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A Sylowlike theorem for integral group rings
of finite solvable groups

By
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L. Introduction. For a finite group G and a commutative ring R we denote by
RG=<43%r- g}
1
the group ring of G over R. This group ring is an augmented algebra with

augmentatione: RG-R, ¥ r,-g— ¥ r,.
Frgr gE i
By V(RG) we denote the units in R G, which have augmentation 1. The group of units in
RG is then the product of the units in R and V(RG).

A subgroup H of V(RG) with |H| = |G| is called a group basis, provided the elements
of H are linearly independent. This latter condition is automatic, provided no rational
prime divisor of | H| is a unit in R [1]. Il H is a group basis, then RG = R H as augmented
algebras and conversely.

The object of this note is to prove the following

Theorem 1. Let G be a finite solvable group, and let H be a group basis of G with Sylow
p-subgroup P. Then there exists a unit a € QG such that aPa™" is a Sylow p-subgroup of G.

Remark 1. Forsolvable groups it was conjectured by Hans Zassenhaus [12, 11] that
for any finite subgroup U of V{ZG) there exists ac QG with ala ' = G,

It is known that for a solvable group G, the Sylow p-subgroups of different group bases
in & G are isomorphic; however, the above result gives information about the embedding
of these Sylow p-subgroups into ZG.

The isomorphism of the Sylow p-subgroups is an immediate consequence of the
following more general result: (2, stands for the complete ring of p-adic integers.)

Theorem 2 ([9]). Let G be a finite group such that the generalized Fitting subgroup F*(G)
is a p-group'). Then a group basis H of Z G is conjugate by a unit in Z,G to a subgroup
of G.

*} The second author was partially supported by the DFG.
'} This is to say that G has a normal p-subgroup N with the centralizier C;(N) = N or that the
generalized p'-core 0,.(G) is trivial [2, 3].
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We shall state next a more general result, which does not only apply to solvable groups,
and of which Theorem 1 is a special case — as will become transparent later on. For this
we have to introduce some more notation.

Definition 1. Let G be a finite group.

. m{G) is the set of rational prime divisors of |G|.

2, For the rational prime p, the group 0,.(G) is the largest normal subgroup of G with
order relatively prime to p.

0,(G) is the generalized p'-core of G [4, Ch. X, Paragraph 14].

Let n be a finite set of rational primes. We call a finite group G n-constrained, if for each
g €  there exists a rational prime p such that 0.(G/0,.(G)) = 1 and g does not divide
|0 ,(G)].

Remark 2. Note that in the above definition, the prime g need not be different from
p. Therefore a p-constrained group G is also n-constrained for © = n(G)\x(0 . (G)). Clear-
ly a finite solvable group is m-constrained for every set of primes m. However, there are
many insolvable groups which are n-constrained for some set n (e.g. every Frobenius
group is n-constrained for a suitable set n). It is not true though, that a n-constrained
group G is p-constrained for every pe n [2, 3].

o

We can now state the result, which we shall prove here:

Theorem 3. Let G be a finite n-constrained group, and let H be a group basis in £ G. For
each p e n and P a Sylow p-subgroup of H, there exists a unit a e QG withaPa~' a Sylow
p-subgroup of G.

2. Connection with the Zassenhaus conjecture. Let us return to a weak form of the
Zassenhaus conjecture (cf. Remark 1)

Conjecture 1 (Zassenhaus [12, 11]). Let G be a finite group. If H is a group basis in LG,
then H is conjugate in QG to G, i.e. there exists a unit ae QG such that aHa™' = G.

Remark 3. It was shown in [7] that the above conjecture is true for finite nilpotent
groups. However, in [8] a metabelian group was constructed, which is a counterexample
to the above Zassenhaus conjecture.

It is convenient, to rephrase the Zassenhaus conjecture in terms of isomorphisms over
class sums.

Definition 2. Let G be a finite group.

1. A class sum in ZG 15 an element of the form

CSslgl= % 'm
x5 G0 lgh
1.e. the sum of the different conjugate elements of g.
2. Let H be a group basis in ZG. Then there is a class sum correspondence [1]: For every
h € H there exists an element y(h) € G, such that CSgih) = CS;(y(h)) in £ G. Note that y(h)
is only determined up to conjugacy. Since the conjugacy class of h and y(h) must have
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the same cardinality — use the augmentation — the map y can be extended to a
bijection y: G —+ H.

We shall call such a map a class sum correspondence. Note that y is in general not unique
and is in general not a homomorphism of groups; however, it sends p-power elements of
G to p-power elements of H; it even preserves the order of the elements [6].

3. This class sum correspondence induces a correspondence between the normal sub-
groups of G and H, essentially since a normal subgroup is a union of conjugacy classes,
cf. eg [10].

4. Let H be a group basis in ZG. An isomorphism ¢: H — G is called an isomorphism
over the class sums provided the induced automorphism — note ZG = ZH — which we
shall also denote by g

¢ &H—ZG, ¥ n-h— ¥ o olh)
hel

e H
has the property p(CSy(h)) = CSg(y(h).

We can now reformulate the Zassenhaus conjecture — using the theorem of Skolem-
Noether:

Proposition 1. The Zassenhaus conjecture is equivalent to the statement that for each
group basis H of &G there exists an isomorphism

ot H=G
- this means that the isomorphism problem has a positive answer — which is an isomorphism
over the class sums; with other words the above bijection

v H—-G
can be chosen to be a group isomorphism.

Remark 4. We shall collect here some observations:

1. Theorem 2 thus states, that in case F*(G) is a p-group, then for every group basis
H there exists an isomorphism over the class sums.

2. In our Theorems 1, 3 we are not dealing with the group basis, but rather with a
subgroup of a group basis H. Thus we are looking for an extension of Proposition 1 to
a subgroup U of the group basis H (cf. Remark 1).

3. The obvious extension would be to require that the bijection v in the Definition 2.2
could be chosen in such a way that it is a group isomorphism when restricted to U.

Theorem 4. Let G be a finite group and let U be a finite subgroup of VICG). Denote b ¥
L an algebraic number field such that U = LG. Then the following statements are equiva-
lent.

1. There exists a unit ae LG with alla™! = G.
2. There exists a group basis H of ©G, and there exists a bijection

g: H=G,
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such that
Q- L ~+p(U)
is a class sum preserving group isomorphism; iLe.

CSylu) = CSslp(u)

Jor every ue U. Moreover,
|CSglu)| = | CSgle(u))],
here |C5;(g)| = |G : Cylg)| denotes the number of elements conjugate to g.

3. The Proofs.

Proof of Theorem 4. (1)=(2): If we take H = a™ ' Ga, then the conjugation by
a is the desired map p.

(2)==(1): Let L = K be an algebraic number field, which is a splitting field for G and
choose a simple Wedderburn component 4 of KG = KH.

Via the projection onto A we obtain two representations of U, denoted by ¢, and ¢,
resp., where ¢ is the representation of U = H and ¢y, is the representation of U
induced from p.

We shall show that the characters for U of ¢ and ¢_,,,, coincide. In fact, by assumption
CSylu) = CSglp(u)) and so we have for the trace of ¢y and ¢, resp. with [ = [CSy(u)l

= |CSgle()l:

try, () = 171+ (1~ try () = 17"« {tr, (CSylu)) = 171 - (try 1y (C Sgle(u)
= tr, wle(u)).

This holds for every u € U, and since the characters determine a representation up to
isomorphism (conjugacy), we conclude, that ¢, and ¢, are conjugate in A. Since this
can be done for every simple Wedderburn component of K G, we conclude that there
exists b e KG such that bUbB™! = g(U).

It remains to show that this conjugation can already be achieved in LG. We shall be
using bimodules to reach this goal:

We consider M = LG as L{U x G)-bimodule, by letting U act in its natural way on M
from the left and G acts on the right by its natural action. M has the same right action
as M, but the left action is twisted by g:

u,m=giu) m
Since U and p(U') are conjugate in K G, the bimodules
K& M and K &, *M

are isomorphic. Invoking the Noether-Deurning theorem, we conclude that the bimodules
M and *M must be isomorphic. Let

M =M
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be an isomorphism of L{U x G)-bimodules. We put a = t(1). Then a is a unit in LG and
MOreover,

glu)-a=a-u
foreveryue . ged.

The proof of Theorem 3 will now follow from Theorem 4, if we can show

Proposition 2. Let G be a finite n-constrained group for n a finite set of rational primes,
H is a group basis in ZG.
For g e n there exists by Definition 1,4 a prime p such that
0.G/O(G) =1,
Let § be a Sylow g-subgroup of H. Then there exists a class sum correspondence
g: H=G
such that
@s: 5 — (S}
is a group isomorphism.
Proof. Let
K ZG—+ZG/0,(G)
be the augmented ring homomorphism induced from reduction modulo 0,.(G).
Since (7 is n-constrained, g does not divide |0 (G|, and so
K5 injects § into ZG/0,(G).
By the choice of p, we may apply Theorem 2, to conclude that the Zassenhaus conjec-
ture holds for ZG/0,(G), and so there exists a class sum correspondence in
Z(k(G)) = Z(x(H)),
inducing an isomorphism of groups
0 k(H) = k(G).
With the correspondence of normal subgroups (Definition 2,3) we conclude that
ker(k g) = 0, (H)
and that
|0 (H)| = |0,(G)].
Thus we can find a Sylow g-subgroup of G, say, T such that
0wisy k(8) =+ x(T)
is a group isomorphism,
Summarizing, we have now constructed a group isomorphism
Os =K °@° K
from Sto T

Claim 1. Let now
1 H—=G
be a class sum correspondence {Definition 2,2). Then
CS:(p(s)=CS5; 55 .
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Proof of the claim. Because of the class sum correspondence y, there exists for
every s 8 an element t € T such that

CS"{S] = ESG {I]

— note that y sends g-power elements to g-power elements {Definition 2,2).
On the other hand, g induces the class sum correspondence on ZG/0,(G), and so we
must have

CS60,.1*(t) = CSg0,.6/(@ ° k(s)).

Thus t is conjugate in G to a g-power element of the form w - gg(s) for some w e 0,(G).
MNote that we still have freedom in choosing ¢ in its conjugacy class. Thus we can assume
that t is such that x(t) = k(g(s)). In 0,(G) - T the element w - g5(s) is — by Sylow's theorem
—conjugate by an element w, € 0,(G) to an element ¢, & T. But then x(r) = x(t,) and so
we must have 1 = 1y, since x;; is injective.

Consequently gq(s) and  are conjugate.

This proves the claim and also finishes the proof of Proposition 2, and hence completes
the proof of Theorem 3 and consequently of Theorem 1.
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