the Z'-Coder allows all data in the bitstream to
be coded using the same coder, the Z'-Coder. There are 15 integer contexts, specified in
Table 7. A single integer context includes a number of binary contexts.

One integer context consists of a binary decision tree. See Figure 1 for an example of
part of such a tree. The root node of the tree corresponds to the decision about the sign of
the number n being decoded. Each of the two subtrees under the root corresponds to a set
of decisions that eventually identify a range in which n lies. The subtrees under the nodes
corresponding to identified ranges are complete binary trees that identify the exact value
of n.

Each node of the binary decision tree for an integer context maintains its own binary
probability estimation context for the Z'-Coder. The trees for different integer contexts
are completely independent. Thus each node of a tree contains probability information
conditioned on a conditioning context. The conditioning context consists of both the type of
value being coded (i.e., the selection of the integer context), and of the values of the decisions
coded so far when encoding the current integer.

1999-04-29 15:46 EDT © 1999 AT&T

Page 24 of 39

Record type
coded value

Record type

DjVu Image Compression Format

Fields coded

0 Start of image Record type
Image size
Eventual image refinement flag
1 New symbol, add to Record type
image and library Absolute symbol size
Bitmap by direct coding
Location relative to a previous symbol
2 New symbol, add to Record type
library only Absolute symbol size
Bitmap by direct coding
3 New symbol, add to Record type
image only Absolute symbol size
Bitmap by direct coding
Location relative to a previous symbol
4 Matched symbol with Record type
refinement, add to Index of matching symbol in bitmap library
image and library Relative symbol size
Bitmap by refinement coding
Location relative to a previous symbol
5 Matched symbol with Record type
refinement, add to Index of matching symbol in bitmap library
library only Relative symbol size
Bitmap by refinement coding
6 Matched symbol with Record type
refinement, add to Index of matching symbol in bitmap library
image only Relative symbol size
Bitmap by refinement coding
Location relative to a previous symbol
7 Matched symbol, copy to | Record type
image without Index of matching symbol in bitmap library
refinement Location relative to a previous symbol
8 Non-symbol data Record type
Absolute symbol size
Bitmap by direct coding
Absolute location
9 Image refinement data Record type
(This record type is treated as end of data:
all remaining data in the chunk is skipped)
10 Comment Record type
Comment length
Comment data
11 End of data Record type

© 1999 AT&T

Table 6: Record types and fields coded for each record type

1999-04-29 15:46 EDT

DjVu Image Compression Format

Context name

Page 25 of 39

Integer data coded using this context

record type
mmage Ssize

matching symbol index

symbol width
symbol height
symbol width difference

symbol height difference

symbol column number

symbol row number

same line column offset

same line row offset

new line column offset

new line row offset

comment length

comment octet

record type
image height and image width

index within the symbol library of the symbol matching the
current symbol

number of pixels in the width of the current symbol
number of pixels in the height of the current symbol

number of pixels that must be added to the width of the
matching symbol to obtain the width of the current symbol

number of pixels that must be added to the height of the
matching symbol to obtain the height of the current symbol

column number of the absolute location of the left edge of the
current symbol (leftmost column of the image is column
number 1)

row number of the absolute location of the top edge of the
current symbol (bottom row of the image is row number 1)

number of pixels that must be added to the column number
of the right edge of the previous symbol on the current text
line to obtain the column number of the left edge of the
current symbol

number of pixels that must be added to the row number of
the current baseline on the current text line to obtain the
row number of the bottom edge of the current symbol

number of pixels that must be added to the column number
of the left edge of the first symbol on the current text line
to obtain the column number of the left edge of the current
symbol

number of pixels that must be added to the row number of
the bottom edge of the first symbol on the current text line
to obtain the row number of the top edge of the current
symbol

the number of octets in the current comment

one octet in the current comment

Table 7: Multivalued integer contexts for arithmetic coding

1999 -04-29 15:46 EDT

© 1999 AT&T

Page 26 of 39 DjVu Image Compression Format

[
_1 0 e
—2 -3 1 2 a
® 0 e ®
—4 -5 —6 -7 3 4 5% 6 5
® O O ®
QO 0 ® 0 QO ® QO 0

-8 -9 -10-11-12-13-14-15 7 8 9 10 11 12 13 14

Figure 1: Part of the coding tree for multisymbol arithmetic coding. Each internal node
represents one context with its own probability information, to be used by the Z’-Coder.
The square node at the root of the tree represents the Phase 1 decision, whether the integer
n being coded is negative. The filled circles are the Phase 2 nodes, moving down the tree in
ever-increasing ranges. The open circles represent Phase 3 decisions, traversing a complete
binary subtree to reach the specific value of n. A decoded value of 0 indicates a left branch
in this tree. A decoded value of 1 indicates a right branch.

This method allows high compression efficiency by allowing the coder to adapt to the
statistics of the data. In effect, the binary probability information stored collectively in the
nodes of the decision tree closely approximates the probability distribution of the underlying
multivalued integer.

The allowable range of values for n is always specified. The smallest value that n could
possibly take is denoted by [. The largest number that n could possibly take is denoted by h.
When [and h are equal, 7 is equal to both of them, and no Z'-Coder decoding is performed.

The decoder maintains a non-negative intermediate value v, defined as follows:

| ifn>0
v =
In| =1 ifn <O0.

At the end of the process of decoding an integer, v is converted to n, the value of the decoded
integer.

The value of an integer is coded by making a sequence of binary decisions, each one
narrowing the set of possible values that the integer can possibly take. The decisions are
based on traversing a binary decision tree to one of its leaves. Note: although the tree
conceptually has a large number of nodes, it is possible in an implementation to allocate
memory only for those nodes actually traversed.

Decoding proceeds in four phases.

8.2.2.1 Phase 1. Phase 1 determines the sign of n. A value of 0 returned by the Z'-Coder
means that n < 0. A value of 1 returned by the Z'-Coder means that n > 0.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 27 of 39

8.2.2.2 Phase 2. Phase 2 determines a range of possible values for v. The Z'-Coder is
invoked repeatedly to answer the question “Is the value of v in the range being tested?” The
sequence of ranges tested is given in Table 8. A value of 0 returned by the Z'-Coder means
that v is not in the specified range, and the next range in the sequence must be tested. A
value of 1 returned by the Z'-Coder means that v is in the specified range, and decoding is
to proceed to Phase 3.

0
1-2
3—6
7—14
15—-30
31-62
63—126
127—-254
255—510
511-1022
1023—-2046
2047—-4094
4095—8190
8191—-16382
16383—32766
32767—-65534

65535—131070
131071—-262142

Table 8: Sequence of ranges in which v may fall.

8.2.2.3 Phase 3. Phase 3 consists of determining the exact value of v within the range
determined in Phase 2. If Phase 2 determined that v = 0, then Phase 3 is skipped.

Otherwise, since the size of the range is a power of 2, the corresponding subtree is a
complete binary tree. The sequence of coding decisions is based directly on traversing the
binary tree. At each node, 0 returned by the Z'-Coder means left branch (smaller values of
v) and 1 means right branch (larger values of v). The bits returned by the Z'-Coder during
Phase 3 are the bits of v, most significant bit first.

8.2.2.4 Phase 4. In Phase 4, the unsigned value v is converted to n, the signed value to
be returned, as follows:

{ v if n is non-negative, as determined in Phase 1;
n =

—v — 1 if n is negative, as determined in Phase 1.

In any of the phases, if the input values of [and h (the range of allowable values) prede-
termine any decision, then the coding for that decision is not performed; the predetermined
decision is assumed.

1999 -04-29 15:46 EDT © 1999 AT&T

Page 28 of 39 DjVu Image Compression Format

Each type of integer has its own set of binary contexts. Thus the probability information
will reflect the underlying probability distribution of the particular type of integer. The
Z'-Coder probability state indices of all the binary nodes are initialized to 0.

8.3 Image reconstruction

Records in an Sjbz chunk are interpreted in the order in which they appear. A start of
data record specifies the dimensions of the image. An image refinement data record indicates
the end of the Sjbz chunk. An end of data record indicates the end of the Sjbz chunk. A
comment record contains uninterpreted data.

A record identified by any other record type describes one bitmap. The model used in
DjVu for the selection layer is based on symbol-based coding. Bitmaps are placed into the
reconstructed image as follows: The image is initially entirely white. When a bitmap is
placed into the image, the pixels that are black in the current symbol become black at the
appropriate position in the reconstructed image. Once a pixel in the reconstructed image
becomes black, it remains black.

Because symbols in document images are often similar to each other, it is often possible
to obtain more efficient coding by making use of previously coded symbols. As symbols are
decoded, their bitmaps may be placed into a symbol bitmap library. There is exactly one
symbol bitmap library. Once a symbol has been placed into the symbol bitmap library, later
records may cause copies of the symbol to be placed into the image, or may define a new
bitmap by refining the bitmap in the library.

Depending on the record type, the symbol bitmap may be described by direct coding,
by refinement coding, or by a copy operation. In direct coding, all pixels of the bitmap are
coded directly, without reference to any other bitmap. In refinement coding, all pixels of
the bitmap are also coded directly, but a bitmap in the library is used to make the coding
more efficient. In a copy operation, the pixels of the bitmap are the same as the pixels of a
bitmap in the library.

Depending on the record type, the bitmap may or may not be placed into the image. If
the bitmap is placed into the image, then depending on the record type, it may be placed
either at an absolute location or at a location relative to a previously placed bitmap.

Depending on the record type, the bitmap may or may not be placed into the symbol
bitmap library. The first symbol placed into the library has index 0. Subsequent symbols
are assigned consecutive integer indices.

The pixels of the reconstructed image are arranged in a rectangular coordinate system.
For the pixel in the lower left corner of the image, the column number is 1 and the row
number is 1. All coordinates refer to the pixels themselves, not to the edges between pixels.

8.4 Records

Records in Sjbz chunks have the following interpretations.

8.4.1 Start of image

A start of image record is the first record in an Sjbz chunk. It specifies the dimensions of
the image.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 29 of 39

8.4.2 New symbol, add to image and library

A new symbol, add to image and library record specifies the bitmap of a symbol that is coded
directly and placed into the reconstructed image and into the symbol bitmap library.

8.4.3 New symbol, add to library only

A new symbol, add to library only record specifies the bitmap of a symbol that is coded directly
and placed into the symbol bitmap library but not into the image.

8.4.4 New symbol, add to image only

A new symbol, add to image only record specifies the bitmap of a symbol that is coded directly
and placed into the reconstructed image but not into the symbol bitmap library.

8.4.5 Matched symbol with refinement, add to image and library

A matched symbol with refinement, add to image and library record specifies the bitmap of a
symbol that is coded by refinement of a symbol in the symbol bitmap library and placed
into the reconstructed image and into the symbol bitmap library.

8.4.6 Matched symbol with refinement, add to library only

A matched symbol with refinement, add to library only record specifies the bitmap of a symbol
that is coded by refinement of a symbol in the symbol bitmap library and placed into the
symbol bitmap library, but not into the reconstructed image.

8.4.7 Matched symbol with refinement, add to image only

A matched symbol with refinement, add to image only record specifies the bitmap of a symbol
that is coded by refinement of a symbol in the symbol bitmap library and placed into the
reconstructed image, but not into the symbol bitmap library.

8.4.8 Matched symbol, copy to image without refinement

A matched symbol, copy to image without refinement record specifies the location at which
the bitmap of a symbol in the symbol bitmap library is to be placed into the reconstructed
image.

8.4.9 Non-symbol data

A non-symbol data record specifies a direct coded bitmap to be placed at an absolute location
in the reconstructed image. A bitmap of non-symbol data is not placed into the symbol
bitmap library.

8.4.10 Image refinement data

An image refinement data record is treated like an end of data record. All data beginning
with such a record until the end of the Sjbz chunk is skipped.

8.4.11 Comment

A comment record contains data whose interpretation is not specified by the standard.

8.4.12 End of data

An end of data record is the last record of an Sjbz chunk.

1999 -04-29 15:46 EDT © 1999 AT&T

Page 30 of 39 DjVu Image Compression Format

8.5 Fields
The following fields are coded in records of types specified in Table 6 and in Section 8.4.

8.5.1 Record type

The record type is coded by the multivalue extension to the Z'-Coder using the record type
context. The range of allowable record types is from 0 to 11. The coded values are specified
in the first column of Table 6.

8.5.2 Image size

The width and height of the image are coded by the multivalue extension to the Z'-Coder
using the image size context. The width is coded first, then the height. The range of
allowable values is from 0 to 262142. The width and height of a Compound DJVU Image
or Bilevel DJVU Image must be the same as the width and height of the image specified in
the INFO chunk.

8.5.3 [Eventual image refinement flag

The EVENTUAL IMAGE REFINEMENT flag is coded once, in the start of image record, to notify
the decoder whether image refinement data will eventually be provided. It is a binary value,
coded by the Z'-Coder using the eventual image refinement context. The coded value 1

means and the coded value 0 means . Note: This flag is always in

the current version of the standard, but it may be in later versions.

8.5.4 Index of matching symbol in bitmap library

The index of the matching symbol in the bitmap library is coded with the multivalue ex-
tension to the Z'-Coder, using the matching symbol index context. The range of allowable
values is from 0 to one less than the number of symbols currently in the bitmap library.

8.5.5 Absolute symbol size

The width of a symbol is coded by the multivalue extension to the Z'-Coder, using the
symbol width context. Then the height of a symbol is coded by the multivalue extension
to the Z'-Coder, using the symbol height context. The range of allowable values for both of
these data elements is from 0 to 262142.

8.5.6 Relative symbol size

The signed differences between the width and height of the current symbol and the width
and height respectively of the matching symbol are coded by the multivalue extension to
the Z'-Coder using the symbol width difference context for the width and using the symbol
height difference context for the height. The width difference is coded first, then the height
difference. The coded signed difference is added to the width or height of the matching
symbol to obtain the width or height respectively of the current symbol. The range of
allowable values for both of these data elements is —262143 to 262142.

8.5.7 Absolute location

The horizontal and vertical positions of the upper left corner of the bitmap are coded by
the multivalue extension to the Z'-Coder using the symbol column number context for the

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 31 of 39

horizontal position and the symbol row number context for the vertical position. The hori-
zontal position is coded first, then the vertical position. The range of allowable values for
the horizontal position is from 1 to the number of pixels in the width of the image. The
range of allowable values for the vertical position is from 1 to number of pixels in the height
of the image.

8.5.8 Location relative to a previous symbol

The OFFSET TYPE flag is coded by the Z'-Coder using the offset type context. It indicates
the reference symbol for coding the offset of the location of the current symbol. The coded
value 1 means , which means that the location of the current symbol is being specified
relative to the first symbol on the current text line. The value 0 means [PREVIOUS|, which
means that the location of the current symbol is being specified relative to the most recently
coded symbol on the current text line.

If the OFFSET TYPE flag is , then the reference symbol is the first symbol on the
current text line. The horizontal offset is the signed difference between the left edge of the
current symbol and the left edge of the reference symbol. It is coded with the multivalue
extension to the Z'-Coder using the new line column offset context. The coded signed
difference is added to the column number of the left edge of the reference symbol to obtain
the column number of the left edge of the current symbol. The vertical offset is the signed
difference between the top edge of the current symbol and the bottom edge of the reference
symbol. It is coded by the multivalue extension to the Z'-Coder using the new line row
offset context. The coded signed difference is added to the row number of the bottom of
the reference symbol to obtain the row number of the top edge of the current symbol. The
current symbol is then treated as the first symbol of a new text line. In this case, the
horizontal offset is coded first, then the vertical offset.

If the OFFSET TYPE flag is [PREVIOUS], then the reference symbol is the most recently
coded symbol on the current text line. The horizontal offset is the signed difference between
the left edge of the current symbol and the right edge of the reference symbol. It is coded
by the multivalue extension to the Z'-Coder using the same line column offset context. The
coded signed difference is added to the column number of the right edge of the reference
symbol to obtain the column number of the left edge of the current symbol. The vertical
offset is the signed difference between the bottom edge of the current symbol and the current
baseline. The current baseline is the median of the bottom edges of the three most recently
coded symbols on the current line, if there are at least three symbols on the current line.
If there are fewer than three previously coded symbols on the current line, the baseline is
the bottom edge of the first symbol on the current line. The vertical offset is coded by
the multivalue extension to the Z'-Coder using the same line row offset context. The coded
signed difference is added to the row number of the current baseline to obtain the row number
of the bottom edge of the current symbol. In this case, the horizontal offset is coded first,
then the vertical offset.

The first symbol in the image is coded as if it were relative to the first symbol on the
current text line. The pixel in the upper left corner of the image is taken to be the bottom
left corner of this “first symbol.” Then the first symbol in the image is treated as the first
symbol of a new text line.

1999-04-29 15:46 EDT © 1999 AT&T

Page 32 of 39 DjVu Image Compression Format

8.5.9 Bitmap by direct coding

Non-symbol bitmaps and symbol bitmaps with no sufficiently closely matching symbol in the
symbol library are coded directly. A directly coded bitmap is coded by repeated applications
of the Z'-Coder to the pixels of the bitmap left to right across the rows, starting with the
top row. When one row has been coded, the next lower row is coded. Each pixel is coded
by the Z'-Coder using an appropriate context based on the values of 10 previously coded
pixels. A coded value of 1 means the pixel is [BLACK]. A coded value of 0 means the pixel
is WHITE]. The colors of the pixels numbered 1 through 10 in Figure 2, taken collectively,
form a 10-bit value. Each of these values is an index into a table of 1024 different direct
coded bitmap contexts. The pixel labeled @ in Figure 2 is coded using the context indexed
by the collective values of the other 10 numbered pixels in the template.

11213
415|678

9 |10 |[P]

Figure 2: Template for direct coding

Pixels outside the bounding box of the bitmap being coded are considered to be white.

8.5.10 Bitmap by refinement coding

Some bitmaps are coded by making use of data from another bitmap; this process is called re-
finement coding. Matched symbols other than those to be copied are coded using refinement
coding.

A bitmap coded by refinement coding is coded by repeated applications of the Z'-Coder to
the pixels of the bitmap left to right across the rows. When one row has been coded, the next
lower row is coded. Each pixel is coded by the Z'-Coder using an appropriate context based
on the values of 4 previously coded pixels from the bitmap being coded and 7 pixels from
the matching bitmap. (The pixels numbered 1 through 4 in Figure 3 are from the current
symbol; the pixels numbered 5 through 11 are from the matching symbol.) A coded value of
1 means the pixel is [BLACK]. A coded value of 0 means the pixel is [WHITE|. The colors of
the pixels numbered 1 through 11 in Figure 3, taken collectively, form an 11-bit value. Each
of these values is an index into a table of 2048 different refinement coded bitmap contexts.
The pixel labeled @ in Figure 3 is coded using the context indexed by the collective values
of the 11 numbered pixels in the template. Pixel |7 |is in the position in the matching symbol
that corresponds to the position of pixel @ in the current symbol when the two symbols
are aligned.

Alignment of the current bitmap and the matching bitmap proceeds as follows. For
matched symbols, the current symbol and the matching symbol are aligned according to the
geometric centers of their bounding rectangles. If the number of columns or rows is even, the
geometric center falls between two columns or rows, respectively. In this case, the leftmost
of the two central columns or the lowermost of the two central rows is considered to be the
center column or row, respectively.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 33 of 39

From current symbol From matching symbol

1213 5
4 |[P] 6 |[7] 8
9 [10]11

(2) (b)
Figure 3: Template for refinement coding. (a) Pixels from symbol being coded. (b) Pixels
from matching symbol.

It is possible for the current symbol to have empty edge rows or columns. These empty
rows and columns are coded, and are included in the bounding rectangle. For symbols added
to the library, the symbol is added to the library after if has been placed into the image.
Any empty edge rows and columns are removed before the symbol is added to the library.

8.5.11 Comment length

The comment length is the number of octets in the comment. It is coded by the multivalue
extension to the Z'-Coder using the comment length context. The range of allowable values
for the comment length is from 0 to 262142.

8.5.12 Comment data

Comment data consists of the individual octets of the comment. The number of octets
in the comment is given by the comment length field. Each of the octets is coded using
the multivalue extension to the Z'-Coder using the comment octet context. The range of
allowable values for each octet is from 0 to 255.

9 Requirements: The Z'-Coder for binary arithmetic coding

The Z'-Coder is an approximate binary arithmetic coder. Decoding proceeds as follows.

9.1 Registers and data storage

In Figure 4 and Figure 5, the values of variables A, C, D, and Z are stored in registers of
at least 16 bits each. A and C retain their values between invocations of the Z’-Coder. The
values of D and Z are recomputed during each invocation of the Z’-Coder. Note: If register
overflow can be ignored, storing variables A and C in registers of exactly 16 bits allows a
simplification of lines 11, 12, 16, and 17 of Figure 4 and lines 8, 9, 12, and 13 of Figure 5.

At the beginning of a chunk, the values of A and C are reinitialized. When the decoder
is decoding a chunk, it may require more bits than are present within the chunk’s data. In
this case, all additional required bits are to be assumed by the decoder to be 1. If there are
excess bits at the end of a chunk, they are ignored.

K is conceptually an array with a single 8-bit entry for each binary decision context. (In
practice, K consists of a number of individual values, arrays, and tree nodes, but each one
has a specific address and a single 8-bit value at any time.) This array is indexed by the

1999 -04-29 15:46 EDT © 1999 AT&T

Page 34 of 39 DjVu Image Compression Format

value of ¢, which is the input to the decoder. K (i) is the current value of the probability
state index for context 7. K (i) may be updated as part of the decoding process.

In pass-through mode, the decoder is invoked with no input argument. No context is
involved.

B is the 1-bit value returned by the decoder.

The Z'-Coder is state-based. Decoding is governed by 4 fixed tables, given in Table 9.
The tables are indexed by K (i), the probability state index for the current context. All
probability state indices are initialized to 0. That is, at the beginning of coding, for all 7,
K (i) = 0. These values are not reinitialized at the beginning of chunks after the first.

The more probable symbol is denoted by MPS. The MPS is 1 if the probability state
index is an odd integer, and 0 if the probability state index is an even integer. The less
probable symbol is denoted by LPS. The LPS is 0 if the probability state index is an odd
integer, and 1 if the probability state index is an even integer.

Ay is the amount by which the current arithmetic coding interval is reduced if the de-
coded symbol is the MPS. 6 is the threshold above which an MPS triggers a probability
state update. puy is the next probability state index for context & after an MPS triggers a
probability state index update. An LPS always triggers a probability state index update. A
is the next probability state index for context %k after an LPS.

9.2 Initialization

Initially A is set to 0x0000. Two octets are read from the input data stream into the lowest
16 bits of C. If the bits of C' are numbered such that bit 15 is the most significant bit and
bit 0 is the least significant bit, then the first input octet is stored in bits 15 through 8, and
the second input octet is stored in bits 7 through 0.

9.3 Decoding

Figure 4 shows the steps involved in decoding a single binary decision. The input to the
decoder is the index ¢ of the appropriate context for the binary decision being decoded. The
output from the decoder is a single bit B.

9.3.1 Notes on specific lines of Figure 4

Line 2. The division is a right shift, discarding the two least significant bits.
Lines 4-8. These lines are executed when the decoded bit is the MPS.

Line 5. This line determines the value of MPS from the odd/even parity of the probability
state index.

Line 6. Sometimes an MPS event triggers an update of the probability state index, based
on the value of 6;. Note that when the probability state index ¥k = 0 or k > 83, 6; = 0, so
an MPS will trigger an update of the probability state index. All probability state indices
are initialized to 0, but the first coded decision for a context causes the index to become
larger than 83. When k£ = 0 or £ > 83, the probability estimate for the context is in its early
estimation phase. When 0 < k < 83, the probability estimate for the context is in its steady
state phase, which it never leaves.

Lines 9-14. These lines are executed when the decoded bit is the LPS.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format Page 35 of 39

1 Z:=A + AK(z)

2 D :=0x6000+ (Z+ A)/4

3 if(Z>D){Z:=D}

4 if(C>2){

5 B := K (i) (mod 2)

6 if (A > 0k@) { K(5) = prep}
7 A=Z

8 }

9 else {

10 B :=1 - (K(i) (mod 2))

11 A= A+ 0x10000 — Z

12 C :=C + 0x10000 — Z

13 K(’L) =)\K(z)

14 }

15 while (A > 0x8000) {

16 A=A+ A - 0x10000

17 C :=C + C — 0x10000 + next code bit
18 }

19 return B

Figure 4: Decoder for Z'-Coder.

Line 10. This line determines the value of LPS from the odd/even parity of the probability
state index.

Line 13. An LPS always triggers an update of the probability state index.
Lines 15-18. When the values in the registers are too large, they must be renormalized.

Lines 16-17. A+ A and C'+C may be accomplished by left shifts, leaving the least significant
bit equal to 0.

Line 17. The least significant bit of C is filled with the next bit from the input stream.
Bits are taken from each octet in the input stream most significant bit first.

9.4 Pass-through decoding

Figure 5 shows the steps involved in decoding a single binary decision using the Z’'-Coder
in pass-through mode. No input is required. No context is involved. No probability state
index values are updated. The output from the decoder is the single bit B.

9.4.1 Notes on specific lines of Figure 5

Line 1. The division is a right shift, discarding the three least significant bits.
Lines 2-5. These lines are executed when the decoded bit is O.
Lines 6-10. These lines are executed when the decoded bit is 1.

Lines 11-14. When the values in the registers are too large, they must be renormalized.

1999 -04-29 15:46 EDT © 1999 AT&T

Page 36 of 39

© 00 3 O O b W N =

e
B W N = O

15

Z := 0x8000 + (A+ A + A)/8

if (C>2Z){
B:=0
A=7Z

}

else {
B:.=1

A:= A+ 0x10000 — Z
C :=C+0x10000 — Z
}
while (A > 0x8000) {
A=A+ A—0x10000

DjVu Image Compression Format

C :=C + C — 0x10000 + next code bit

}

return B

Figure 5: Decoder for Z'-Coder operating in pass-through mode.

Lines 12-13. A+ A and C'+C may be accomplished by left shifts, leaving the least significant

bit equal to 0.

Line 13. The least significant bit of C is filled with the next bit from the input stream.
Bits are taken from each octet in the input stream most significant bit first.

© 1999 AT&T

1999-04-29 15:46 EDT

DjVu Image Compression Format

Page 37 of 39

k Ay, Ok .Y k Ay, O Y
0 0x8000 0x0000 84 145 |42 0x0861 O0x79EA 44 40
1 0x8000 0x0000 3 4|43 0x0711 OxT7AE7 45 41
2 0x8000 0x0000 4 344 0x0711 OxT7AE7 46 42
3 O0x6BBD 0x10A5 5 1|45 O0x05F1 Ox7BBE 47 43
4 O0x6BBD O0x10A5 6 2 | 46 O0x05F1 Ox7BBE 48 44
5 0xbD45 O0x1F28 7 3 | 47 0x04F9 0x7C75 49 45
6 0xbD45 Ox1F28 8 4 | 48 0x04F9 0x7C75 50 46
7 0x51B9 0x2BD3 9 o5 |49 0x0425 O0x7DOF 51 47
8 0x51B9 0x2BD3 10 6 | 50 0x0425 O0x7DOF 52 48
9 0x4813 O0x36E3 11 7151 0x0371 0x7D91 53 49
10 0x4813 O0x36E3 12 8 | 52 0x0371 0x7D91 54 50
11 0x3FD5 0x408C 13 9| 53 0x02D9 Ox7DFE 55 51
12 0x3FD5 0x408C 14 10|54 0x02D9 Ox7DFE 56 52
13 0x38B1 0x48FD 15 11 | 55 0x0259 Ox7E5A 57 53
14 0x38B1 0x48FD 16 12 | 56 0x0259 O0x7E5A 58 54
15 0x3275 0x505D 17 13 | 57 O0x01ED O0x7EA6 59 55
16 0x3275 0x505D 18 14 | 58 O0x01ED O0x7EA6 60 56
17 0x2CFD 0x56D0 19 15|59 0x0193 Ox7EE6 61 57
18 0x2CFD 0x56D0 20 16 | 60 0x0193 Ox7EE6 62 58
19 0x2825 0x5C71 21 17 | 61 0x0149 O0x7F1A 63 59
20 0x2825 0x5C71 22 18 | 62 0x0149 Ox7F1A 64 60
21 0x23AB 0x615B 23 19 | 63 0x010B O0x7F45 65 61
22 0x23AB 0x615B 24 20 | 64 0x010B Ox7F45 66 62
23 O0x1F87 0x65A5 25 21 |65 0x00D5 Ox7F6B 67 63
24 O0x1F87 O0x65A5 26 22|66 0x00D5 Ox7F6B 68 64
25 0x1BBB 0x6962 27 23 | 67 0x00A5 O0x7F8D 69 65
26 O0x1BBB 0x6962 28 24 | 68 0x00A5 O0x7F8D 70 66
27 0x1845 0x6CA2 29 25|69 0x007B Ox7FAA 71 67
28 0x1845 0x6CA2 30 26 | 70 0x007B Ox7FAA 72 68
29 0x1523 O0x6F74 31 27 |71 0x0057 Ox7FC3 73 69
30 0x1523 O0x6F74 32 28 | 72 0x0057 Ox7FC3 74 70
31 0x1253 O0x71E6 33 29 |73 0x003B Ox7FD7 75 71
32 0x1253 O0x71E6 34 30 |74 0x003B Ox7FD7 76 72
33 OxOFCF 0x7404 35 31|75 0x0023 Ox7FE7 77 73
34 OxOFCF 0x7404 36 32|76 0x0023 Ox7FE7 78 74
35 0x0D95 0x75D6 37 33 |77 0x0013 Ox7FF2 79 75
36 0x0D95 0x75D6 38 34 |78 0x0013 Ox7FF2 80 76
37 O0x0B9D 0x7768 39 35|79 0x0007 Ox7FFA 81 77
38 0x0B9D 0x7768 40 36 | 80 0x0007 Ox7FFA 82 78
39 O0x09E3 0x78C2 41 37 |81 0x0001 Ox7FFF 81 79
40 O0x09E3 0x78C2 42 38 | 82 0x0001 Ox7FFF 82 80
41 0x0861 Ox79EA 43 39 | 83 0x5695 0x0000 9 85

1999-04-29 15:46 EDT

Table 9: State tables for the Z’-Coder.

© 1999 AT&T

Page 38 of 39 DjVu Image Compression Format

k Ay, Ok Hi Ak k Ay, Ok Hi Ak
84 O0x24EE 0x0000 86 226 | 126 0xO1EB 0x0000 60 54
85 0x8000 0x0000 5} 6 | 127 0x1302 0x0000 33 25
86 0x0D30 0x0000 88 176 | 128 0x02E6 0x0000 56 50
87 0x481A 0x0000 89 143|129 0x1B81 0x0000 29 131
88 0x0481 0x0000 90 138 | 130 0x045E 0x0000 52 46
89 0x3579 0x0000 91 141 | 131 O0x24EF 0x0000 23 17
90 0x017A 0x0000 92 112|132 0x0690 0x0000 48 40
91 O0x24EF 0x0000 93 135 | 133 0x2865 0x0000 23 15
92 0x007B 0x0000 94 104 | 134 O0xO09DE 0x0000 42 136
93 0x1978 0x0000 95 133 | 135 0x3987 0x0000 137 7
94 0x0028 0x0000 96 100 | 136 0x0DC8 0x0000 38 32
95 0x10CA 0x0000 97 129 | 137 0x2C99 0x0000 21 139
96 0x000D 0x0000 82 98 | 138 0x10CA 0x0000 140 172
97 0xO0B5D 0x0000 99 127 | 139 0x3B5F 0x0000 15 9
98 0x0034 0x0000 76 72| 140 0xOB5D 0x0000 142 170
99 0x078A 0x0000 101 125 | 141 0x5695 0x0000 9 85
100 0x00A0 0x0000 70 102 | 142 0x078A 0x0000 144 168
101 0x050F 0x0000 103 123 | 143 0x8000 0x0000 141 248
102 0x0117 0x0000 66 60 | 144 0x050F 0x0000 146 166
103 0x0358 0x0000 105 121 | 145 O0x24EE 0x0000 147 247
104 O0xO01EA 0x0000 106 110 | 146 0x0358 0x0000 148 164
105 0x0234 0x0000 107 119 | 147 0x0D30 0x0000 149 197
106 0x0144 0x0000 66 108 | 148 0x0234 0x0000 150 162
107 0x0173 0x0000 109 117 | 149 0x0481 0x0000 151 95
108 0x0234 0x0000 60 54 | 150 0x0173 0x0000 152 160
109 0xO00F5 0x0000 111 115|151 0x017A 0x0000 153 173
110 0x0353 0x0000 56 48 | 152 0x00F5 0x0000 154 158
111 0x00A1 0x0000 69 113|153 0x007B 0x0000 155 165
112 0x05C5 0x0000 114 134 | 154 0x00A1 0x0000 70 156
113 0x011A 0x0000 65 59 | 155 0x0028 0x0000 157 161
114 0x03CF 0x0000 116 132 | 156 0x011A 0x0000 66 60
115 O0x01AA 0x0000 61 55| 157 0x000D 0x0000 81 159
116 0x0285 0x0000 118 130 | 158 O0x01AA 0x0000 62 56
117 0x0286 0x0000 57 51 | 159 0x0034 0x0000 75 71
118 0x01AB 0x0000 120 128 | 160 0x0286 0x0000 58 52
119 0x03D3 0x0000 53 47 | 161 0x00A0 0x0000 69 163
120 0x011A 0x0000 122 126 | 162 0x03D3 0x0000 54 48
121 0x05C5 0x0000 49 41 | 163 0x0117 0x0000 65 59
122 0x00BA 0x0000 124 62 | 164 0x05C5 0x0000 50 42
123 0x08AD 0x0000 43 37 | 165 O0xO01EA 0x0000 167 171
124 0x007A 0x0000 72 66 | 166 0x08AD 0x0000 44 38
125 0x0CCC 0x0000 39 31| 167 0x0144 0x0000 65 169

Table 9 continued.

© 1999 AT&T 1999-04-29 15:46 EDT

DjVu Image Compression Format

Page 39 of 39

k Ay, Ok Hi Ak k Ay, Ok Hi Ak
168 0x0CCC 0x0000 40 32| 210 0x0BCO 0x0000 40 34
169 0x0234 0x0000 59 53 | 211 0x030D 0x0000 213 227
170 0x1302 0x0000 34 26 | 212 0x1178 0x0000 36 28
171 0x0353 0x0000 55 47| 213 0x0206 0x0000 215 225
172 0x1B81 0x0000 30 174 | 214 0x19DA 0x0000 30 22
173 0x05C5 0x0000 175 193 | 215 0x0155 0x0000 217 223
174 O0x24EF 0x0000 24 18| 216 O0x24EF 0x0000 26 16
175 0x03CF 0x0000 177 191 | 217 0x00E1 0x0000 219 221
176 0x2B74 0x0000 178 222 | 218 0x320E 0x0000 20 220
177 0x0285 0x0000 179 189 | 219 0x0094 0x0000 71 63
178 0x201D 0x0000 180 218 | 220 0x432A 0x0000 14 8
179 0x01AB 0x0000 181 187 | 221 0x0188 0x0000 61 55
180 0x1715 0x0000 182 216 | 222 0x447D 0x0000 14 224
181 0x011A 0x0000 183 185 | 223 0x0252 0x0000 57 51
182 0xOFB7 0x0000 184 214|224 O0x5ECE 0x0000 8 2
183 O0xO00BA 0x0000 69 61 | 225 0x0383 0x0000 53 47
184 0x0A67 0x0000 186 212 | 226 0x8000 0x0000 228 87
185 0x01EB 0x0000 59 53 | 227 0x0547 0x0000 49 43
186 O0x06E7 0x0000 188 210 | 228 0x481A 0x0000 230 246
187 O0x02E6 0x0000 55 49 | 229 0x07E2 0x0000 45 37
188 0x0496 0x0000 190 208 | 230 0x3579 0x0000 232 244
189 0x045E 0x0000 51 45| 231 0x0BCO 0x0000 39 33
190 0x030D 0x0000 192 206 | 232 0x24EF 0x0000 234 238
191 0x0690 0x0000 47 39 | 233 0x1178 0x0000 35 27
192 0x0206 0x0000 194 204 | 234 0x1978 0x0000 138 236
193 O0x09DE 0x0000 41 195 | 235 0x19DA 0x0000 29 21
194 0x0155 0x0000 196 202 | 236 0x2865 0x0000 24 16
195 0x0DC8 0x0000 37 31 | 237 O0x24EF 0x0000 25 15
196 O0xO00E1 0x0000 198 200 | 238 0x3987 0x0000 240 8
197 0x2B74 0x0000 199 243 | 239 0x320E 0x0000 19 241
198 0x0094 0x0000 72 64 | 240 0x2C99 0x0000 22 242
199 0x201D 0x0000 201 239 | 241 0x432A 0x0000 13 7
200 0x0188 0x0000 62 56 | 242 0x3B5F 0x0000 16 10
201 0x1715 0x0000 203 237 | 243 0x447D 0x0000 13 245
202 0x0252 0x0000 58 52| 244 0x5695 0x0000 10 2
203 0xO0FB7 0x0000 205 235|245 O0x5ECE 0x0000 7 1
204 0x0383 0x0000 54 48 | 246 0x8000 0x0000 244 83
205 0x0A67 0x0000 207 233|247 0x8000 0x0000 249 250
206 0x0547 0x0000 50 44 | 248 0x5695 0x0000 10 2
207 0x06E7 0x0000 209 231|249 0x481A 0x0000 89 143
208 0x07E2 0x0000 46 38 | 250 0x481A 0x0000 230 246
209 0x0496 0x0000 211 229

1999 -04-29 15:46 EDT

Table 9 concluded.

© 1999 AT&T

