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Abstract. In this paper we survey various aspects of the symplectic pack-
ing problem and its relations to algebraic geometry, going through results of
Gromov, McDuff, Polterovich and the author.

1. Introduction

1.1. Symplectic packing

Let (M2n,Ω) be a 2n-dimensional symplectic manifold with finite volume. Fix
an integer N ≥ 1 and consider symplectic packing of (M,Ω) by N equal balls of
radius λ, that is symplectic embeddings

ϕ : B(λ)
∐

· · ·
∐

B(λ)︸ ︷︷ ︸
N times

→ (M,Ω) (1)

of N disjoint copies of B(λ) —the closed 2n-dimensional (2n = dimM) Euclidean
ball of radius λ, endowed with the standard symplectic structure of R2n, ωstd =
dx1 ∧ dy1 + · · · + dxn ∧ dyn.

While Darboux theorem assures that such packings always exist for small
enough λ’s, when trying to increase the radii one runs into an obvious volume
obstruction: ϕ being a symplectic embedding must also be volume preserving. We
thus have:

N VolB(λ)=Vol(Image(ϕ)) ≤ Vol(M,Ω), or equivalently λ2n ≤
∫

M
Ωn

πnN
. (2)

The symplectic packing problem is the following question: Does the symplectic
structure impose other obstructions on symplectic packings, beyond inequality (2)?

1.2. Singularities of plane algebraic curves

Let p1, . . . , pN ∈ CP 2 be N general points in the complex projective plane. Con-
sider irreducible algebraic curves C ⊂ CP 2 which pass through p1, . . . , pN with
given multiplicities m1, . . . ,mN . The following is a classical question in singu-
larity theory: What is the minimal possible degree of a curve C with the above
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prescribed singularities? An old (and still open) conjecture of Nagata asserts that
when N ≥ 9 the degree of C must satisfy

deg(C) ≥ m1 + · · · + mN√
N

.

Surprisingly, this purely algebro-geometric problem is intimately related to the
symplectic packing problem.

In this paper we shall survey the symplectic packing problem and its mutual
relations with algebraic geometry and the conjecture of Nagata.

2. Packing Obstructions and Algebraic Geometry

First results in this direction were established by Gromov in 1985. Using his theory
of pseudo-holomorphic curves he proved the following:

Theorem 2.1. (Gromov [14]) If B(λ1)
∐

B(λ2) embeds symplectically into B2n(R)
then λ2

1 + λ2
2 < R2.

Notice that for λ1 = λ2 = λ this inequality becomes λ2 < 1
2R

2, or when
written differently:

2 VolB(λ) <
1

2n−1
VolB2n(R) .

In other words, the maximal portion of the volume of B2n(R) that can be filled
via 2 disjoint symplectic balls of equal radius is smaller than 1

2n−1 . This is a
purely symplectic phenomenon! Indeed it is not hard to prove that if one replaces
the condition “symplectic” on the embedding ϕ by “volume preserving” then the
problem becomes trivial in the sense that no obstructions beyond inequality (2)
exist, namely an arbitrarily large portion of the volume of (M,Ω) can be filled
by N disjoint copies of equal balls embedded via a volume preserving map. This
holds for every manifold M and any N ≥ 1.

Trying to formalize the study of the preceding phenomenon one introduces
the following quantity:

vN (M,Ω) = sup
λ

N VolB(λ)
Vol(M,Ω)

,

where λ passes over all possible radii for which there exists a symplectic embed-
ding ϕ as in (1) above. The number vN (M,Ω) measures the “maximal” portion
of the volume of M that can be symplectically packed by N equal balls. When
vN (M,Ω) = 1 we say that (M,Ω) admits a full symplectic packing by N equal
balls, while the case vN (M,Ω) is referred to as a packing obstruction.

Generalizing Gromov’s work, McDuff and Polterovich discovered the follow-
ing interesting result:

Theorem 2.2. (McDuff-Polterovich [26]) For each of the manifolds B4(1) and CP 2

(both endowed with their standard symplectic structures) we have:
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N 1 2 3 4 5 6 7 8 9

vN 1 1
2

3
4 1 20

25
24
25

63
64

288
289 1

Moreover, vN = 1 when N = k2.

2.1. Relations to algebraic geometry

McDuff and Polterovich discovered that the symplectic packing problem is in-
timately related to algebraic geometry. The first ingredient in building up this
connection is the symplectic blowing-up construction. We shall only give a general
overview of it here referring the reader to [26, 27] for more details.

The symplectic blowing-up construction is a symplectic version of the classi-
cal blowing-up procedure in algebraic geometry. It was discovered by Gromov [15]
and further developed by Guillemin and Sternberg [16]. Topologically symplectic
blowing-up is the same as in the algebraic framework, but it also defines a symplec-
tic form on the blown-up manifold. The deep connection between this operation
and symplectic packing was first established by McDuff in [23].

Topologically, blowing-up amounts to removing a point p from M and replac-
ing it by the (complex) projectivization of the tangent space of M at p. The same
construction also allows us to blow-up M at N distinct points p1, . . . , pN ∈ M .

It turns out that in order to define a symplectic form on the blow-up of M
at p1, . . . , pN one has to specify a symplectic embedding

ϕ : B(λ1)
∐

· · ·
∐

B(λN ) → (M,Ω)

which sends the centre of the i’th ball to pi for every i. Roughly speaking, once such
an embedding is given, one cuts out from M the images of the embedded balls
and collapses their boundaries to copies of CPn−1 (called exceptional divisors)
using the Hopf map. If we denote by Θ: M̃ → M the blow-up of M at p1, . . . , pN ,
then the symplectic blowing-up construction defines a symplectic form Ω̃ on M̃

such that Ω̃|T (Σi) = λ2
i σstd and Ω̃ = Θ∗Ω outside the images of the embedded

balls. Here we have denoted by Σi the exceptional divisor corresponding to pi,
Σi = Θ−1(pi) ≈ CPn−1, and by σstd the standard symplectic structures of CPn−1

normalized so that the area of a projective line CP 1 ⊂ CPn−1 is π. Writing
E1, . . . , EN for the homology classes of the exceptional divisors in H2n−2(M̃) and
e1, . . . , eN ∈ H2(M̃) for their Poincaré duals we thus have:

[Ω̃] = Θ∗[Ω] − πλ2
1e1 . . .− πλ2

1eN . (3)

Conversely, given a symplectic form Ω̃ on the blow-up M̃ of a manifold one
can, by blowing down, obtain a symplectic form Ω on M , and a symplectic packing
of (M,Ω) by balls. The radii of these balls are determined by Ω̃|Σi

as can be easily
seen from (3) above.

In the language of symplectic blow-ups, the problem of existence of symplec-
tic packings with balls of given radii, is equivalent to determining how much it
is possible to blow-up symplectically the manifold. In view of the blowing down
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construction this amounts to determination of those cohomology classes on the
blow-up of the manifold which can be represented by symplectic forms. For exam-
ple, in order to show that CP 2 admits a symplectic packing by N equal balls of
radius λ one has to show that the cohomology class

a = πl − πλ2(e1 + · · · + eN ) (4)

on the blow-up of CP 2 has a symplectic representative. Here l ∈ H2(CP 2,Z)
stands for the (positive) generator.

Although there are no general tools to attack this type of problem on a
general symplectic manifold, some information can be still obtained using tools
from classical algebraic geometry. The idea is to produce a Kähler form (rather
than just symplectic) in the given cohomology class. The main tool for this purpose
is the following criterion which is due independently to Nakai and to Moishezon
(see [17]). Henceforth we shall denote by H(1,1)(S,R) = H(1,1)(S) ∩H2(S,R) the
space of cohomology classes which can be represented by real (1, 1)-forms on a
given smooth algebraic variety S.

Theorem 2.3. (Nakai-Moishezon criterion) Let S be a smooth algebraic surface
and a ∈ H(1,1)(S,R). The class a can be represented by a Kähler form if and only
if the following two conditions are satisfied:

1.
∫

S
a ∪ a > 0.

2.
∫

C
a > 0 for every algebraic curve C ⊂ S.

Note that in order to apply this criterion one has to have some information
on all the possible homology classes [C] ∈ H2(S) which can be represented by
algebraic curves C ⊂ S. In general this might be hard, however when S has a
positive anti-canonical class a great deal of information is available on the relevant
classes [C] ∈ H2(S). Such surfaces S are called Fano (or del-Pezzo) and it is
not hard to check that blow-ups of CP 2 at no more than 8 points belong to this
category. It turns out that for Fano surfaces one can replace the second condition
in the Nakai-Moishezon criterion by the following much weaker one: “

∫
C
a > 0 for

every exceptional rational curve C ⊂ S”. By an exceptional rational curve we mean
a rational algebraic curve with self intersection −1. Furthermore, it is a classical
fact that Fano surfaces have only finitely many such curves and a complete list
of their homology classes is available (see [8]). Therefore in this case the Nakai-
Moishezon criterion boils down to finitely many explicit inequalities. All this leads
to a precise computation of the maximal λ for which the class a in (4) is Kähler.
In particular this gives a lower bound on the supremum of all λ for which the class
in (4) is symplectic, hence a lower bound on vN (CP 2) when N ≤ 8.

To obtain an upper bound on λ (that is, a packing obstruction) it is not
possible to use algebraic geometry any longer since a priori it is not clear that
the symplectic forms obtained by the symplectic blowing-up operation are al-
ways Kähler. Nevertheless, using the theory of pseudo-holomorphic curves McDuff
and Polterovich managed to obtain limitations on the possible radii λ. Roughly
speaking, the idea is that the symplectic forms obtained from blowing-up can be
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deformed to Kähler forms via symplectic deformations. The point is that certain
type of algebraic curves (such as exceptional rational curves) persist under defor-
mations of the symplectic structure and so one can still find symplectic surfaces in
the same homology classes as the rational exceptional curves for every symplectic
blow-up of CP 2. The blown-up form Ω̃ must have positive area on such surfaces
and so one gets from each such symplectic surface an inequality which bounds λ
from above. In other words, the same set of inequalities on λ as in the algebraic
case applies here also to the (more general) symplectic case. As a result, the upper
and lower bounds mentioned above coincide. This leads to the precise values of
vN which appear in theorem 2.2.

The case N > 9 could not be attacked by algebraic geometry since the blow-
up of CP 2 at N > 9 is not Fano anymore and much less is known on the possible
homology classes of irreducible algebraic curves on such surfaces.

Notice that in order to prove that CP 2 admits a full symplectic packing by
N equal balls one has to show that the cohomology class

aε = l − (
1√
N

− ε)(e1 + · · · + eN ) (5)

has a symplectic representative for every ε > 0. McDuff and Polterovich discovered
that surprisingly this would follow from the old conjecture of Nagata made in the
early 1950’s which (in an equivalent formulation) asserts that for every N ≥ 9 the
cohomology class aε has a Kähler representative for every ε > 0.

We shall discuss Nagata’s conjecture in some more detail in section 5 below.
For the moment let us only mention that Nagata’s conjecture holds true in the
case N = k2 due to a very simple argument, hence vN (CP 2) = 1 when N = k2.

3. Existence of Full Packings: First Iteration

Although Nagata’s conjecture is still not settled the following was proved in [2]:

Theorem 3.1. For every N ≥ 9 we have vN (B4(1)) = vN (CP 2) = 1. That is, both
B4(1) and CP 2 admit a full symplectic packing by N equal balls for every N ≥ 9.

Let us outline the main ideas leading to this theorem. As already mentioned,
the existence of symplectic packing is equivalent to existence of symplectic forms
representing certain cohomology classes on the blow-up of the manifold. We there-
fore need a version of the Nakai-Moishezon criterion which will be valid in the
symplectic category. The main tool for establishing such a criterion (in dimen-
sion 4) is the theory of Seiberg-Witten invariants and their interpretation, due to
Taubes, as Gromov invariants in the language of pseudo-holomorphic curves. The
reader is referred to [31] and [24] for excellent presentations of this theory and its
applications to symplectic geometry.

In order to state our criterion we need to introduce a class C of symplectic
4-manifolds for which it is valid. The precise definition of the class C involves knowl-
edge of the the theory of Seiberg-Witten invariants which we shall not attempt to
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give here, but for the purpose of symplectic packing it is enough to mention that
the class C contains the following types of symplectic 4-manifolds:

• Manifolds with b+2 = 1 and b1 = 0.
• Ruled surfaces.
• If (M,Ω) ∈ C then any (symplectic) blow-up of (M,Ω) also belongs to C.

Next we need the notion of exceptional classes. In analogy to algebraic geometry
we call a homology class A ∈ H2(M,Z) exceptional if it can be represented by a
symplectic 2-sphere Σ ⊂ (M,Ω) with Σ ·Σ = −1. It is a standard fact (that can be
proved using Gromov compactness theorem) that if Ω0 and Ω1 are symplectic forms
that can be joint by a path of symplectic forms {Ωt} then the set of exceptional
classes for Ω0 and and for Ω1 coincide. Thus the set of Ω-exceptional classes EΩ ⊂
H2(M,Z) depends only on the deformation class of Ω.

Our symplectic version of the Nakai-Moishezon criterion is (see [1]):

Theorem 3.2. Let M be a closed 4-manifold and α ∈ H2(M,R). Suppose that M
admits a symplectic form Ω such that the following conditions are satisfied:

1. (M,Ω) is in the class C.
2.

∫
M

[Ω] ∪ α > 0 and
∫

M
α ∪ α > 0.

3. α(E) ≥ 0 for every exceptional class E ∈ EΩ.

Then arbitrarily close to α in H2(M,R) there exist cohomology classes which can be
represented by symplectic forms. Moreover, these symplectic forms may be assumed
to be in the deformation class of Ω.

The proof of this theorem consists of two main ingredients. The first one is
the inflation procedure which was introduced into symplectic geometry by Lalonde
and McDuff (see [20, 21]) in the context of the problem of symplectic isotopies (see
section 4.1 below). This procedure can be formulated as follows: If C ⊂ (M4,Ω) is
a 2-dimensional symplectic submanifold with C · C ≥ 0 then there exists a closed
2-form ρ, supported arbitrarily close to C, whose cohomology class is Poincaré dual
to [C] and such that for every t > 0, s ≥ 0 the form Ωt,s = tΩ + sρ is symplectic.

In our context this is an important tool for obtaining symplectic cohomology
classes (i.e. classes which can be represented by symplectic forms). Indeed by
taking t > 0 smaller and smaller the cohomology class [Ωt,s] remains symplectic
and becomes closer and closer to the class Poincaré dual to s[C]. Therefore, in order
to prove that a given cohomology class, say a, can be approximated by symplectic
cohomology classes it is enough to produce a symplectic submanifold C ⊂ (M,Ω)
with non-negative self intersection whose homology class is Poincaré dual to a
positive multiple of a. We would like to point out that a similar principle applies
in the algebraic category as well (see section 5.1 below).

At present the problem of existence of symplectic hypersurfaces in given ho-
mology classes is in general out of reach, however in dimension 4 for manifolds
which belong to the class C one can apply the machinery of Taubes-Seiberg-
Witten theory of Gromov invariants to obtain the wanted submanifold C as a
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pseudo-holomorphic curve. Condition 2 of the theorem is exactly the technical as-
sumption needed in order to force these invariants to be non-trivial on manifolds
in the class C. In general non-triviality of the Gromov invariants gives a reducible
pseudo-holomorphic curve C which may have some components of negative self in-
tersection. If such components appear the inflation cannot be performed. It is this
point at which condition 3 of theorem 3.2 comes into the play. This assumption, it
turns out, assures that C has only one irreducible component. We refer the reader
to [24, 25] for more details on the structure of the components of curves arising
from non-zero Seiberg-Witten Gromov invariants (see also [2]).

Returning to symplectic packings, theorem 3.2 implies that the “main” ob-
struction (beyond having positive volume) for a cohomology class α to carry a
symplectic representative comes from the exceptional classes E ∈ EΩ (on which α
must be positive). Applying this to the blow-up of CP 2 at N ≥ 9 points, an easy
computation shows that when α is the class aε from (5) the restrictions coming
from exceptional classes (i.e. aε(E) > 0 for every E ∈ EΩ) are weaker than the
volume inequality

∫
M

aε ∪ aε > 0. Consequently vN (CP 2) = 1 for every N ≥ 9.

4. Other Directions

Apart from the problem of existence of packings there are other important related
aspects on which extensive research has been carried out. We shall give here a
brief overview of some of them without any attempt to be complete.

4.1. Isotopies of balls

Two symplectic packings

ϕ0, ϕ1 : B(λ1)
∐

· · ·
∐

B(λN ) → (M,Ω) (6)

are called symplectically isotopic if there exists a smooth family {ϕt} of symplectic
packings

ϕt : B(λ1)
∐

· · ·
∐

B(λN ) → (M,Ω), 0 ≤ t ≤ 1

which interpolates between ϕ0 and ϕ1.
The main question in this context is: Given N and radii λ1, . . . , λN , are every

two symplectic packings of (M,Ω) by balls of these radii symplectically isotopic?
Or put in a different way, Is the space of symplectic packings of (M,Ω) by balls of
these radii connected?

This problem can be easily translated to an equivalent question on unique-
ness of the symplectic blowing-up construction: Does symplectic blowing-up really
depend on the symplectic packing ϕ used to define it, or in fact solely on the
“weights” λ1, . . . , λN? In other words, If Ω̃0 and Ω̃1 are two symplectic forms on
the blow-up Θ: M̃ → M of M , constructed using symplectic packings ϕ0 and ϕ1

as in (6), are Ω̃0 and Ω̃1 symplectomorphic? Are they isotopic?
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First results in this direction were obtained by McDuff [23] for the case of
CP 2. These results have been later generalized to other cases by Lalonde [20]
and later on by the author [5]. At present, the most general result concerning the
uniqueness problem is the following theorem due to McDuff [25]:

Theorem 4.1. (McDuff) Let (M4,Ω) be a closed symplectic 4-manifold in the
class C. Then any two cohomologous symplectic forms Ω̃0 and Ω̃1 obtained from
symplectic blowing up are isotopic. In particular, any two symplectic packings of
such a manifold by balls of given radii are symplectically isotopic.

The arguments used to prove this theorem are somewhat parallel to those
used for the proof of theorem 3.2, the main techniques being the inflation procedure
and Taubes-Seiberg-Witten theory.

At present the problem of isotopies is still open for symplectic manifolds
which do not belong to the class C (e.g. T4). In higher dimension than 4 the
problem is completely open for all manifolds (see section 7.1 below).

4.2. Explicit packing constructions

Another interesting direction deals with explicit packing constructions that realize
the maximal values of vN . The methods proving existence of symplectic pack-
ings are very indirect, thus explicit constructions are important in order to gain
intuition about how these symplectic embeddings really look like.

First such constructions were obtained by Karshon [18] for CPn with 1 ≤
N ≤ n + 1 balls. Traynor [32] found explicit constructions realizing full packings
of CPn by kn equal balls, the maximal packings of CP 2 by 1 ≤ N ≤ 6 equal
balls, as well as some constructions for other manifolds (see also [19] for some
generalizations and [28] for other types of packings). All these constructions are
based on the fact that CPn is a toric manifold and make use of its moment map.

To the best of the author’s knowledge no explicit constructions for the max-
imal packings of CP 2 by 7, 8 or any N > 9 (N �= k2) equal balls are known.

5. Nagata’s Conjecture

In the early 1950’s Nagata made the following conjecture regarding singularities
of plane algebraic curves (see [29]):

Conjecture 5.1. (Nagata) Let p1, . . . , pN ∈ CP 2 be N ≥ 9 very general1 points.
Then for every algebraic curve C ⊂ CP 2 the following inequality holds:

deg(C) ≥ multp1 C + · · · + multpN
C√

N
.

1By very general we mean that (p1, . . . , pN ) is allowed to vary in a subset of the configuration
space CN = {(x1, . . . , xN ) | xi �= xj ∀ i �= j} whose complement contains at most a countable

union of proper subvarieties.
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This conjecture can be easily translated via the Nakai-Moishezon criterion
to a statement about the Kähler cone of blow-ups of CP 2. By the Kähler cone of
an algebraic manifold S we mean the subset KS ⊂ H(1,1)(S,R) of all cohomology
classes a which admit a Kähler representative. It also relevant to consider the
closure KS of KS , and we shall call classes in KS by the name semi-Kähler.

Returning to blow-ups Θ: VN → CP 2 of CP 2 at N points we have:

H(1,1)(VN ,R) = H2(VN ,R) = Rl ⊕ Re1 ⊕ · · · ⊕ ReN and

H2(VN ,R) = RL⊕ RE1 ⊕ · · · ⊕ REN .

Here, the Ei’s denote the homology classes of the exceptional divisors, L the homol-
ogy class of the proper transform of a projective line which does not pass through
the blown-up points, and l, e1, . . . , eN the Poincaré duals to L,E1, . . . , EN . Note
that if C ⊂ CP 2 is a an algebraic curve then its proper transform C ⊂ VN lies in
the homology class

[C] = deg(C)L− multp1(C)E1 − · · · − multpN
(C)EN .

With these notations, Nagata’s conjecture is equivalent to saying that the coho-
mology class

a = l − 1√
N

(e1 + · · · + eN )

is non-negative when evaluated on each homology class [C] ∈ H2(VN ) that can be
represented by an algebraic curve. Adding this to the fact that a · a = 0, it follows
from the Nakai-Moishezon criterion that Nagata’s conjecture is equivalent to the
the class a being semi-Kähler.

5.1. The special case N = k2

Interestingly, Nagata’s conjecture can be easily confirmed in case the number of
points N is a square. This is based on the following simple observation: Let V be a
smooth surface and D ⊂ V an irreducible curve with non-negative self intersection.
Then the cohomology class Poincaré dual to [D] lies in KV . This follows easily from
Nakai-Moishezon criterion and the irreducibility of C.

Now let C ⊂ CP 2 be a smooth curve of degree k > 0 and choose N = k2

points p1, . . . , pN on C. Let Θ: VN → CP 2 be the blow-up of CP 2 at p1, . . . , pN

and denote by D the proper transform of C in VN . Since D is irreducible and
D · D = 0, the class Poincaré dual to D (namely kl − (e1 + · · · + eN )) is semi-
Kähler, which is the statement of Nagata’s conjecture for N = k2. The fact that
we have chosen the points p1, . . . , pN to lie in a specific position rather than a
very general one is not restrictive. Indeed, it is not hard to show that if Nagata’s
conjecture holds for a specific choice of points p1, . . . , pN then it continues to hold
also for a very general choice of points.
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5.2. Numerical invariants of the Kähler cone

Let X be an algebraic manifold and a∈H(1,1)(X,R). Given real numbers λ1, . . ., λN

we say that the vector (X, a;λ1, . . . , λN ) is Kähler (resp. semi-Kähler) if there exist
N points p1, . . . , pN ∈ X such that the cohomology class Θ∗a−λ1e1−· · ·−λNeN

lies in KX̃ (resp. KX̃), where Θ: X̃ → X is the blow-up of X at p1, . . . , pN . Now,
given a class a ∈ KX one can introduce the following quantity which we call the
N ’th remainder of a:

RN (a) = 1 − supλ {Nλn | aλ = (X, a;λ, . . . , λ) is Kähler}∫
X

an
,

where n = dimC X. The numbers RN (a) are analogous to the quantities introduced
in section 2 and play the role of 1−vN in the algebraic category. Similar quantities
have been previously introduced in algebraic geometry and are commonly called
Seshadri constants (see [7, 11] and [12]). Denoting by l ∈ H2(CP 2,Z) the positive
generator, Nagata’s conjecture can now be reformulated as:

RN (l) = 0 for every N ≥ 9 .

As already mentioned, Nagata’s conjecture is still far from being settled (ex-
cept for the case N = k2). This makes it interesting to try to bound RN (l) from
above, or to find asymptotics on RN (l). For example:

Theorem 5.2. (Xu [33]) RN (l) ≤ 1
N for every N .

At present, this seems to be the best general asymptotic on RN (l), however
for some special families of N ’s it can be improved quadratically. The following
was proved in [3]:

Theorem 5.3. Let a, r ∈ N.
1. For N = a2r2 + 2r, RN (l) ≤ 1

(a2r+1)2 .
2. For N = a2l2 − 2l, RN (l) ≤ 1

(a2r−1)2 .
3. For N = a2r2 + r with ar ≥ 3, RN (l) ≤ 1

(2a2r+1)2 .

This result was obtained using a recursive algorithmic procedure for con-
structing Kähler classes on algebraic manifolds. Although this algorithm has purely
algebro-geometric foundations it originated from very simple ideas coming from
symplectic geometry which we shall now explain.

5.3. An algorithm for constructing Kähler classes on algebraic manifolds

The first ingredient in our algorithm is the following general theorem from [3]:

Theorem 5.4. Let Xn be a smooth algebraic variety of (complex) dimension n and
let a ∈ H(1,1)(X,R). Suppose that:

1. (X, a;m) is Kähler (resp. semi-Kähler) for some m ∈ R.
2. (CPn,ml;α1, . . . , αr) is semi-Kähler.

Then (X, a;α1, . . . , αr) is Kähler (resp. semi-Kähler).

As a corollary we get:
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Corollary 5.5. Suppose that (CPn, dl;m1, . . .,mk,m) is Kähler (resp. semi-Kähler)
and (CPn,ml;α1, . . . , αr) is semi-Kähler. Then (CPn, dl;m1, . . . ,mk, α1, . . . , αr)
is Kähler (resp. semi-Kähler).

This means that one can reduce questions about the Kähler cone of blow-ups
of CPn to the same questions on blow-ups of CPn at less points.

Before we describe the algorithm itself let us explain the symplectic rationale
behind theorem 5.4. We remark in advance that the following is not a rigorous
mathematical argument but just a sequence of intuitive ideas which are supposed to
explain how one can guess that such a statement should be true. The mathematical
proof can be carried out using purely algebro-geometric techniques (see [3]).

To start with, note that the first condition of theorem 5.4 means that if Ω is
a symplectic form with [Ω] = a then (X,Ω) admits a symplectic embedding of a
ball of radius

√
m
π ,

ϕ : B
(√

m

π

)
→ (X,Ω) .

The second assumption means that CPn endowed with the symplectic form mσstd

admits a symplectic packing by r balls of radii
√
α1, . . . ,

√
αr. Here, σstd stands

for the standard symplectic form of CPn, normalized so that [σstd] = πl ∈
H2(CPn,R). By a standard procedure in symplectic geometry (see [26]) we may
assume that all these r balls lie in the complement of some complex hyper-
plane H ≈ CPn−1. Now, it is well known that (CPn \ CPn−1,mσstd) is sym-
plectomorphic to IntB(

√
m). Therefore we get a symplectic packing of B(

√
m)

by r balls of radii
√
α1, . . . ,

√
αr. Rescaling everything we obtain a symplectic

packing

ψ : B
(√

α1

π

) ∐
· · ·

∐
B

(√
αr

π

)
→ B

(√
m

π

)
.

The composition ϕ ◦ ψ will give us a symplectic packing of (X,Ω) by r balls of
radii

√
α1
π , . . . ,

√
α1
π . This in turn implies that the cohomology class

Θ∗a− α1e1 − · · · − αrer (7)

on the blow-up Θ: X̃ → X at r points has a symplectic representative. Of course,
this still does not mean that this class admits a Kähler representative, however
since everything in this “argument” consisted of Kähler classes it seems reason-
able to expect the class in (7) to be also Kähler. It turns out that this intuitive
argument can be translated to a rigorous algebro-geometric proof using a so called
degeneration argument (see [3]. See also [30] and [6] for more about degenerations
and their applications).

In this context it is worth mentioning here Lazarsfeld’s work [22] on Seshadri
constants of Abelian varieties which is also based on a simple “symplectic packing”
argument.

The second ingredient in our algorithm is the Cremona group action on
the Kähler cone of blow-ups of CP 2. Let Θ: VN → CP 2 be a blow-up of CP 2
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at N ≥ 3 points. The Cremona group is a group of reflections which acts on
H(1,1)(VN ,R). A very important feature of this action is that it preserves the
Kähler cone KVN

⊂ H(1,1)(VN ,R). The reader is referred to [10] and to [3] for the
definition and basic properties of the action of this group.

In order to detect Kähler (or semi-Kähler) classes on VN we use theorem 5.4
and the Cremona action successively until we arrive to a vector on which we
can easily verify Kählerness. Here is a simple example which illustrates how the
algorithm works. For brevity let us write

(CP 2, dl;α×r1
1 , . . . , α×rk

k ) = (CP 2, dl;α1, . . . , α1︸ ︷︷ ︸
r1 times

, . . . , αk, . . . , αk︸ ︷︷ ︸
rk times

) .

Consider the case N = 15. We shall show now that the vector v = (CP 2, 15l; 4×14)
is semi-Kähler. Note that this would imply that

R15(l) ≤ 1 − 14 · 42

152
=

1
225

.

To start with, recall that for every k > 0 the vector (CP 2, kl; 1×k2
) is semi-Kähler,

hence for every m > 0 so is also (CP 2,mkl;m×k2
). In particular, (CP 2, 8l; 4×4) is

semi-Kähler. Therefore according to corollary 5.5, in order to show that our vec-
tor v is semi-Kähler it is enough to show that the vector v′1 = (CP 2, 15l; 4×10, 8) is
semi-Kähler. Applying suitable Cremona transformations to this vector we obtain
the vector v1 = (CP 2, 10l; 3×11). Since the Cremona group preserves semi-Kähler
classes, v1 is semi-Kähler if and only if v′1 is. Note that the vector v1 is “simpler”
then v′1 in the sense that its entries are smaller than those of v′1. Now, in order
to show that v1 is semi-Kähler we decompose it into v′2 = (CP 2, 10l; 3×7, 6) and
(CP 2, 6l; 3×4). The latter being semi-Kähler, it is enough by corollary 5.5 to show
that v′2 is semi-Kähler. Applying suitable Cremona transformations to v′2 we get
the vector v2 = (CP 2, l; 0×8). This vector is obviously semi-Kähler since it stands
for the cohomology class that is Poincaré dual to a projective line on V8 not pass-
ing through the exceptional divisors. All the above imply now that our original
vector v is semi-Kähler.

Similar applications of the algorithm lead to the asymptotics of theorem 5.3.
In fact this algorithm gives rise to a mysterious pattern which links upper bounds
on RN (l) with continued fractions expansions of the number

√
N (see [3]).

Another result of a successive application of corollary 5.5 is the following,
somewhat amusing, corollary:

Corollary 5.6. If Nagata’s conjecture holds for N1 and N2 then it holds also for
N1N2.

It is of course a pity that the product of two squares is also a square.

5.4. Nagata’s conjecture via ellipsoids

Recall that our algorithm for producing Kähler classes on blow-ups of CP 2 (or more
generally on any algebraic manifold) originated from the very simple symplectic
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picture that if we can embed symplectically a ball B into (X,Ω) then any packing
of this ball would give rise also to a packing of M by balls of the same sizes. Note
that the role played by the ball B is merely auxiliary and in the end we are only
interested in the balls which pack (X,Ω).

In view of this there is no a priori reason not to replace B by a different
manifold or shape. In fact it is reasonable to expect that doing so may lead to
sharper estimates on RN (l). Of course balls have the important advantage in
that they have a nice characteristic foliation on the boundary thus giving rise
to the symplectic blowing-up construction. Therefore, good candidates to replace
the ball B seem to be ellipsoids. By a symplectic ellipsoid with multi-radius r =
(r1, . . . , rn) we mean the following subset of Cn

E(r) =

{
z ∈ Cn

∣∣∣∣ n∑
i=1

|zi|2
r2
i

≤ 1

}
,

endowed with the standard symplectic form of Cn. Now let w = (w1, . . . , wn) be
a vector of integral weights and m ∈ R. As before, if we can embed symplectically
the ellipsoid E(mw) into (X,Ω) then any symplectic packing

ϕ : B(α1)
∐

· · ·
∐

B(αr) → E(mw) (8)

would give rise to a symplectic packing of (X,Ω) by the same balls.
It seems reasonable that this scheme would translate well into pure algebro-

geometric terms. The idea is that precisely as CPn is the algebro-geometric ana-
logue of a symplectic ball, weighted projective spaces should correspond to sym-
plectic ellipsoids. Weighted projective spaces are defined as follows: given a vec-
tor of integral weights w = (w1, . . . , wn), define a C∗-action on Cn+1 \ 0 by
λ · (z0, . . . , zn) = (z0, λ

w1z1, . . . , λ
wnzn) for every λ ∈ C∗. The quotient space

is a singular (unless wi = 1 for all i) toric algebraic variety which we denote by
CPn(w). Existence of a packing ϕ as in (8) should translate here to ampleness of
some divisor class2 on blow-ups of CPn(w) at r points.

The next step is a bit more involved. We have to translate the fact that
(X,Ω) admits a symplectic embedding of an ellipsoid E(mw). For this end we
would like to define a weighted blowing-up of X at a point p ∈ X with weights w.
The problem is that this procedure is not well defined since there does not exist
any canonical weighted-action of C∗ on the tangent space Tp(X). In other words,
such an action depends on a choice of coordinates (unless w = (1, . . . , 1) of course).
Nevertheless, when X is a toric variety this difficulty should be tractable and one
expects to obtain a weighted blown-up variety Bl

(w)
(X).

If all the above is indeed feasible then one would expect a theorem of the
following type to hold:

2We cannot work here with Kähler classes for these varieties are not smooth manifolds. Neverthe-
less the notion of ample divisor exits and essentially the same theory (with some modifications)
applies to them as in the smooth case.
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If (Bl
(w)

(X), a;m) is ample (resp. semi-ample) and (CPn(w),ml;α1, . . . , αr) is
ample (resp. semi-ample) then (X, a;α1, . . . , αr) is also ample (resp. semi-ample).
Here a is a given divisor class on X and l is a suitable hyperplane in CPn(w).

A successive application of this splitting procedure in combination with the
Cremona group action (on blow-ups of weighted projective planes) would hopefully
improve the existing asymptotics on the remainders RN (l) of CP 2 and may be
shed some new light on Nagata’s conjecture.

6. Back to Symplectic Packing: a Stability Phenomenon

Let S be a smooth algebraic surface and C ⊂ S a smooth irreducible curve.
Consider the ruled surface

PC/S = P(NC/S ⊕OC)
pC−→ C ,

where NC/S → C is the normal bundle of C in S. Inside the surface PC/S we have
the curve ZC/S = P(NC/S ⊕ 0). Denote by zC , f ∈ H(1,1)(PC/S ,R) the Poincaré
duals to [ZC/S ] and to the fibre of pC : PC/S → C respectively.

The following theorem allows us to reduce questions on the Kähler cone
of blow-ups of an arbitrary algebraic surface to the same questions on blow-ups
of ruled surfaces. It can be proved using a degeneration argument similarly to
theorem 5.4 (see [3]).

Theorem 6.1. Let S and C be as above and denote by c ∈ H(1,1)(S,R) the class
Poincaré dual to [C]. Let a ∈ H(1,1)(S,R), and suppose that the following two
conditions are satisfied:

1. The class a−mc is Kähler (resp. semi-Kähler) for some m ∈ R.
2. The vector

(
PC/S , (

∫
C
a)f + mzC ;α1, . . . , αk

)
is Kähler (resp. semi-Käh-

ler).
Then the vector (S, a;α1, . . . , αk) is Kähler (resp. semi-Kähler).

Remark 6.2. When the class a of the theorem is Poincaré dual itself to a smooth
curve in S we may take C to be this curve and m = 1. Then the class a − mc
in condition 1 of the theorem is just 0 hence semi-Kähler. Thus in this case only
condition 2 has to be checked.

With this remark in mind, let us return to the problem of packing of a
symplectic 4-manifold (M,Ω). It turns out that the degeneration argument (see [3])
used to prove theorem 6.1 can be neatly translated to symplectic geometry using
a construction called Gompf surgery. The ability to find a smooth curve C which
represents the Poincaré dual to the class a = [Ω] as in remark 6.2 follows from
Donaldson’s symplectic hypersurface theorem (see [9]). The upshot of all this is
that in order to obtain symplectic packings of an arbitrary symplectic 4-manifold
it is enough to pack a symplectic ruled surface constructed in an analogous way to
PC/S above. The main advantage is that symplectic ruled surfaces belong to the
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class of manifolds C described in section 3 and so our symplectic version of Nakai-
Moishezon criterion 3.2 applies to them. An analysis of the possible exceptional
classes on blow-ups of ruled surfaces shows that similarly to CP 2 ruled surfaces
admit full symplectic packing by N equal balls for every large enough N . The
conclusion is that the same thing holds also for (M,Ω). More precisely we have
the following (see [4]):

Theorem 6.3. Let (M,Ω) be a closed symplectic 4-manifold with [Ω] ∈ H2(M,Q).
Then, there exists N0 such that for every N ≥ N0, (M,Ω) admits a full symplectic
packing by N equal balls. In fact, if for some k0 ∈ Q the Poincaré dual to k0[Ω]
can be represented by a symplectic submanifold of genus at least 1, then one can
assume that N0 = 2k2

0 Vol(M,Ω), where Vol(M,Ω) = 1
2

∫
M

Ω ∧ Ω.

This means that packing obstructions occur for at most a finite number of
values of N . Thus on the phenomenological level, essentially on every symplectic
manifold we have stability of the process of symplectic packing: starting from some
N all obstructions disappear and the quantities vN (M,Ω) stablize on the value 1.

Theorem 6.3 also allows us to bound from above the number N starting from
which the process becomes stable. Here are some concrete examples:

Corollary 6.4. In each of the following cases N0 is a number (not necessarily min-
imal) for which the relevant symplectic manifold admits full symplectic packing by
N equal balls for every N ≥ N0:

1. Let S ⊂ CPn be an irrational smooth projective surface of degree d, and
let Ω be the restriction of the standard Kähler form of CPn to S. Then
for (S,Ω) we have N0 = d.

2. For (T2 × T2, σ ⊕ σ) the 4-dimensional symplectic split-torus, where σ is
an area form on T2, we have N0 = 2.

3. Let (C1, σ1), (C2, σ2) be (real) symplectic surfaces with
∫

C1
σ1 =

∫
C2

σ2,
and let a, b ∈ N. Then, for (C1 × C2, aσ1 ⊕ bσ2) we have N0 = 8ab.

7. Open Problems, New Directions and Some Speculations

7.1. Symplectic packing in higher dimensions

Most of the results mentioned up to now are special to dimension 4. This is not
a coincidence. While (part) of the algebro-geometric results we mentioned can be
generalized to any dimension, the results on the stability of symplectic packing
rely strongly on Seiberg-Witten theory which is very special to dimension 4, and
it is not clear how to generalize it (if possible at all) to higher dimensions.

The only known results about symplectic packings in higher dimensions are
Gromov’s theorem 2.1 and a result due to McDuff and Polterovich [26] which
states that vN (B2n(1)) = vN (CPn) = 1 whenever N = kn (the latter can be
easily generalized to any algebraic manifold).

The following two problems seem to be of particular interest:
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1. Does the process of symplectic packing stabilize starting from some num-
ber of balls N0, as in dimension 4?

2. Given a symplectic manifold (M,Ω), does there exist a radius λ0 such that
for every λ ≤ λ0 any two symplectic embeddings of a ball of radius λ are
symplectically isotopic?

7.2. What is the symplectic nature of the phenomenon of packing obstructions?

Although powerful tools such as pseudo-holomorphic curves allow us to obtain
quite a lot of information on symplectic packings there is at least one aspects of
the problem which remains mysterious: the geometric nature of this phenomenon.

It seems reasonable to categorize packing obstructions (for N ≥ 2) as a sym-
plectic intersection phenomenon (e.g. if one tries to embed symplectically two large
enough balls into CPn then their images must intersect). Intersections play a fun-
damental role in symplectic geometry and appear in many forms and disguises.
Probably the most fundamental known such phenomenon is that of Lagrangian in-
tersections. This phenomenon has to do with non-removable intersections between
Lagrangian submanifolds that cannot be detected by means of classical topology
or differential geometry. Lagrangian intersections have been studied intensively
over the last decade by numerous people and nowadays there is both a systematic
machinery to study them (see [13] for example) as well as a fair geometric intuition
about their symplectic nature. In fact, this feel or intuition preceded the invention
of the first mathematical tools used to study Lagrangian intersections by more
than a decade. Let us also mention that several symplectic rigidity phenomena
can be well understood and studied in the framework of Lagrangian intersections,
most notably Arnold conjecture on fixed points of Hamiltonian diffeomorphisms.

It seems to be a question of conceptual relevance to figure out whether pack-
ing obstructions are in fact a “hidden” Lagrangian intersection phenomenon or
something else, of a genuinely different nature.

A perhaps naive, but still worth exploring, idea would be to try to approach
this question using Floer homology. For example, given a symplectic embedding of
a ball φ : B(λ) → CPn with 2λ2 > 1 one may consider a Lagrangian submanifold L
which lies on the boundary of Image(φ) (a Lagrangian torus for example). If it can
be shown that the Floer homology HF∗(L,L) does not vanish, then it would follow
that any two such symplectic balls ϕ1, ϕ2 : B(λ) → CPn which are Hamiltonian
isotopic must have non-empty intersection. Although this would not recover Gro-
mov’s packing theorem 2.1 in its full generality3, it would strongly indicate that
packing obstructions are in fact a Lagrangian intersection phenomenon.

At present the implementation of this plan using Floer homology unfortu-
nately runs into (technical) difficulties due to analytic problems which cause Floer
homology not to be well defined in our setting. Hopefully the techniques will be
refined in the future so as to enable us to settle this “dilemma”.

3Since, except in dimension 4 (see [23]), we do not know whether or not any two symplectic balls
in CP n are Hamiltonian isotopic.
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