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Abstract. I review the research results on spectral properties of atoms and
molecules coupled to the quantized electromagnetic field or on simplified mod-
els of such systems obtained during the past decade. My main focus is on the
results I have obtained in collaboration with Jürg Fröhlich and Israel Michael
Sigal [8, 9, 10, 11, 12, 13].

1. Introduction

In this lecture I review the progress achieved during the past decade on the mathe-
matical description of quantum mechanical matter interacting with the quantized
radiation field. My main focus will be on the results I have obtained in collabora-
tion with Jürg Fröhlich and Israel Michael Sigal [8, 9, 10, 11, 12, 13].

1.1. Basic notions of quantum mechanics
I start by recalling some basic mathematical notions of quantum mechanics. The
states of a quantum mechanical system to be described are vectors in a separable
Hilbert space, H. The dynamics on H is generated by the selfadjoint Hamiltonian
operator, H. That is, given an initial state ψ(0) = ψ0 ∈ H at time t = 0, the
state at time t > 0 is given by ψ(t) = exp[−itH]ψ0. The corresponding differential
equation fulfilled by ψ(t) is Schrödinger’s equation,

i
dψ(t)

dt
= H ψ(t) . (1)

Stone’s theorem [43] states that the selfadjointness of H is equivalent for t 7→
exp[−itH] to be a strongly continuous one-parameter unitary group. Thus selfad-
jointness of the Hamiltonian is the crucial property for the existence of quantum
mechanical dynamics.

As a first example, I describe the above notions for a single, nonrelativistic
electron moving in a potential V : R3 → R. The Hilbert space of states and the
Hamiltonian are, in this case,

Hel := L2(R3 × Z2) , Hel = −∆x + V (x) , (2)

Key words and phrases. Renormalization Group, Spectrum, Resonances, Fock space, QED..



2 V. Bach

E1 E2 · · · Σ

(abs.) cont. spectrum
exc. states

gr. states

E0

Figure 1. The spectrum of Hel

where ∆x is the Laplacian on R3, and the potential V (x) acts as a multiplication
operator, [V ψ](x, σ) := V (x)ψ(x, σ). Moreover, the Z2 factor in the definition
of Hel accounts for the spin of the electron. Under the assumption that V ∈
L2∩L∞(R3;R), the Hamiltonian Hel is selfadjoint on the standard Sobolev space,
H2(R3 × Z2) ⊆ L2(R3 × Z2), the domain dom(−∆x) of selfadjointness of the
Laplacian. If lim|x|→∞ V (x) = 0, and if ‖(V )−‖L3/2 is not too small, then Hel has
the following standard spectrum [42], see Fig. 1:

• Below 0, the spectrum is purely discrete, i.e., it consists only of isolated
eigenvalues, E0 < E1 < · · · < 0, each Ej being of finite multiplicity
nj < ∞. Thus there is an orthonormal basis of the corresponding spec-
tral subspace of eigenvectors, {ϕj,α}α=1,...,nj , i.e., Helϕj,α = Ejϕj,α and
〈ϕi,α|ϕj,β〉 = δi,j δα,β . If there are infinitely many eigenvalues, they accu-
mulate at 0.

• The positive half-axis supports the purely absolutely continuous spectrum.
• The singular continuous spectrum is empty.

σ(Hel) = σdisc(Hel) ∪ σac(Hel) , (3)

σdisc(Hel) = {E0, E1, E2, . . .} ⊆ (−∞, 0) , (4)

σac(Hel) = [0,∞) . (5)

A typical potential to bear in mind is V (x) := −|x|−1. Then Hel = −∆x−|x|−1 is
the Hamiltonian of a hydrogen atom. It is actually not more difficult to include more
than one electron in the model. The structure (3)-(5) of the spectrum of σ(Hel)
would not change, qualitatively. I summarize the assumptions and definitions made
in the following hypothesis.

Hypothesis 1.1. Let Hel := L2(R3 × Z2), and assume that V ∈ L2 ∩ L∞(R3;R)
and lim|~x|→∞ V (x) = 0. Let Hel = −∆x + V (x) be the corresponding selfadjoint,
semibounded on the domain H2(R3 × Z2), and assume that Hel as (at least) one
negative eigenvalue,

E0 = inf σ(Hel) < 0 = inf σess(Hel) . (6)

In my second example, for N ∈ N, and real numbers E0 < E1 < · · · < EN ,
the Hilbert space of states is finite dimensional and the Hamiltonian is a diagonal
N ×N matrix,

Hel := CN , Hel = diag
[

E0, E1, . . . , EN
]

. (7)
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While in itself this second example is trivial, it is of some importance as a model
for the dynamics of the Schrödinger operator −∆x + V (x), restricted to the spec-
tral subspace corresponding to (some part of) its discrete spectrum (implicitly
assuming that the electron is spinless and that nj = 1, for all j). Indeed, with
this interpretation in mind and in the context of radiation theory, the 2 × 2 ma-
trix diag[E0, E1] is also referred to in the physics literature as a two-level atom. I
summarize the assumptions and definitions made in the following hypothesis.

Hypothesis 1.2. Let Hel := CN , for some N ∈ N, and assume that Hel =
diag[E0, E1, . . . , EN ], for some real numbers E0 < E1 < . . . < EN .

My third example is the standard model for the quantized radiation field in
quantum field theory. The Hilbert space carrying the field is a Fock space,

F := Fb[L2(R3 × Z2)] :=
∞

⊕

n=0

F (n) , (8)

where F (n) is the state space of all n-photon states, the so-called n-photon sector.
The space of no photons, F (0), is one-dimensional, and the vacuum vector, Ω, is
a unit vector in F (0) := CΩ. For n ≥ 1, The n-photon sector is the subspace of
the n-fold tensor product of L2(R3 × Z2) which consists of all totally symmetric
vectors (= wave functions),

F (n) :=
{

ψn ∈ L2[(R3 × Z2)n]

∣

∣

∣ ∀π ∈ Sn :

ψn(kπ(1), kπ(2), . . . , kπ(n)) = ψn(k1, k2, . . . , kn)
}

⊆
n

⊗

j=1

L2(R3 × Z2) , (9)

where kj := (~kj , λj) ∈ R3 × Z2 indicates that ψn ∈ F (n) is given in momentum
representation (Fourier transform). The symmetry of the wave functions accounts
for the fact that photons are indistinguishable particles obeying Bose-Einstein
statistics.
The Hamiltonian on F representing the energy of the free photon field is given by

Hf :=
∞

⊕

n=0

H(n)
f , (10)

[

H(n)
f ψn

]

(k1, . . . , kn) :=
(

ω(k1) + . . . + ω(kn)
)

ψn(k1, . . . , kn) , (11)

for suitable ψn ∈ F (n), and HfΩ := 0. Here, ω(k) := |~k| =
√

~k2 + m2 |m=0 is the
photon dispersion law, in accordance with the principles of special relativity. From
the explicit form of Hf it is clear that

σ(Hf ) = [0,∞) , σpp(Hf ) = {0} , σac(Hf ) = (0,∞) . (12)

Note that H(1)
f =

√
−∆x. Further note that Hf leaves the n-photon sector invari-

ant. The Hamiltonians from physics to be discussed do not have this invariance,
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however, and the representations (8)-(11) of F and Hf is rather cumbersome for
those models.
It is more convenient instead to express F and Hf in terms of creation and an-
nihilation operators. Given f ∈ L2(R3 × Z2), the creation operator a∗(f) and the
annihilation operator a(f) are defined by a(f)Ω := 0 and, for n ≥ 1, by

a(f) : F (n) → F (n−1) , (13)
[

a(f) ψn
]

(k1, . . . , kn−1) :=
√

n
∫

dk f(k)ψn(k1, . . . , kn−1, k) ,

a∗(f) : F (n−1) → F (n) , (14)
[

a∗(f)ψn−1
]

(k1, . . . , kn) :=
√

n
n!

∑

π∈Sn

f(kπ(1)) ψn−1(kπ(2), . . . , kπ(n)) ,

and then extended to (a dense domain in) F by linearity and continuity. Note that
(

a(f)
)∗

= a∗(f). The important feature of the creation and anihilation operators
is that they represent the canonical commutation relations (CCR),

∀f, g ∈ L2(R3 × Z2) : [a(f) , a(g)] = [a∗(f) , a∗(g)] = 0 , (15)

[a(f) , a∗(g)] = 〈f |g〉1F . (16)

Here, [A,B] := AB−BA on a suitable domain. Note that f 7→ a∗(f) is linear and
f 7→ a(f) is antilinear in f . Hence, I may consider these maps as operator-valued
distributions with formal distribution kernels a∗(k) and a(k), respectively. Bearing
this interpretation in mind, one writes

a∗(f) =:
∫

dk f(k) a∗(k) , a(f) =:
∫

dk f(k) a(k) . (17)

I remark that a(k) is a densely defined operator, but not closable, while a∗(k) is
not even densely defined, because, e.g., Ω /∈ dom(a∗(k)). In the sense of operator-
valued distributions, i.e., with smearing by suitable test functions understood, I
may rewrite the CCR as

∀k, k′ ∈ R3 × Z2 : [a(k) , a(k′)] = [a∗(k) , a∗(k′)] = 0 , (18)

[a(k) , a∗(k′)] = δλ,λ′ δ(~k − ~k′)1F . (19)

By means of creation and annihilation operators, I rewrite

F (n) = span
{

a∗(f1) · · · a∗(fn)Ω
∣

∣

∣ f1, . . . , fn ∈ L2(R3 × Z2)
}

, (20)

Hf =
∫

dk ω(k) a∗(k)a(k) . (21)

As a fourth example, I describe a system consisting of an electron in an
atom and the quantized radiation field. The appropriate Hilbert space for this
description is

H := Hel ⊗ F . (22)
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Figure 2. The Spectrum of H0 = Hel ⊗ 1 + 1⊗Hf

In the trivial case that the electron and the photon field do not interact, the
Hamiltonian is given by

H0 := Hel ⊗ 1f + 1el ⊗Hf . (23)

My ultimate goal is the study of an interacting electron-photon system. To develop
sensible questions to be answered for such a system, however, it is instructive to
first discuss the spectral properties of H0. I note the general fact [42] that, for a
sum of two selfadjoint operators as in (23), I have

σ(H0) = σ(Hel) + σ(Hf ) . (24)

and the spectral measure of H0 is simply the product measure of the spectral
measures of Hel and Hf ,

µϕ⊗ψ(H0 , λ + µ) = µϕ(Hel , λ)⊗ µψ(Hf , η) . (25)

As a result, Ej is still an eigenvalue of H0 with multiplicity nj and corresponding
eigenvectors {ϕj,α⊗Ω}α=1,...,nj . Note, however, that Ej are not isolated anymore.
The lowest eigenvalue, the ground state energy, inf σ(H0) = E0, is located at the
bottom of σac(H0) = [E0,∞), and the higher eigenvalues, the excited energies, Ej ,
j ≥ 1, are now embedded in continuous spectrum, see fig. 2.

I now turn to the main object of study, the interacting electron-photon Hamil-
tonian,

Hg := H0 + g W , (26)
acting on H = Hel ⊗ F , as in (22). For the Hamiltonian Hg, I now formulate
important tasks which have been addressed and/or even completed during the
past decade.

(0.) Models and Selfadjointness. To give criteria for W ensuring that Hg defines
a selfadjoint, semibounded Hamiltonian and general enough to include the
most important applications for Hg in physics.
→ See hypothesis 2.1 and corollary 2.3, below.

(1.) Binding. To specify conditions under which the Hamiltonian Hg has a
ground state, i.e., under which E0(g) := inf σ(Hg) is an eigenvalue.
→ See theorem 3.1, below.

(2.) Resonances. To develop an appropriate framework for a theory of reso-
nances of Hg, to apply this theory to Hg, and to prove that the embedded
excited energies turn into resonances with corresponding metastable states
of finite life-time.
→ See theorems 4.3 and 4.5, below.
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(3.) Scattering Theory. To derive continuous spectrum and scattering theory.
To develop tools for the study of the asymptotic behaviour of eitHg , as t →
±∞, like positive commutator estimates. Ultimately, to prove asymptotic
completeness of scattering of such systems.
→ See theorem 5.3, below.

(4.) Positive Temperatures. To study the systems under consideration for non-
zero temperature, given that the Hamiltonian and its spectral properties
describe the dynamics of the system at zero temperature.
→ See theorem 6.1, below.

(5.) Feshbach Renormalization Map. To develop a renormalization group that
allows for a direct analysis of the spectral properties of Hg and Lg.
→ See theorems 7.2, below.

In the remaining sections 2–7, I discuss the topics (0.)–(5.) of the list above. Besides
the papers mentioned or discussed below, there are many important contributions
which cannot be discuss here but should, nevertheless, be mentioned: [2, 3, 4, 5,
1, 18, 19, 20, 21, 25, 26, 27, 38, 45, 46]

2. Models and Selfadjointness

2.1. Modelling the interaction
According to first principles in physics, the physically correct coupling of an elec-
tron to the electromagnetic field is the minimal coupling. Writing the Schrödinger
operator Hel=−∆x+V (x) in Eq. (2) as Hel =(~σ ·i~∇x)2+V (x) (~σ=(σ(x), σ(y), σ(z))
being the three Pauli matrices), it amounts to replacing the momentum operator
−i~∇x by −i~∇x − 2π1/2α3/2 ~A(αx) (to accommodate for gauge invariance),

Hα :=
[

~σ ·
(

−i~∇~x − 2π1/2α3/2 ~A(α~xj)
)

]2
+ Vc(x)⊗ 1f + 1el ⊗Hf , (27)

where α ∼ 1/137 is the fine structure constant, and ~A(~x) denotes the quan-
tized vector potential of the transverse modes of the electromagnetic field in the
Coulomb gauge, i.e.,

~A(~x) :=
∫

dk ~G~x(k)⊗ a∗(k) + ~G~x(k)⊗ a(k) , (28)

with coupling function

~G~x(~k, λ) :=

√
2 κ(|~k|/K)

√

π K3 ω(~k)
exp[−i~k · ~x] ~ελ(~k) , (29)

where ~ελ(~k), λ = 1, 2, are photon polarization vectors satisfying

~ελ(~k)∗ · ~εµ(~k) = δλµ , ~k · ~ελ(~k) = 0 , for λ, µ = 1, 2. (30)

Furthermore, κ is an entire function of rapid decrease on the real line, e.g., κ(r) :=
exp(−r4). Hence, the factor κ(|~k|/K) in (28) cuts off the vector potential in the
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ultraviolet domain, |~k| � K. It is artificial in the sense that physical principles
actually imply that κ ≡ 1. With κ ≡ 1, however, ‖ ~Gx‖L2 would diverge at |~k| = ∞,
which, in turn, would imply that Ω /∈ dom( ~A(x)), for any x ∈ R3 × Z2. In order
to give a meaning to ~A(x) as a densely defined operator, I thus have to regularize
~Gx at (a preferably large) momentum scale K � 1. Indeed, by choosing κ to be
a sufficiently rapidly decreasing, analytic function obeying κ(0) = 1, it is ensured
that ~Gx ∈ L2(R3×Z2), uniformly in x ∈ R3×Z2. The function κ(| · |/K) is called
ultraviolet cutoff, and the construction of the limit K →∞, of this regularization
is one of the open problems in nonrelativistic quantum electrodynamics.

I return to Eqn. (27), which I write as

Hg = H0 + Wg , (31)

where H0 is defined in (23), and I obtain

Wg + Cno = 4π1/2α3/2 ~A(α~xj) · (i~∇~x) + 2πα3 ~A2(α~x)

+ 2π1/2α5/2~σ ·
(~∇∧ ~A

)

(α~x) (32)

from expanding the square in (27). Note that Wg contains terms linear and qua-
dratic in the creation and annihilation operators, a∗(k), a(k). Hence, I may write

Wg = gW1,0 + gW0,1 + gW2,0 + g2W1,1 + g2W0,2 , (33)

where W1,0 and W0,1 are linear in a∗(k) and a(k),

W1,0 :=
∫

dk w1,0(k)⊗ a∗(k) , W0,1 :=
∫

dk w0,1(k)⊗ a(k) , (34)

and W2,0, W1,1 and W0,2 are quadratic in a∗(k) and a(k),

W2,0 :=
∫

dk dk′ w2,0(k, k′)⊗ a∗(k)a∗(k′) , (35)

W1,1 :=
∫

dk dk′ w1,1(k, k′)⊗ a∗(k)a(k′) , (36)

W0,2 :=
∫

dk dk′ w0,2(k, k′)⊗ a(k)a(k′) . (37)

The tensor products in (34)-(37) indicate that I consider the coupling functions
wm,n as functions on (R3 × Z2)m+n with values in the operators on Hel.

Comparing (34)-(37) to (32), I find that

w1,0(k) = w0,1(k)∗ := 2i ~G~x(k) · ~∇~x + ~σ · ( ~B~x(k) , (38)

where the magnetic field ~B~x(k) corresponds to the term 2π1/2α5/2~σ · (~∇∧ ~A)(α~x)
in Wg,

~B~x(k) :=
α
√

2 κ(|~k|/K)

i
√

π K3 ω(~k)
exp[−iα~k · ~x]

(

~k ∧ ~ελ(~k)
)

. (39)
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Furthermore,

w2,0(k1, k2) = w0,2(k1, k2)∗ := ~G~x(k1) · ~G~x(k2) , (40)

w1,1(k1, k2) := ~G~x(k1)∗ · ~G~x(k2) + ~G~x(k1) · ~G~x(k2)∗ . (41)

The constant Cno in (32) equals ‖~G~x‖2L2 , which is independent of ~x. It results from
normal-ordering one term contributing to W1,1,

a
( ~G~x

)

a∗
(~G~x

)

= a∗
( ~G~x

)

a
(~G~x

)

+
∥

∥ ~G~x
∥

∥

2
L2 1 . (42)

Note that the finiteness of Cno is due to the introduction of the ultraviolet cutoff.
The next observation to be made is that the coupling functions wm,n obey

the following bounds, pointwise in k, k′ ∈ R3 × Z2,
∥

∥w1,0(k) (−∆~x + 1)−1/2
∥

∥

B(Hel)
+

∥

∥w0,1(k) (−∆~x + 1)−1/2
∥

∥

B(Hel)
≤ J(k) , (43)

∥

∥w2,0(k, k′)
∥

∥

B(Hel)
+

∥

∥w1,1(k, k′)
∥

∥

B(Hel)
+

∥

∥w0,2(k, k′)
∥

∥

B(Hel)
≤ J(k) J(k′) , (44)

with

J(k) :=
4κ(|~k|/K)
ω(k)1/2 , (45)

and I note for later reference that, for any 0 ≤ β < 2,
∫

(

1 + ω(k)−β
)

|J(k)|2 dk < ∞ . (46)

I use this example as a guideline for the following hypothesis on the form of
the interaction Wg.

Hypothesis 2.1. The interaction be of the form

Wg = gW1,0 + gW0,1 + gW2,0 + g2W1,1 + g2W0,2 , (47)
where

W1,0 :=
∫

dk w1,0(k)⊗ a∗(k) , W0,1 :=
∫

dk w0,1(k)⊗ a(k) , (48)

W2,0 :=
∫

dk dk′ w2,0(k, k′)⊗ a∗(k)a∗(k′) , (49)

W1,1 :=
∫

dk dk′ w1,1(k, k′)⊗ a∗(k)a(k′) , (50)

W0,2 :=
∫

dk dk′ w0,2(k, k′)⊗ a(k)a(k′) . (51)

The coupling functions wm,n are functions on (R3 × Z2)m+n with values in the
operators on Hel obeying wm,n = w∗n,m. Moreover, there is a measurable function
J : R3 × Z2 → R+

0 such that
∥

∥w1,0(k) (−∆~x + 1)−1/2
∥

∥

B(Hel)
+

∥

∥w0,1(k) (−∆~x + 1)−1/2
∥

∥

B(Hel)
≤ J(k) , (52)

∥

∥w2,0(k, k′)
∥

∥

B(Hel)
+

∥

∥w1,1(k, k′)
∥

∥

B(Hel)
+

∥

∥w0,2(k, k′)
∥

∥

B(Hel)
≤ J(k) J(k′) , (53)

for all k, k′ ∈ R3 × Z2.
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2.2. Relative bounds and selfadjointness
In this section I present the results on task (0.) in the list above, establishing the
existence of the Hamiltonian Hg by deriving it from a semibounded quadratic form
under minimal conditions. Furthermore, I give a criterion that ensures the stability
of the domain of definition for Hg, i.e., dom(Hg) = dom(H0). The arguments are
based on Kato perturbation theory and variations of the following simple estimate.
Namely, given f such that f/

√
ω ∈ L2(R3×Z2) and ψ ∈ dom(Hf ), I observe that

‖a(f)ψ‖ ≤
∫

|f(k)| ‖a(k)ψ‖ dk

≤
(

∫

|f(k)|2 dk
ω(k)

)1/2 (

∫

ω(k) ‖a(k)ψ‖2 dk
)1/2

= ‖ω−1/2 f‖2L2 ·
∥

∥H1/2
f ψ

∥

∥ , (54)

hence, for any ρ > 0,
∥

∥a(f) (Hf + ρ)−1/2
∥

∥ ≤ ‖ω−1/2 f‖2L2 . (55)

The following lemma derives from (55).

Lemma 2.2. Assume hypotheses 1.1 or 1.2 and 2.1.

(i) If ω−1J2 ∈ L1(R3 × Z2) then Wm,n defines a quadratic form on Q(H0),
and I have that

∥

∥(H0 + i)−1/2 Wm,n (H0 + i)−1/2
∥

∥ ≤ C(V )
∥

∥ω−1 J2
∥

∥

L1 , (56)

for all 1 ≤ m + n ≤ 2, where C(V ) < ∞ is a constant depending on the
potential V .

(ii) If (1 + ω−1)J2 ∈ L1(R3 × Z2) then Wm,n and W ∗
m,n define bounded oper-

ators on dom(H0), and
∥

∥W#
m,n (H0 + i)−1

∥

∥ ≤ C(V )
∥

∥(1 + ω−1) J2
∥

∥

L1 , (57)

where W#
m,n is Wm,n or W ∗

m,n, and the constant C(V ) < ∞ depends only
on V .

Now, standard Kato perturbation theory implies that

Corollary 2.3. Assume hypotheses 1.1 or 1.2 and 2.1.

(i) If ω−1J2 ∈ L1(R3 × Z2) and |g| > 0 is sufficiently small then Hg de-
fines a symmetric, semibounded quadratic form on Q(H0), and hence the
corresponding selfadjoint operator is essentially selfadjoint on dom(H0).

(ii) If (1 + ω−1)J2 ∈ L1(R3 × Z2) and |g| > 0 is sufficiently small then Hg is
a semibounded, selfadjoint operator on dom(Hg) = dom(H0).

The proofs for these basic statements can be found in many papers on this
subject, e.g., [19, 10, 5]



10 V. Bach

3. Binding
In this section I focus on the bottom of the spectrum, E0(g) := inf σ(Hg) of
the interacting Hamiltonian Hg. Besides hypotheses 1.1 or 1.2 and 2.1, I will
now assume that (1 + ω−1)J2 ∈ L1(R3 × Z2). Then corollary 2.3(ii) insures that
Hg = H∗

g on dom(H0) and that E0(g) > −∞. Furthermore, from the discussion of
the spectral properties of H0 in section 1, I know that E0(0) = E0 is an eigenvalue.
Indeed, the corresponding eigenspace is spanned by {ϕ0,α ⊗ Ω}α=1,...,n0 .

The question of stability of this eigenvalue under perturbation now arises.
Theorem 3.1. Assume hypotheses 1.1 or 1.2 and 2.1. Furthermore assume W2,0 =
W1,1 = W0,2 = 0, (1 + ω−2)J2 ∈ L1(R3 × Z2). There exists a constant C(V ) < ∞
such that if 2α := |E0| −C(V )

∥

∥(1+ ω−2)J2
∥

∥

L1g2 > 0 then E0(g) is an eigenvalue
with corresponding eigenvector, Ψ0(g) ∈ H. Moreover,

∥

∥eα|x| ⊗NfΨ0(g)
∥

∥ < ∞ . (58)
Theorem 3.1 states that inf σ(Hg) is an eigenvalue and that the corresponding
eigenfunction is exponentially localized about the origin. The physical interpreta-
tion of this statement is that the atom or molecule under consideration does not
dissolve by switching on the interaction of the electron and the electromagnetic
field. In fact, the spatial localization of the atom or molecule is continuous in
g → 0.

A first existence result for a ground state in the framework of hypotheses 1.1
and 2.1, i.e., an eigenvalue at the bottom of the spectrum, was derived in [20], and
another important result in the context of the Spin-Boson model was given in [45].
In the form stated above, theorem 3.1 was proved under hypotheses 1.1 and 2.1
in [10] and under hypotheses 1.2 and 2.1 in [5]. The strategies of the proof in [10]
and in [5] are similar, and they are both building on ideas given in [20]. The range
of validity w.r.t. g was further enlarged in [46], and in [23] it was finally shown
that no restriction on the magnitude of g is necessary, whatsoever.

Statements about uniqueness of the ground state, i.e., about the non-degen-
eracy of E0(g) as an eigenvalue, were given in [10, 27].

I outline the strategy of the proof of theorem 3.1 as in [10].
• First, the coupling functions w0,1(k) = w1,0(k)∗, are replaced by χ[ω(k) ≥

m] w0,1(k) and χ[ω(k) ≥ m] w1,0(k), respectively, where m > 0 is inter-
preted to be a “photon mass”. The resulting Hamiltonian is denoted H(m)

g .
• By a suitable additional discretization, one shows that E(m)

0 (g) + m =
inf σess(H

(m)
g ) where E(m)

0 (g) := inf σ(H(m)
g ). Hence, E(m)

0 (g) is an eigen-
value of finite multiplicity. Denote by Ψ(m)

0 (g) a normalized eigenfunction,
H(m)

g Ψ(m)
0 (g) = E(m)

0 (g)Ψ(m)
0 (g).

• From a simple norm bound follows the convergence H(m)
g → H(0)

g = Hg in
norm-resolvent sense, as m → 0. In particular, limm→0 E(m)

0 (g) = E0(g),
and, possibly after passing to a subsequence, w− limm→0 Ψ(m)

0 (g) =: Ψ is
a ground state of Hg: Hg Ψ = E0(g)Ψ.
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• The key step in the proof is to show that Ψ 6= 0. At this point, Agmon
estimates for the localization in the x-variable and soft-photon bounds
insure that the sequence Ψ(m)

0 (g) is compact and hence Ψ 6= 0.

4. Resonances

The notion of resonances discussed here is based on the analytic continuation of
resolvent matrix elements by means of complex deformations (here: dilatations).
More precisely, a resonance is a singularity of the function

Fϕ,ψ(z) := 〈ϕ| (H − z)−1ψ〉 , (59)

analytically continued from z := λ + iε ∈ C+, λ > E0(g), across the real axis onto
the second Riemann sheet in C−. Note that λ ∈ σess(Hg), so such an analytic
continuation cannot be expected to exists for all ϕ, ψ ∈ H. Rather, the goal is to
construct the analytic continuation of Fϕ,ψ, for ϕ,ψ contained in a natural dense
set D.

The set D is not unique, but it is characterized by a maximality require-
ment: Denoting by A(ϕ,ψ) the domain of analyticity of Fϕ,ψ, the intersection
⋂

ϕ,ψ∈DA(ϕ,ψ) should be the largest possible set under the requirement that
D ⊆ H be dense.

Our construction of the analytic continuation of Fϕ,ψ goes through complex
dilatation [42, 15]. For θ ∈ R and ψn ∈ F (n), I define a unitary dilatation operator
by

[

U (n)
θ ψn

]

(k1, . . . , kn) := e−
3θ
2 (|~k1|+···+|~kn|) ψn(e−θk1, . . . , e−θkn) , (60)

where e−θk = e−θ(~k, λ) := (e−θ~k, λ). Furthermore, U (0)
θ Ω := Ω. Then, the unitary

dilatation Uθ on H is defined by

Uθ := 1el ⊗
∞

⊕

n=0

U (n)
θ . (61)

As in the introduction, it is instructive to discuss the action of Uθ on H0

before applying it to Hg. I remark that Uθ1el ⊗HfU−1
θ = e−θ1el ⊗Hf and hence

H0(θ) := Uθ H0 U−1
θ = Hel ⊗ 1f + e−θ 1el ⊗Hf . (62)

Observe that H0(θ) extends from θ ∈ R to an analytic family of type A [41] on
the strip θ ∈ Sπ := {θ| − π < Im(θ) < π}, i.e., the Banach space-valued map

Sπ 3 θ 7→ H0(θ)
(

H0 + i
)−1 ∈ B(H) (63)

is analytic. Note that, for θ /∈ R, H0(θ) is not selfadjoint. Yet, H0(θ) is a normal
operator, even for θ /∈ R. Thus, the discussion of the spectral properties of H0(θ)
is as simple as the one for H0. Namely,

σ[H0(θ)] = σ(Hel) + e−θσ(Hf ) = σ(Hel) + e−θR+
0 . (64)
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E0

Im(θ)

Σ· · ·E2E1

Figure 3. The spectrum of H0(iϑ), with ϑ > 0.

For j =0, 1, . . ., the real numbers Ej are eigenvalues of H0(θ) at the tips of branches
of continuous spectrum, the corresponding eigenvectors remain unchanged (see
fig. 3).

I now construct the analytic continuation of Fϕ,ψ, for g = 0. I define D to
be the set of dilatation analytic vectors, i.e., those vectors ψ ∈ H, for which the
Hilbert space-valued map

Sπ 3 θ 7→ ψθ := Uθ ψ ∈ H (65)

is analytic. Then, for any z ∈ C+ and θ = iϑ, 0 < ϑ < π/2,

Fϕ,ψ(z) =
〈

ϕ
∣

∣ (H0 − z)−1 ψ
〉

=
〈

ϕθ̄

∣

∣ (H0(θ)− z)−1 ψθ
〉

, (66)

by analytic continuation in θ. (Note that ϕ continues to ϕθ̄ because of the anti-
linearity of ϕ 7→ 〈ϕ|ψ〉.) I now obtain the desired analytic continuation of z 7→
Fϕ,ψ(z) into C−\σ[H0(θ)] by continuing the right side of (66) in z. From this point
of view, the complex dilatation in θ defines a projection of the Riemann surface
associated to Fϕ,ψ(z) onto the complex plane different from the one obtained for
θ = 0. The branches of continuous spectra appear as branch cuts associated to the
chosen projection, and the eigenvalues coincide with the branch points of these
cuts. Their position is independent of the chosen projection, i.e., invariant under
(local) variations of the deformation parameter θ.

The construction of the analytic continuation of Fϕ,ψ(z) for g > 0 is sim-
ilar to the one for g = 0, in principle. I recall from hypothesis 2.1 that Wg =
∑

1≤m+n≤2 gm+nWm,n and that the coupling functions wm,n in Wm,n are func-
tions on (R3 × Z2)m+n with values in the operators on Hel. For the existence of
resonances, I shall employ the following additional assumption.

Hypothesis 4.1. There exists 0 < θ0 < π/2 such that, for all k ∈ R3 × Z2 and all
1 ≤ m + n ≤ 2, the Banach space-valued maps

Dθ0 3 θ 7→ wm,n(e−θk)
(

∆x + 1
)−1+ m+n

2 ∈ B(Hel) (67)

are analytic, where Dθ0 := {|θ| < θ0} ⊆ C2. Moreover, there is a measurable
function J : R3 × Z2 → R+

0 such that

sup
|θ|<θ0

∥

∥w1,0(e−θk) (−∆~x + 1)−1/2
∥

∥

B(Hel)
+ (68)

sup
|θ|<θ0

∥

∥w0,1(e−θk) (−∆~x + 1)−1/2
∥

∥

B(Hel)
≤ J(k) ,
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sup
|θ|<θ0

∥

∥w2,0(e−θk, e−θk′)
∥

∥

B(Hel)
+ sup

|θ|<θ0

∥

∥w1,1(e−θk, e−θk′)
∥

∥

B(Hel)
+ (69)

sup
|θ|<θ0

∥

∥w0,2(e−θk, e−θk′)
∥

∥

B(Hel)
≤ J(k) J(k′) ,

for all k, k′ ∈ R3 × Z2.
For j = 1, 2, . . ., let {ϕj,α}α=1,...,nj ⊆ Hel be an orthonormal basis of eigen-

functions of Hel corresponding to the eigenvalue Ej. Then the following genericity
assumption on the coupling function w1,0 is assumed to hold, for all j ≥ 1 and
1 ≤ α ≤ nj,

j
∑

i=0

ni
∑

β=1

∣

∣

∣supp
{

〈ϕi,β |w1,0( · )ψel,j,α〉
}

∣

∣

∣ > 0 . (70)

I remark that the pointwise analyticity assumed in hypothesis 4.1 is slightly
stronger than what it necessary.

Furthermore, I remark that hypothesis 4.1 does not hold for the coupling
functions of the physical example in (38), (40), and (41) because the dilatation
operator Uθ only acts on the photon Fock space and leaves the electron variable
unchanged, and consequently, the factor exp[iα~k · ~x] in ~G~x(k), defined in (29), is
turned into exp[ϑα~k·~x] which is exponentially growing, as ~k·~x becomes large. This
may be avoided by dilating both the electron and the photon variables, for then
exp[iα~k ·~x] is simply invariant under dilatation. The price to pay is that I have to
require dilation analyticity of the potential V in Hel and that Hel(θ) := UθHelU−1

θ
is not selfadoint anymore, if θ /∈ R. The latter makes certain estimates on norms of
resolvents of Hel(θ) slightly more complicated than for the selfadjoint case, θ = 0.
This has been carried out in [12].

Lemma 4.2. Assume hypotheses 1.1 or 1.2 and 2.1 and 4.1. If (1 + ω−1)J2 ∈
L1(R3 × Z2) then Hg(θ) defines a analytic family of type A, i.e., the Banach
space-valued map

Dθ0 3 θ 7→ Hg(θ)
(

H0 + i
)−1 ∈ B(H) (71)

is analytic.

Lemma 4.2 insures that, for all ϕ,ψ ∈ D, for any z ∈ C+, and θ = iϑ, with
0 < ϑ < θ0,

Fϕ,ψ(z) =
〈

ϕ
∣

∣ (Hg − z)−1 ψ
〉

=
〈

ϕθ̄

∣

∣ (Hg(θ)− z)−1 ψθ
〉

, (72)

by analytic continuation in θ. So, as for H0, I can analytically continue in z from
C+ to C− \ σ[Hg(θ)].

Theorem 4.3. Assume hypotheses 1.1 or 1.2 and 2.1 and 4.1. Furthermore, assume
that θ = iϑ, where ϑ > 0 is small but fixed, and that (1 + ω−β)J2 ∈ L1(R3 × Z2),
for some β > 1. Then, for each j ≥ 1, there exist constants, Γj > 0 and Cj < ∞,
such that, for g > 0 sufficiently small,
[

Ej−1 +Cjg , Ej+1−Cjg
]

+ i
(

−g2 Γj , ∞
)

⊆ ρ[Hg(θ)] := C\σ[Hg(θ)] . (73)
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Ej· · ·E1

Figure 4. The spectrum of Hg(iϑ), with ϑ > 0, up to O(g2+ε)-
neighbourhoods, for some ε > 0.

Moreover, the spectrum is located in O(g2+ε)-neighbourhoods of the comet-shaped
regions depicted in fig. 4, for some ε > 0.

Theorem 4.3 has the important consequence that the spectrum of Hg in the
interval [E0(g) + Cg , Σ− Cg] is purely absolutely continuous (see, e.g., [15]).

Under more stringent conditions on the coupling functions it is possible to
derive more precise information about the nature of the resonances than what
is given in theorem 4.3. The comet-shaped regions (see fig. 4) are only a rough
description of their location. The additional assumption that allows for a more
precise statement is as follows.

Hypothesis 4.4. Assume hypothesis 4.1. For some µ > 0, the function J : R3×Z2 →
R+

0 obeys the following additional bound,

sup
k∈R3×Z2

{

ω(k)
1−µ

2 J(k)
}

< ∞ . (74)

A renormalization group analysis, as described below in section 7, reveals
that the singularities of Fϕ,ψ, are actually confined in cuspidal domains whose tip
is an eigenvalue of Hg(θ), see fig. 5.

Theorem 4.5. Assume hypotheses 1.1 or 1.2 and 2.1, 4.1, and 4.4. Furthermore,
assume that θ = iϑ, where ϑ > 0 is small but fixed. Then, for each j ≥ 1 and g > 0
sufficiently small, Hg(θ) possesses complex eigenvalues, Ej,α(g) = Ej+O(g) ∈ C−,
with corresponding eigenvectors Ψj,α(g) = ϕj,α ⊗ Ω + O(g) ∈ H, where α =
1, . . . , nj. The spectrum of Hg is locally (in a disk of radius g2−ε about Ej, where
ε > 0) contained in the cuspidal domains

Ej(g) + e−iϑ {

a + ib
∣

∣ a ≥ 0 , |b| ≤ Ca1+µ/4} , (75)

see fig. 5. Moreover, the eigenvalues Ej,α(g) and the corresponding eigenvectors
Ψj,α(g) are obtained from a series expansion in (fractional) powers of g which is
determined by the iterated application of the Feshbach renormalization map.

I remark that the same assertion holds for j = 0 and ϑ = 0, in which case
E0(g) = E0 − O(g) = inf σ(Hg) ∈ R, is the perturbed ground state energy, and
Ψ0(g) is the corresponding ground state. Under certain genericity assumptions
similar to (70) the ground state will be unique, even if the multiplicity n0 of the
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Figure 5. The spectrum of Hg(iϑ), with ϑ > 0.

unperturbed ground state energy E0 is 2 or even higher. The degeneracy of E0,
however, is not lifted in second but in higher order in g.

I further remark that, comparing (63) to the physical coupling function ~G~x in
(29), I observe that hypothesis 4.4 is not fulfilled. Indeed, µ = 0 in this case, and
theorem 4.5 does not apply. This should not cause any disappointment because,
for µ = 0, there are several counterexamples to the existence of a ground state
Ψ0(g) ∈ H known [19, 45, 1]. In these counterexamples it is shown that, if at all,
the ground state of Hg is a density matrix in a different representation of Fock
space, not unitarily equivalent to our original Fock space.

5. Scattering Theory

The subject of scattering theory is the asymptotics of the time evolution, e−itH ,
as t → ∞. One of the central mathematical goals of scattering theory is to prove
asymptotic completeness. The most general results on asymptotic completeness
for models of the type discussed here have been obtained in [22, 16, 17], essentially
under two additional assumptions.

Hypothesis 5.1. The photon field is massive, i.e., the photon dispersion ω(k) := |~k|
has been replaced by

ωm(k) :=
√

~k2 + m2 , (76)
for some arbitrary but fixed m > 0, and

Hypothesis 5.2. The particle system is confined, that is, either lim|x|→∞V (x) =
∞, or

∥

∥(|x|+ 1)1+µ w1,0(k) (−∆~x + 1)−1/2
∥

∥

B(Hel)
≤ J(k) , (77)

for some µ > 0.

It is additionally assumed that w0,1 = w∗1,0, for Hg to be selfadjoint, and
w0,2 = w1,1 = w2,0 = 0, for simplicity.

To formulate asymptotic completeness for the type of models discussed here,
I first introduce the asymptotic creation and annihilation operators. For given
f ∈ L2(R3 × Z2), they are defined by

a#
±(f) := s− lim

t→±∞

{

e−itHg eitH0 a#(f) e−itH0 eitHg

}

, (78)
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where a# = a or = a∗. Note that these operators act on the full space H, rather
than on F . In [28, 29, 30] these operators were shown to exist, and this is the
first time that the positivity of the mass m > 0 enters. The asymptotic creation
and annihilation operators play the same role for Hg as the usual creation and
annihilation operators do for H0, namely

e−itH a#
±(f) eitH = a#

±
(

eitωf
)

. (79)

It is easy to see that the asymptotic creation and annihilation operators
yield another representation of the canonical commutation relations. It is, however,
less clear, which vectors in H replace the vacuum vector, i.e., which vectors are
contained in

K± :=
{

ψ ∈ H
∣

∣

∣ a±(f)ψ = 0 , ∀f ∈ L2(R3 × Z2)
}

. (80)

Observe that K± contain all bound states of Hg, for if Hgψ = Eψ then
∥

∥e−itHg eitH0 a(f) e−itH0 eitHg ψ
∥

∥ =
∥

∥a
(

e−itωf)ψ
∥

∥ → 0 , as t →∞, (81)

because e−itωf → 0, weakly in L2. Consequently,

Hpp(Hg) ⊆ K+ ∩ K− , (82)

where Hpp(Hg) is the subspace corresponding to the pure point spectrum of Hg,
i.e., onto all its eigenvectors. Asymptotic completeness is the statement that these
three subspaces are all equal, in fact. The following result can be found in [17].

Theorem 5.3. Assume hypotheses 1.1 or 1.2 and 2.1, 5.1, and 5.2. Then

Hpp(Hg) = K+ = K− . (83)

As a consequence of this theorem, there exists a unitary operators J± : H →
Hpp(Hg)⊗F such that a#

±(f)=J a#(f) J∗. By theorem 3.1, I know thatHpp(Hg) 6=
0, since E0(g) is an eigenvalue. The general belief is that E0(g) is simple, with corre-
sponding eigenvector Ψ0(g), and that Hg has no other eigenvalues, i.e., Hpp(Hg) =
C ·Ψ0(g). If that was the case then JHgJ∗ =

∫

dk ω(k) a∗±(k)a±(k).
I remark that one of the basic inputs for the proof of asymptotic completeness

is a positive commutator- or Mourre estimate [39, 40], and such an estimate is
indeed derived and applied in [22, 16, 17] to prove propagation estimates. The
typical form of these estimates is

χ∆(Hg) i
[

Hg , A
]

χ∆(Hg) ≥ µ χ2
∆(Hg) + K , (84)

where ∆ ⊆ R is a Borel set, A is a suitable observable, a customary choice being
the dilatation generator, µ > 0 is a strictly positive number, and K is a compact
operator. Here is another point where positivity of the mass enters, as it guarantees
that Hf is relatively bounded by Nf , the number operator on F , and vice versa.

Positive commutator estimates, like (84), are interesting in their own right,
for example, because they imply that in ∆, the spectrum of Hg is purely absolutely
continuous. A variety of positive commutator estimates for the models discussed
here were derived in [31, 33, 32, 44, 22, 14].
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6. Positive Temperatures

The dynamics e−itHg generated by the Hamiltonian Hg on the state space H of
the quantum mechanical system under consideration is the appropriate description
for systems at zero temperature, T = 0. At positive temperature, T > 0, however,
it is necessary to pass to a description in which the dynamics is generated by the
Liouvillian, Lg, which acts on the tensor product H ⊗ H of two copies of H. I
briefly motivate this change and sketch the resulting mathematical objects, below.

It is well-known that the Gibbs state of a finite quantum mechanical sys-
tem, with Hamiltonian H and at inverse temperature β := (kT )−1 is given by
ρ := Tr{ · e−βH}

(

Tr{e−βH}
)−1

, i.e., for a given observable A = A∗ ∈ B(H), its

expectation value is Tr{Ae−βH}
(

Tr{e−βH}
)−1

. The important point here is that I
assumed the system to be finite or confined, meaning that Tr{e−βH} < ∞. Indeed,
confining an infinite quantum system to a large but finite box Λ ⊆ R3 (with pe-
riodic b.c., say), I turn the continuous spectrum of the Hamiltonian into discrete
spectrum, and, for sufficiently large inverse temperature β � 1, the semigroup
e−βH is trace class, and I call the corresponding state ρΛ.

For many questions concerning static thermodynamic properties (e.g., compu-
tation of the thermodynamic potentials or correlation functions), it usually suffices
to work in finite boxes Λ, to prove estimates uniformly in |Λ|, and to pass finally
to the thermodynamic limit, Λ ↗ R3, by continuity. For example, the expecta-
tion value of a local observable A is then obtained in the thermodynamic limit as
ρ∞(A) := limΛ↗R3 ρΛ(A).

For the study of dynamical questions, however, it may not be sufficient to
work in finite boxes, but it might be necessary to formulate the dynamics in the
thermodynamic limit right away. Indeed, the asymptotics of the time evolution, as
t →∞, and the thermodynamic limit, Λ ↗ R3, do not commute, in general. One
example, for which this difference is crucial, is the property of return to equilibrium.
If A0 is an observable and At := αt(A0) its time evolution then the system under
consideration is said to return to equilibrium iff, for all states ρ (with a certain
trace-class property), I have

(weak form) limT→∞
1
T

∫ T
0 ρ(At) dt = ω(A0) , (85)

(strong form) limt→∞ ρ(At) = ω(A0) . (86)

Here, ω is a thermal equilibrium state, characterized by time-translation invariance
and the KMS condition (see below). The existence and uniqueness of such a state
is, in general, by no means trivial.

The framework for an infinite-volume theory at positive temperature was
given in [24, 7, 6]. Two crucial properties that carry over from finite-volume Gibbs
states, ρΛ, to the thermodynamic limit ρ∞ := limΛ↗R3 ρΛ (provided it exists), are
the time-translation invariance,

ρ∞
(

αt(A)
)

= ρ∞
(

A
)

, (87)
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for all t and A, and the KMS boundary condition,

ρ∞
(

A αt(B)
)

= ρ∞
(

α−iβ+t(B) A
)

, (88)

for A and B in a certain dense subalgebra
◦
A of the observable C∗ algebra A,

invariant under αt.
Using a GNS construction, the infinite-volume time evolution αt of an ob-

servable A ∈ A can be unitarily implemented as

ρ∞
(

αt(A)
)

=
〈

Ωβ

∣

∣

∣ e−itLg `[A] eitLg Ωβ

〉

, (89)

where Hβ := H ⊗ H, ` is a linear left-representation of A on B(Hβ), the KMS
state ρ∞ is identified with the projection onto a cyclic (vacuum) vector in Hβ ,
e.g., Ωβ = ϕ0 ⊗ ϕ0 ⊗Ω⊗Ω ∈ H⊗H (tensor factors swapped), and the dynamics
is generated by the selfadjoint operator Lg on Hβ , the Liouvillian.

The difference between finite in infinite systems is manifest in the form of
the Liouvillian. For finite systems (i.e., for the models discussed here, discretized
momentum space |Λ|−1/3Z3 replacing R3), `Λ[A] = A⊗1 and LΛ

g = HΛ
g ⊗1−1⊗

HΛ
g . For infinite systems, however, Lg is not of this form but rather

Lg = L0 + `[Wg]− r[Wg] = H0 ⊗ 1− 1⊗H0 + `[Wg]− r[Wg] , (90)

where `[a(f)] is not simply a(f)⊗ 1 but, e.g.,

`[a(f)] = a
(√

1 + ρβ f
)

⊗ 1 + 1⊗ a∗
(√

ρβ f
)

, (91)

and ρβ(k) := (eβω(k) − 1)−1.
The virtue of the GNS construction yielding the Liouvillian Lg is that it

allows for tracing back the property of return to equilibrium to spectral properties
of Lg. Namely, return to equilibrium follows if

• Zero is a simple eigenvalue of Lg, i.e., Ker{Lg} = C · Ωβ(g), where Ωβ(g)
is the unique KMS state of the system,

• Apart from zero, the spectrum is continuous, σcont(Lg)\{0} = σ(Lg)\{0}.
In this case, return to equilibrium holds at least in the weak form (85).

• If, apart from zero, the spectrum is even absolutely continuous, σac(Lg) \
{0} = σ(Lg) \ {0}, then return to equilibrium holds in the strong form
(86).

This reformulation was proposed and applied to prove return to equilibrium for
a system fulfilling hypotheses 2.1–5.1 in [34, 35, 36, 37]. The spectral analysis of
the Liouvillian then goes through a complex deformation, similar to the analysis
of resonances in section 3. The complex deformation used in [34, 35, 36, 37] is a
special type of complex translation. This elegant method has the advantage that
it yields fairly strong results already in second order perturbation theory, but the
price to pay are the stringent analyticity assumptions on the coupling functions
wm,n and the requirement of smallness of the coupling parameter g compared to
the temperature T > 0.
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Figure 6. The spectrum of L0 with Hel = diag[ε0,−ε0].

The approach in [34, 35, 36, 37] has been generalized in [13] to allow for
coupling functions that merely fulfill hypotheses 2.1–5.1 and values of the coupling
parameter uniform in the temperature T ↘ 0, by using complex dilatations. The
trade-off here is that for the prove of return to equilibrium I need to use technically
involved methods like the Feshbach renormalization map, described in section 7,
below.

To understand the results from [34, 35, 36, 37] and those in [13], it is again
useful to discuss the trivial decoupled case, g = 0. Recall that, according to hy-
pothesis 1.2, I consider a simplified model of the particle system as a selfadjoint
N × N -matrix with non-degenerate eigenvalues, Hel = diag(E0, E1, . . . , EN−1).
Then the spectrum of Lel := Hel ⊗ 1 − 1 ⊗Hel is given by {Ei,j := Ei − Ej |0 ≤
i, j ≤ N − 1}. Note that zero is an eigenvalue of multiplicity N . Next, the spec-
trum of Lf := Hf ⊗ 1 − 1 ⊗ Hf covers the entire real axis, and according to
L0 = Lel ⊗ 1 + 1 ⊗ Lf , I have that σ(L0) = σ(Lel) + σ(L0) = R, and all Ei,j

become eigenvalues embedded in the continuum, see fig. 6.
The complex translations used in [34, 35, 36, 37] now transform Lf into

Lf (θ) = Lf − iϑNf , where Nf is the number operator on F ⊗ F and θ = iϑ,
ϑ > 0. Therefore,

σ[L0(θ)] = {Ei,j := Ei − Ej |0 ≤ i, j ≤ N − 1} ∪
⋃

N∈N

{

θN + R
}

. (92)

I observe that the eigenvalues on the real axis are isolated. A simple application
of second order perturbation theory now shows that, for 0 < g � |ϑ|, all non-zero
eigenvalues are shifted into the lower half plane, ImEi,j(g) < −Γi,jg2, Γi,j > 0.
Furthermore, the N -fold degeneracy of the zero eigenvalue is lifted: all but one
eigenvalues of KerL0(θ) are also shifted into C−. The one vector remaining in
KerLg in second order perturbation theory is, in fact, the approximate KMS state.
Unfortunately, the domain of analyticity of the map θ 7→ L0(θ) is the disk of radius
T about 0, where T > 0 is the temperature. Thus, one has the restriction |g| < T .

Using a special form of complex dilatations, the unperturbed operator L0 is
mapped into L0(θ) := Lel+cos(ϑ)Lf−i sin(ϑ)Laux, where Laux := Hf⊗1+1⊗Hf

and θ = iϑ, ϑ > 0. Therefore, the spectrum of L0(θ) is the union of sectors of
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Figure 7. The spectrum of L0(θ), for Re θ = 0, Im θ = ϑ > 0.

opening angle (π/2)− ϑ in CC−, with (real) eigenvalues Ei,j as tips,

σ[L0(θ)] =
N−1
⋃

i,j=0

Ei,j +
{

a− ib
∣

∣ b > 0 , |a| ≤ cot(ϑ)b
}

, (93)

see fig. 7.
The domain of analyticity of the map θ 7→ L0(θ) is now includes the open

disk of radius π/2 about 0, uniformly in T → 0. (I remark that this analytic
continuation is more subtle than what is discussed in section 3 because Lg(θ) is
not an analytic family of type A.) Note, however, that the eigenvalues Ei,j of L0(θ)
on the real axis are not isolated anymore, and their behaviour under switching on
the coupling parameter g > 0 cannot be studied by standard perturbation theory,
in general. Nevertheless, an argument adapted from second order perturbation
theory now shows that, for 0 < g � 1, all sectors attached to non-zero eigenvalues
are (possibly slightly defromed and) shifted into the lower half-plane, ImEi,j(g) <
−Γi,jg2, Γi,j > 0. Furthermore, the N -fold degeneracy of the zero eigenvalue
is lifted: N − 1 of the N overlapping sectors attached to the zero eigenvalues
E0,0 = . . . = EN−1,N−1 = 0 of L0(θ) are also shifted into C−, and one sector at 0
remains there, for g > 0, in second order perturbation theory.

The most difficult part is now show that the form of the spectrum of Lg(θ)
described above is stable beyond second order perturbation theory, that is, to prove
that higher order terms in a perturbation series do not change it qualitatively (al-
though the sectors may become slightly deformed). This is established by applying
the Feshbach renormalization map described in section 7, below. As a result, the
the following theorem is obtained in [13].

Theorem 6.1. Assume hypotheses 1.2 and 2.1, 5.1, 5.2. Then

(i) There exist 0 < ϑ′0 < ϑ0 such that, for z ∈ C+, the resolvent (Lg(θ)−z)−1

has an analytic continuation from (z, 0) to (z, iϑ), for any ϑ′0 < ϑ < ϑ0.
(ii) Zero is a simple eigenvalue of Lg and Lg(iϑ) corresponding to a KMS

state of the system, which, therefore, exists and is unique.
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(iii) For ϑ′0 < ϑ < ϑ0, there exists 0 < ε such that, for 0 < g � 1, the spectrum
of Lg(iϑ) is contained in

σ[L0(iϑ)] =
{

a− ib
∣

∣ b > 0 , |a| ≤ cot(ϑ− g/ε)b
}

∪
N−1
⋃

i,j=0,i 6=j

{

Ei,j(g) +
{

a− ib
∣

∣ b > 0 , |a| ≤ cot(ϑ)b
}

+ D(g2+ε)
}

. (94)

Therefore, the spectrum of Lg away from zero is absolutely continuous,
and return to equlibrium holds in the strong form (86).

7. Renormalization Map

In this final section I describe how the Feshbach Renormalization Map is used for
spectral analysis, e.g., of resonances (see section 3) or the zero eigenvalue of the
Liouvillian (see section 6), to prove the existence of eigenvectors and to derive
an explicit, convergent series expansions for eigenvalues and the corresponding
eigenvectors, for perturbation problems which are not of the standard type with
isolated unperturbed eigenvalues.

To be concrete, I study the ground state energy of Hg, assuming hypotheses
1.2, 2.1, 5.1 and (without loss of generality) that E1 − E0 = 2.

The key ingredient is the Feshbach map which is well-known in mathematics
and physics, perhaps under a different name like “Grushin problem” or “Schur
complement”. I refer here to [11]. Given a closed operator H on a Hilbert space
H and a bounded projection P = P 2, P := 1− P denoting the complement.

Lemma 7.1. Assume that H := PHP is bounded invertible on RanP and that
PHP , PHP (H)−1P , and P (H)−1PHP are bounded. Then
(i) The Feshbach map H 7→ FP (H),

FP (H) := P H P − P H P
(

H
)−1

P H P , (95)

defines a bounded operator on RanP .
(ii) H is invertible on H iff FP (H) is invertible on RanP . In this case

H−1 =
(

P − P (H)−1PHP
)

FP (H)
(

P − PHP (H)−1P
)

+ P (H)−1P . (96)

(iii) dimKer(H) = dimKer(FP (H)).

I refer to (ii) and (iii) as isospectrality of the Feshbach map.
As a first application, I set P := |ϕ0〉〈ϕ0|⊗χ[Hf < 1] and apply the Feshbach

map to H := Hg − E0 − z, for |z| < 1/2. It is easy to see that the assumptions of
lemma 7.1 are fulfilled, and thus I obtain a family of bounded operators, H(0)

g [z]

|ϕ0〉〈ϕ0| ⊗H(0)
g [z] := FP (Hg − z) , defined on Hred := Ranχ[Hf < 1] . (97)

To define the renormalization group map Rρ, I introduce a norm, ‖ · ‖′, on
B(Hred) that is stronger than the usual operator norm, ‖A‖ ≤ ‖A‖′ (Details can
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be found in [11]). In a small ‖ · ‖′-ball, B ⊆ Hred, about Hf , and for 0 < ρ < 1/32,
the renormalization map Rρ is defined by

Rρ : B → B , H 7→ 1
ρ

Uρ

(

Fχ[Hf <ρ](H) −
〈

Fχ[Hf <ρ](H)
〉

Ω

)

U∗
ρ , (98)

where 〈 · 〉Ω denotes vacuum expectation value, Uρ is the unitary dilatation that
maps k 7→ ρk, thus ρ−1UρHfU∗

ρ = Hf , Uρχ[Hf < ρ]U∗
ρ = χ[Hf < 1], and hence

UρRanχ[Hf < ρ] = Hred. The most important property of Rρ is that it is a
contraction on B, with fixed point Hf . This leads to the following theorem

Theorem 7.2. For 0 < g � 1, there is a unique number E0(g) ∈ B1/2(E0) such
that

H(n)
g := Rn

ρ

(

H(0)
g [E0(g)]

)

→ Hf , in ‖ · ‖′, as n →∞. (99)

The number E0(g) can be interatively computed as E0(g) = limN→∞E(N)
0 (g),

where E(N)
0 (g) is the unique solution of

E(N)
0 (g) = E0 +

N
∑

n=0

ρ−n 〈

Fχ[Hf <ρ]
(

H(n)
g

)〉

Ω . (100)

The isospectrality of the Feshbach map, according to lemma 7.1, and the
fact that Ω is an eigenvector (corresponding to a zero eigenvalue) of the operator
Hf = limn→∞H(n)

g now yields the eigenvalue and eigenvector of Hg, sought for.

Corollary 7.3. The number E0(g) defined in theorem 7.2 is an eigenvalue of Hg.
The corresponding eigenvector can be written as a limit of a sequence of approxi-
mate eigenvectors determined by an iterative equation similar to (100).
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[13] V. Bach, J. Fröhlich, and I. M. Sigal. Return to equilibrium. J. Math. Phys., 2000.
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