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Abstract. We discuss some aspects of motion by mean curvature of hypersur-
faces in presence of nonsmooth anisotropies. We include the crystalline case
in three dimensions.

1. Introduction

In this short note we discuss some aspects of anisotropic motion by mean curvature.
One of the most interesting examples is when the anisotropy is crystalline in three
dimensions (i.e. the Wulff shape is a polytope). In this respect, pioneeristic papers
have been written by J. Taylor, see for instance [20, 21, 22]. Our main idea is
to work in relative geometry, looking at the anisotropy as a norm inducing a
new geometry in the ambient space. A number of difficulties arise, due to the
nonstrict convexity and nonsmoothness of the Wulff shape. The starting paper
leading to this approach is [12]. The reference list is largely incomplete. We refer
to [22, 15, 24, 16, 17] for a more detailed bibliography.
It is a pleasure to thank Matteo Novaga and Maurizio Paolini for enlightning
discussions on the arguments considered in this paper.

2. Notation

Anisotropies on Rn. We indicate by M(Rn) the class of all anisotropies of Rn

(Finsler metrics), i.e. φ ∈ M(Rn) if φ : Rn → [0,+∞[ is convex and satisfies the
properties

φ(ξ) ≥ λ|ξ| , φ(aξ) = aφ(ξ) , ξ ∈ Rn , a ≥ 0 ,

for a suitable constant λ ∈ ]0,+∞[. The dual function φo : Rn → [0,+∞[ of φ is
defined as φo(ξ∗) := sup {ξ∗ · ξ : φ(ξ) ≤ 1} for ξ∗ ∈ Rn, and belongs to M(Rn);
φo plays the rôle of the surface tension, see (1). We set

Bφ := {ξ ∈ Rn : φ(ξ) ≤ 1} , Bo
φ := {ξ∗ ∈ Rn : φo(ξ∗) ≤ 1} .

Bφ and Bo
φ are sometimes called the Wulff shape and the Frank diagram, respec-

tively. We say that φ is smooth if Bφ and Bo
φ are of class C2 and strictly convex.
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We say that φ is crystalline if Bφ (and therefore Bo
φ) is a polytope. In general, we

say that φ is nonsmooth if Bφ is not at the same time smooth and strictly convex.
By a facet of ∂Bφ we mean a facet of ∂Bφ of dimension (n− 1).

Rn endowed with the norm φ becomes a finite dimensional Banach space
(sometimes called Minkowski space); our approach consists to properly introduce
a notion of φ-surface measure, of φ-regular boundary (this is necessary only in the
nonsmooth case), of φ-normal vector and of φ-mean curvature, in order to define
(intrinsically) and to study the associated geometric evolution problems.

Duality mappings. Let φ ∈M(Rn). By T and T o we denote the possibly multival-
ued duality mappings defined by

T :=
1
2
D−(φ2) , T o :=

1
2
D−((φo)2) ,

where we drop the explicit dependence on the anisotropy in the notation, and D−

denotes the subdifferential. T, T o are maximal monotone operators, and T (resp.
T o) takes ∂Bφ (resp. ∂Bo

φ) onto ∂Bo
φ (resp. onto ∂Bφ). The geometric properties

of the maps T|∂Bφ
, T o

|∂Bo
φ

are of basic importance for describing the geometry of
φ-regular boundaries in the nonsmooth case: if ξ ∈ ∂Bφ, T (ξ) is the intersection
of the closed outward normal cone to ∂Bφ with ∂Bo

φ.

φ-distance function. Given a nonempty set E ⊂ Rn and x ∈ Rn, we set

distφ(x,E) := inf
y∈E

φ(x− y) , distφ(E, x) := inf
y∈E

φ(y − x) ,

dE
φ (x) := distφ(x,E)− distφ(Rn \ E, x) .

The function dE
φ is therefore the oriented φ-distance function negative inside E;

since in general Bφ is not symmetric with respect to the origin, −dE
φ does not

necessarily coincide with d
Rn\E
φ . At each point x where dE

φ is differentiable, there
holds ∇dE

φ (x) ∈ ∂Bo
φ (eikonal equation at x).

The surface energy. The surface energy functional Pφ is defined as follows: if E ⊂
Rn is a finite perimeter set, then

Pφ(E) :=
∫

∂E

φo(νE) dHn−1 , (1)

where Hn−1 is the (n− 1)-dimensional Hasudorff measure and νE is the outward
unit normal to the (reduced) boundary of E.

Pφ coincides with the Minkowski content of ∂E (at least if ∂E is sufficiently
smooth) defined by means of the distance distφ and does not necessarily coincide
with the (n − 1)-dimensional Hausdorff measure with respect to distφ [12]. The
functional Pφ can be written as sup{

∫
E

divσ dx : σ ∈ C1
0 (Rn;Bφ)} [3], and coincides

with the Γ− L2(Rn) limit, as ε→ 0+, of the sequence of functionals

Mε(u) :=
1
2c

∫
Rn

[
ε(φo(∇u))2 +

1
ε
W (u)

]
dx, u ∈W 1,2(Rn) , (2)
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whereW (s) := (1−s2)2, c :=
∫ 1

−1

√
W (s) ds, andMε := +∞ in L2(Rn)\W 1,2(Rn).

[12].
In the sequel, the function g : Rn × [0,+∞[→ R denotes a fixed bounded

function, which plays (depending of the context) either the rôle of prescribed mean
curvature or of the forcing term (external field).

3. Definitions and Results in the Smooth Case

In this section φ ∈M(Rn) is smooth.
φ-normal vectors, φ-mean curvature: smooth case. Let E be a bounded open set
of class C∞. We set νE

φ := ∇dE
φ on ∂E (which has unit φo-norm) and we define

[12] the vector field nE
φ : ∂E → ∂Bφ as

nE
φ := T o(νE

φ ) on ∂E . (3)

nE
φ is the natural φ-normal vector field to ∂E, and nE

φ · νE
φ = 1. It is sometimes

called the Cahn-Hoffman vector field; it can be defined in a suitable neighbourhood
of ∂E, keeping the fundamental constraint φ(nE

φ ) = 1, as nE
φ := T o(∇dE

φ ). The
φ-mean curvature κE

φ of ∂E is then defined [12, 11] as

κE
φ := div nE

φ on ∂E . (4)

It turns out that κE
φ coincides with the tangential divergence of nE

φ and that ∂Bφ

has φ-mean curvature equal to n− 1.
First variation of Pφ: smooth case. Let E ⊂ Rn be a bounded open set of class
C∞. Let Ψ ∈ C∞(Rn+1; Rn) and define Ψλ(x) := Ψ(x, λ) for any (x, λ) ∈ Rn+1.
Assume that Ψ0 = Id and that Ψλ−Id has compact support, and letX := ∂Ψλ

∂λ |λ=0
.

Then one can prove [11] that
d

dλ
Pφ (Ψλ(E))|λ=0 =

∫
∂E

κE
φ νE

φ ·X dPφ , (5)

where, here and in the following, dPφ := φo(νE)dHn−1. Therefore, if F is the
functional defined by

F(E) := Pφ(E) +
∫

E

g dx , (6)

we have
d

dλ
F (Ψλ(E))|λ=0 =

∫
∂E

(
κE

φ − g
)
νE

φ ·X dPφ . (7)

Denoting by dPφ the variation of Pφ as an element of the normed space L2
φ(∂E; Rn),

and denoting by 〈·, ·〉 the duality, one can also prove that a scalar multiple of the
vector field κE

φ n
E
φ is a solution of the problem

min
{
〈dPφ, X〉 : X ∈ L2

φ(∂E; Rn), ‖X‖2L2
φ(∂E;Rn) :=

∫
∂E

φ(X)2dPφ ≤ 1
}
.

For the computation of the second variation of Pφ see [5].
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Geometric evolution law: smooth case. Assume that g is smooth. Let E(t) be
a family of smooth bounded open sets, varying smoothly with t ∈ [0, T ]. Set
dφ(x, t) := d

E(t)
φ (x). We say that t ∈ [0, T ] → E(t) is a φ-smooth flow on [0, T ]

with forcing term g (and initial set E(0)) if

∂dφ

∂t
(x, t) = κ

E(t)
φ (x) + g(x, t), x ∈ ∂E(t), t ∈ [0, T ] . (8)

Remark 3.1.

(i) Under the evolution law (8), Bφ shrinks self-similarly.
(ii) No mobility factor is present in (8).
(iii) If n = 2, setting φo(ξ) = |ξ|φo( ξ

|ξ| ) =: ρψ(θ) (polar coordinates), it turns

out that the velocity of the front along n
E(t)
φ is equal to κE(t)(ψ + ψ′′)

(where κE(t) is the euclidean curvature of ∂E(t)), while along the euclidean
direction is equal to κE(t)ψ(ψ + ψ′′), see [11].

(iv) (8) admits local existence and uniqueness of a smooth solution, and the
comparison principle holds. Different type of weak solutions (giving sense
to the evolution after the onset of singularities) can be defined, see for
instance [2, 14].

(v) Smooth evolutions under (8) can be approximated, as ε → 0+, with the
solutions of the reaction-diffusion type equation

ut = div(T o(∇u))− 1
2ε2

W ′(u)− 1
2cε

g , (9)

obtained as the gradient flow of the functionals Mε in (2), after a time
rescaling, see [11, 4] for more details.

We conclude this section with some comments. The definitions of Pφ, nE
φ

and κE
φ , as well as the convergence result of solutions of (9), can be extended for

smooth inhomogeneous anisotropies φ(x, ξ). The results do not cover the case when
φ(x, ξ) vanishes (or becomes infinite) at some point x, or when φ(x, ξ) depends in
a discontinuous way on x. Finally, the extension of our approach to the evolution
of manifolds with arbitrary codimension is still an open problem.

4. Extension to the Nonsmooth Case

In this section φ ∈M(Rn) is nonsmooth. Unless otherwise stated, we assume also
g = 0 for simplicity. Our aim is to extend the approach of Section 3. The first
step is to define the vector field nE

φ . It is clear that the definition in (3) must be
modified, since T o(νE

φ ) is now a (convex) set, whose dimension may vary from
point to point on ∂E. Moreover (as it clearly happens in the crystalline case) we
must be able to let evolve nonsmooth (for instance polyhedral) sets, which do not
admit a normal vector field everywhere defined. These (and others) considerations
lead to redefine the concept of smooth boundary [6, 7].
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Definition 4.1. Let φ ∈M(Rn) be nonsmooth. Let E ⊂ Rn be a bounded open set.
We say that E is Lipschitz φ-regular, and we write E ∈ Rφ(Rn), if ∂E is Lipschitz
continuous and there exists a vector field η ∈ Lipν,φ(∂E; Rn), where

Lipν,φ(∂E; Rn) := {v ∈ Lip(∂E; Rn) : v(x) ∈ T o(νE
φ (x)) for Hn−1 − a.e. x ∈ ∂E} .

Remark 4.2.

(i) Lipschitz φ-regular sets are the analog, in the euclidean case, of the sets
of class C1,1.

(ii) It has been shown in [8] that, if φ ∈ M(R3) is crystalline, there is a Lip-
schitz φ-regular set E, which is polyhedral, convex and very close to the
Wulff shape Bφ, whose evolution, under crystalline mean curvature flow,
does not remain a polyhedral set (i.e. a facet of ∂E bends instantly). See
also [19] for numerical simulations. This is why, even for a crystalline φ,
we impose ∂E to be Lipschitz: we cannot restrict definition 4.1 to poly-
hedral sets ∂E. It must be said that, if n = 2, polygonal curves remain
polygonal during the crystalline flow.

(iii) The lipschitzianity of η is a regularity requirement making more difficult
the proof of a short time existence result of a φ-mean curvature flow in
the class Rφ(Rn) (which is an open problem). In this respect, one could
relax the regularity of η, for instance by requiring η to be only bounded with
divergence in L2(∂E) or, alternatively, with divergence in L∞(∂E), see [8].
A fourth definition can be given by imposing that η admits an extension in
a suitable neighbourhood of ∂E which is bounded with bounded divergence
[7, 9]. The three last definitions are expected to coincide for a rather large
class of φ and E, and hopely to coincide with definition 4.1 for some choice
of φ and E.

(iv) Bφ belongs to Rφ(Rn): take η(x) := x.
(v) Let n = 2, φ(ξ) := max{|ξ1|, |ξ2|} and B := {ξ ∈ R2 : |ξ| < 1} be the

euclidean ball. Then there exists no η ∈ Lipν,φ(∂B; R2) (and no η in one
of the other three classes introduced in (iii)). Therefore B is not Lipschitz
φ-regular. The regularity of B, in our relative approach, is analogous to
the regularity of the square in the euclidean geometry.

(vi) The structure and classification of Lipschitz φ-regular sets in n = 2 dimen-
sions is essentially known: for instance, in the crystalline case, roughly
speaking the boundary of E is a closed Lipschitz curve which is a sequence
(with a precise order) of segments which are parallel to some edge of ∂Bφ

and of segments or arcs which correspond to vertices of ∂Bφ [23, 18]. In
n = 2 dimensions, there is a natural choice of a special vector field, which
is the one which makes the edges and the arcs of ∂E of constant φ-curva-
ture.

(vii) The structure and classification of Lipschitz φ-regular sets in n = 3 di-
mensions, even for special φ’s, is an open problem. Some of their ba-
sic properties are studied in [9]. If φ is crystalline and E is a polyhe-
dron with the property that at any of its vertices v, the intersection of
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T o(νE
φ (x)) (x ∈ int(Q)) over all facets Q containing v is non empty, then

E ∈ Rφ(R3).

First variation of Pφ: nonsmooth case. Let E ∈ Rφ(Rn). In [9] it is rigorously
computed the first variation of the functional Pφ at E. Roughly speaking, it turns
out that the expression of (minus) the norm of the gradient of Pφ at E is given by

− inf
N∈Y

(∫
∂E

(divφ,τN)2 dPφ

)1/2

. (10)

The operator divφ,τ denotes the tangential divergence with respect to φ, here it
suffices to say that it is the natural definition of tangential divergence in relative
geometry, and coincides, on flat regions of ∂E, with the usual tangential divergence.
The space Y is the class of all vector fields in L2(∂E; Rn) satisfying the constraint
to belong to T o(νE

φ ) and having φ-tangential divergence in L2(∂E). It can be
proved that the minimum problem (10) has a solution, which we denote by NE

min,
which is unique in the divergence. It can then be proved that the direction of
minimal slope for the functional Pφ at E is given by NE

min: this is one of the
motivations for studying problem (10) in connection with the geometric evolution
problem. It is clear that divφ,τN

E
min is expected to identify the initial velocity of

the front.

Definition 4.3. Let E ∈ Rφ(Rn). We define [9] the φ-mean curvature κE
φ of E as

κE
φ := divφ,τN

E
min ∈ L2(∂E).

It turns out that the φ-mean curvature of Bφ is constantly equal to n− 1.
Let E ∈ Rφ(R2). If C is an edge of ∂E and WC is the corresponding edge

in the Wulff shape, then κE
φ is constant on C and is equal to δC

|WC |
|C| , where

δC ∈ {0,±1} is a convexity factor. NE
min is, on C, the linear combination of the

vector η at the vertices of C (all η ∈ Lipν,φ(∂E; R2) coincide on the vertices of
∂E).

One of the main results is the following global regularity result on the mini-
mizers of (10), see [9, 24].

Theorem 4.4. Let E ∈ Rφ(Rn). Then κE
φ ∈ L∞(∂E). Moreover, κE

φ has bounded
variation on all facets of ∂E corresponding to facets of ∂Bφ.

Open problem. Is there a solution N of problem (10) with N ∈ Lipν,φ(∂E; Rn)?

Theorem 4.4 makes possible to speak of the jump set of κE
φ on the facets of

∂E corresponding to facets of ∂Bφ. If F ⊂ ∂E is such a facet, it is of particular
interest to find necessary and sufficient conditions on E and F ensuring that the
jump set of κE

φ on F is empty: that is, to prove that divφ,τN
E
min is continuous on

F . For small times in the evolution problem, F is expected to translate parallely
to itself, possibly changing its shape, if κE

φ is constant on F (in this case we
say that F is φ-calibrable), or to bend if κE

φ is continuous but not constant on
F . In the first example of [8] it is shown a crystalline mean curvature flow of a
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Lipschitz φ-regular set having a facet F which instantly subdivides (κE
φ is piecewise

constant on F ). In the second example of [8] the bending phenomenon of a facet
of a Lipschitz φ-regular polyhedral set is described. Both these two evolutions are
φ-regular evolutions, i.e. they are not examples of singularities of the flow.

In general, it is interesting to find the structure and the properties of the
jump set of κE

φ on F , see [9] for some results in this direction. A characterization
of φ-calibrability for convex facets F of convex sets E will appear in [10].
Geometric evolution problem: nonsmooth case. We now define the notion of φ-regu-
lar flow: to avoid technical difficulties, we skip some details. Let E(t), for t ∈ [0, T ],
be a family of bounded open sets. We say that t ∈ [0, T ] → E(t) is a φ-regular
flow on [0, T ] if E(t) is Lipschitz φ-regular and there exists a family t ∈ [0, T ] →
N(·, t) of vector fields N(·, t) : ∂E(t) → Rn, such that N(x, t) ∈ T o(νE(t)

φ (x)) for
Hn−1-almost every x ∈ ∂E(t), divφ,τN(·, t) ∈ L2(∂E(t)) and such that, setting
dφ(x, t) := d

E(t)
φ (x), there holds

∂dφ

∂t
(x, t) = divφ,τN(x, t) , Hn−1 − a.e. x ∈ ∂E(t) , a.e. t ∈ [0, T ] . (11)

By analogy with semigroup theory (see [13, Theorem 3.1]), an open problem is to
prove that

∂dφ

∂t
(x, t) = divφ,τN

E(t)
min (x) , Hn−1 − a.e. x ∈ ∂E(t) , t ∈ [0, T ] (12)

(possibly ∂dφ

∂t being the right derivative), where NE(t)
min solves (10) with E(t) in

place of E.

Remark 4.5.

(i) In [6] it is proved that, in two dimensions, the solutions of the reaction-dif-
fusion type inclusion

ut − div(T o(∇u)) +
1

2ε2
W ′(u) 3 0 (13)

approximate, as ε → 0+, the φ-curvature flow with a quasi-optimal error
estimate of order ε2| log ε|2. A similar result holds in any space dimensions,
with a sub-optimal error estimate of order ε| log ε|2 [7].

(ii) In [7] it is proved a comparison principle between φ-regular flows (see [18]
for a comparison result in two dimensions), where the notion of φ-regu-
larity used is the fourth one in (iii) of remark 4.2: this result implies that,
if a φ-regular flow exists, then it is unique (in that class). This result is
also sufficient to ensure that the two examples constructed in [8] are the
unique crystalline evolutions starting from their initial data.

(iv) Another notion of flow can be given by imposing that each E(t) is Lips-
chitz φ-regular, and ∂E(t) admits a vector field η(·, t) ∈ Lipν,φ(∂E(t); Rn)
such that (11) holds with η in place of N (Lipschitz φ-regular flow). Find-
ing conditions ensuring that a φ-regular flow is also a Lipschitz φ-regular
flow is an open problem, strictly related to the problem addressed after
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theorem 4.4. We do not know whether the first evolutionary example con-
structed in [8] (subdivision of a facet at the initial time) is a Lipschitz
φ-regular flow.

(v) The extension of the above results in presence of a forcing term g depending
on x is a largely open problem.
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