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Abstract. This is a survey article on uniqueness, sampling and interpolation
problems in complex analysis. Most of these problems are motivated by appli-
cations of great practical importance in signal analysis and data transmission,
but they also admit other mathematical formulations relating them to funda-
mental questions about existence of good bases in function spaces. This circle
of ideas in complex analysis has experimented in recent years a notorious
revitalization, mostly because of its connections with analogous problems in
time-frequency and wavelet analysis, some of which will be discussed as well.

1. Sampling and Interpolation for Band Limited Functions

In this paper we will be talking mostly about sampling, and the most well-known
sampling result is the one dealing with band-limited functions, known as the
Shannon-Whitaker theorem (or Kotelnikov theorem in Russia). A τ -band-limited
function is one with finite energy, i.e.

∫
|f(t)|2 dt < +∞, whose Fourier trans-

form f̂(ζ)

f̂(ζ) =
1√
2π

∫ +∞

−∞
f(t)e−itζ dt

vanishes for |ζ| > τ . Since f(t) = 1√
2π

∫ +τ

−τ
f̂(ζ)eitζ dζ, one may think f as being an

(infinite) linear combination of sine and cosine functions with frequencies |ζ| < τ .
We denote by B2

τ the space of τ -band limited functions; note that the Fourier
transform is an isometry between B2

τ and L2(−τ, τ).
The KSW sampling theorem states that the general form of such a function

is given by the so called cardinal series

f(t) =
+∞∑

k=−∞
ak

sin(τt− πk)
τt− πk

with
∑
k

|ak|2 < +∞. Note that ak = f
(
kπ
τ

)
and, in fact,

∑
k

|ak|2 =
τ

π

∫ +∞

−∞
|f(t)|2 dt .
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There are two aspects in this statement which is convenient to state sepa-
rately. First, every f ∈ B2

τ is completely recovered from its samples f
(
kπ
τ

)
in a

stable way, that is, for f, g ∈ B2
τ∫ +∞

−∞
|f(t) − g(t)|2 dt =

π

τ

∑
k

∣∣∣∣f (
kπ

τ

)
− g

(
kπ

τ

)∣∣∣∣2 .
This means that a small error in the collection of samples

{
f

(
kπ
τ

)}
k∈Z will produce

a small error in the construction. Secondly, any square-summable sequence of
numbers appear in this way, no other restriction appears.

Both aspects constitute the theoretical basis for the transition from analog
signals f(t) to discrete sequences {ak}k∈Z , and is of great practical importance in
communications and data transmission in general.

The theorem is just a restatement of the fact that the exponential sys-
tem

{
1√
2τ
ei

π
τ kζ

}
k∈Z

is an orthonormal basis of L2(−τ, τ). In the expansion of f̂(ζ)

in this basis, the coefficients are〈
f̂ ,

1√
2τ
ei

π
τ kζ

〉
=

1√
2τ

∫ +τ

−τ

f̂(ζ)e−iπ
τ kζ dζ =

√
π

τ
f

(
−kπ
τ

)
so that

f̂(ζ) =
√
π√
2τ

+∞∑
k=−∞

f

(
kπ

τ

)
e−iπ

τ kζ .

Cotransforming this one gets the cardinal series expansion. Also,∫ +∞

−∞
|f(t)|2 dt =

∫ +τ

−τ

|f̂(ζ)|2 dζ =
π

τ

∑
k

∣∣∣∣f (
kπ

τ

)∣∣∣∣2 .
The rate of τ

π samples for unit interval is called the Nyquist rate. It is well
known that a slower rate of sampling is not possible in order to get exact recon-
struction, while a higher rate (oversampling) may lead to reconstruction formulas
with faster convergence. We will see below precise formulations of this fact.

It is quite natural to replace the equally spaced sequence {k πτ }k∈Z by a
general sequence Λ = {tk}+∞

k=−∞, and ask to what extent the values {f(tk)}+∞
k=−∞

determine completely f , for every f ∈ B2
τ . If

f ∈ B2
τ , f(tk) = 0 ∀ k implies f ≡ 0

the sequence {tk}+∞
k=−∞ is called a sequence of uniqueness for B2

τ . Note that when-
ever f, g ∈ B2

τ and f(tk) = g(tk) ∀ k then f = g.
This notion alone is not sufficient to allow errors in the sampled values

{f(tk)}+∞
k=−∞. For that purpose the notion of stable sampling sequences is intro-

duced: these are the sequences Λ = {tk}k for which there exist two constants A,
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B such that

A

∫ +∞

−∞
|f(t)|2 dt ≤

∑
k

|f(tk)|2 ≤ B

∫ +∞

−∞
|f(t)|2 dt

for all f ∈ B2
τ . In particular,

∫
|f(t)−g(t)|2 dt is comparable to

∑
k

|f(tk)−g(tk)|2.
Thus, f can be completely recovered, at least theoretically, from its samples
{f(tk)}k in a stable way, meaning that small errors in the samples will produce
small errors in the reconstruction.

But, how does it work this reconstruction? This is a matter of (infinite di-
mensional) linear algebra, that is, Hilbert spaces. To show that it is convenient
to work on the frequency side, that is in L2(−τ, τ); in terms of g = f̂ the above
inequality is written

A‖g‖2
2 ≤

∑
k

∣∣∣∣〈g, 1√
2τ
eitkζ

〉∣∣∣∣2 ≤ B‖g‖2
2 .

A family {ek}k∈Z of vectors in a Hilbert space H satisfying

A‖u‖2 ≤
∑
k

|〈u, ek〉|2 ≤ B‖u‖2, u ∈ H

is called a frame. Frames were introduced in the article [8], which by this reason has
been an influential paper in the last forty years. The frame condition is equivalent
to the operator

T : H −→ �2(Z)
u �−→ (〈u, ek〉)k

being one to one onto a closed subspace of �2(Z). This is in turn equivalent to the
adjoint operator

T ∗ : �2(Z) −→ H

being onto. A trivial computation shows that T ∗({ck}) =
∑
k

ckek. Hence if {ek}k∈Z
is a frame, every u ∈ H can be written

u =
∑
k

ckek .

In general this expression is not unique, there are relations
∑
k

ckek = 0, those {ck}

in the kernel of T ∗. Among all these expressions, the one minimizing
∑
k

|ck|2 is

of the form ck = 〈u, ẽk〉 for some family {ẽk}k which turns out to be a frame as
well, the dual frame. The dual frame of {ẽk}k is {ek}k so that the reconstruction
formula for u is

u =
∑
k

〈u, ẽk〉ek =
∑
k

〈u, ek〉ẽk .
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The redundancy of these expressions comes from linear relations between the
vectors ek, ẽk, k ∈ Z, that is, from the kernel of T ∗. Hence there is no redundancy
as soon as kerT ∗ = {0}; since kerT ∗ is the orthogonal of Range T , this leads in
a natural way to the following notion: a family of vectors (ek)k∈Z in a Hilbert
space H is called a Riesz-Fischer family or (a free family) if

〈u, ek〉 = ak, k ∈ Z

has a solution u ∈ H for every (ak) ∈ �2(Z). In our setting, when translated back
to f , where u = f̂ , for ek(ζ) = 1√

2τ
eitkζ , this corresponds to the sequence Λ =

{tk} being an interpolating sequence in the sense that f(tk) = ak, k ∈ Z, has a
solution f ∈ B2

τ for every (ak) ∈ �2(Z).
The frames with no redundancy are thus those for which T is an isomorphism;

this amounts to T ∗ being an isomorphism, i.e. every u has an unique expression u =∑
k

ckek with ‖u‖2
2 comparable to

∑
k

|ck|2. For this reason they are called as well

Riesz bases or exact frames.
To summarize, Λ is a sequence of stable sampling for B2

τ iff the family of
exponentials E(Λ) = {eitkζ}k∈Z is a frame of L2(−τ, τ), and a sequence of free
interpolation iff E(Λ) is a free family; E(Λ) is a Riesz basis of L2(−τ, τ) iff Λ is both
of stable sampling and of interpolation (this is called too a complete interpolating
sequence). Note that in this language, Λ is a set of uniqueness if and only if E(Λ)
spans the whole of L2(−τ, τ).

Beurling ([5]) had considered sup-norm versions of these problems, that is,
replacing functions in L2(−τ, τ) by measures or distributions µ supported in [−τ, τ ]
giving raise to bounded functions

f(t) =
∫ +τ

−τ

eitζ dµ(ζ)

with spectrum in [−τ, τ ]. The corresponding space, larger than B2
τ , is called B∞

τ ,
the Bernstein space. In this setting, Λ is of stable sampling for B∞

τ if

sup
t∈R

|f(t)| ≤ A sup
k

|f(tk)|

and interpolating if f(tk) = ak, k ∈ Z, has a solution for all bounded sequen-
ces {ak}k∈Z .

Complex analysis enters naturally into the picture because every function in
B∞
τ , B2

τ is the restriction to the real line of an entire function, the Fourier-Laplace
transform

f(z) =
∫ +τ

−τ

eizζ dµ(ζ), z ∈ C .

(dµ(ζ) = g(ζ) dζ, g ∈ L2 in the case of B2
τ .)

By the Paley-Wiener theorem, B2
τ (resp. B∞

τ ) consists of those entire func-
tions of exponential type at most τ , i.e., |f(z)| = O(eτ |z|) and such that f|R ∈
L2(R), (resp. ∈ L∞(R)).
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From this point of view, the real sequence Λ = (tk)k∈Z might be replaced by
a general complex sequence Λ ⊂ C, all considerations up to now remain the same.
To simplify the exposition we will however limit ourselves to the case Λ ⊂ R. This
complex-analysis setting, as it is often the case, leads immediately to interesting
new points of view. For instance, we mentioned that the KSW theorem is the
theoretical basis to digitalize analog signals f ∈ B2

τ , through its samples f(kπ/λ);
now, looking at f as an entire function gives immediately a discretization of f
as well, because by Hadamard’s factorization theorem, every entire function of
exponential type is characterized up to a constant by its sequence of zeroes {zk}

f(z) = ceazzm
∏(

1 − z

zk

)
ez/zk .

Vitushkin has studied the properties of this digitalization process.
The notions of frames, Riesz bases and so on in L2(−τ, τ) can of course be

translated to B2
τ as well. Just note that

f(t) =
1√
2π

∫ +τ

−τ

f̂(ζ)eitζ dζ =
∫ +∞

−∞
f(x)K(t, x) dx

with

K(t, x) =
1
2π

∫ +τ

−τ

eiζ(t−x) dζ =
1
π

sin τ(t− x)
τ(t− x)

.

This last expression can viewed as the inner product of f with the Bergman
kernel K(t, ·). Hence, statements about E(Λ) being a Riesz basis, a frame etc.
of L2(−τ, τ) are equivalent to analogous statements about the family K(Λ) =
{K(tk, ·)}k∈Z in B2

τ .

2. Sets of Uniqueness

In this paragraph, Bτ will denote any of the spaces B2
τ , B

∞
τ .

Complexifying time, that is, viewing f ∈ Bτ as entire functions, it is evident
that every Λ with a finite accumulation point is of uniqueness. These are the
uninteresting uniqueness sets, whence we will assume Λ discrete. It is intuitively
clear that such a Λ must have sufficiently many points; put in another way, if
S is not a sequence of uniqueness, then there exists f ∈ Bτ , f �≡ 0, such that
f|S = 0, that is, S is included in the zero set S(f) of f and hence it cannot have too
many points. Hence the question becomes one about distributions of (real) zeros of
functions in Bτ . Since whenever f ∈ Bτ and f(α) = 0 the function g(z) = f(z) z−β

z−α

is again in Bτ and g(β) = 0, changing a finite number of points cannot have any
effect. Altogether, this means that some asymptotic density must be “small” for
sequences S and “big” for sequences Λ.

It is convenient to introduce the characteristic function of S

nS(t) = #{S ∩ (0, t]}, t > 0; nS(t) = −#{S ∩ (t, 0]}, t < 0

so that nS(b) − nS(a) = #{S ∩ (a, b]}, nS(0) = 0.
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A classical theorem of Levinson establishes that if f ∈ Bτ has real zeros S(f),
this sequence has a finite asymptotic density

D(S(f)) = lim
|t|→∞

nS(f)(t)
t

≤ τ

π
.

This leads in a natural way to define the Polya maximal density of a given discrete
sequence S ⊂ R as

D∗(S) = inf{ρ : there exists a sequence T ⊃ S with density ρ}

which can be defined as well only in terms of S as

D∗(S) = lim
ζ→1
ζ<1

lim sup
r→+∞

nS(r) − nS(ζr)
(1 − ζ)r

.

Obviously, D∗(S) ≥ D(S) = lim sup
|t|→+∞

nS(t)
t , the real upper density, butD∗(S) might

be strictly bigger than D(S). For instance, if say S consists of the integers between
3k and 3k + 3k−1, k ∈ Z, then D∗(S) = 1, but D(S) = D(S) = 1/4, so D∗(S)
takes care of holes.

Levinson’s theorem gives then that Λ is a set of uniqueness for Bτ whenever
D∗(Λ) > τ

π . To obtain a sharp result one needs to introduce another density, and
this is what Beurling and Malliavin did in the sixties in one of the finest works in
the field. There are different equivalent definitions of the Beurling-Malliavin effec-
tive density ; the most intuitive one uses the Rising-Sun construction of F. Riesz.
Assuming for simplicity Λ ⊂ R

+ we look at the graphic of the step function nΛ(t)

ρ
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For a given ρ we look at the connected components (ak, bk) of the set
{t > 0 : nΛ(s) − nΛ(t) > ρ(s − t) for some s > t}. These are the intervals re-
maining in shadow when light rays with step ρ illuminate the stair. Note that this
set is (0,+∞) if ρ < D(Λ); if ρ > D(Λ) all components have finite length, whereas
if ρ = D(Λ) one unbounded component may appear. The BM-effective density is
defined as

D̃(Λ) = inf

{
ρ :

∑
k

(bk − ak)2

a2
k

< +∞
}
.

For a general discrete Λ ⊂ R, D̃(Λ) is defined as the maximum of D̃(Λ ∩ R
+) and

D̃(−(Λ ∩ R
−)).

In their celebrated work, Beurling and Malliavin improved Levinson’s result
showing that D̃(Λ) > τ/π implies Λ being a sequence of uniqueness for Bτ . More
than that, they showed that this is sharp in the following sense: if Λ is of uniqueness
for Bτ , then D̃(Λ) ≥ τ/π. Taken together, both results imply that

πD̃(Λ) = sup{τ : Λ is a sequence of uniqueness for B2
τ}

or which is the same

πD̃(Λ) = sup{τ : E(Λ) spans L2(−τ, τ)} .
The right-hand side is called the radius of completeness of the family E(Λ) and it
is easily seen to be independent of the metric chosen among functions in [−τ, τ ].

In spite of the Beurling-Malliavin theorem, the precise characterization of the
uniqueness sequences for B2

τ remains, as far as I know, an open problem. A good
reference for the Beurling-Malliavin results is [12].

3. Stable Sampling and Interpolation in Dimension One

A. Beurling characterized stable sampling and interpolating sequences in the sup-
norm case, for B∞

τ , using complex analysis methods ([5]); he introduced the upper
and lower uniform densities of a separated sequence Λ = {tk}k±+∞

k=−∞ (meaning that
inf
k 	=�

|tk − t�| > 0) as

D+
u (Λ) = lim

r→∞
n+(r)
r

, D−
u (Λ) = lim

r→∞
n−(r)
r

where n+(r) (resp. n−(r)) denotes the maximum (resp. minimum) number of
points of Λ to be found in an interval of length r. Note that D̃(Λ) ≥ D−

u (Λ).
Beurling proved that Λ ⊂ R is of stable sampling for B∞

τ if and only if it contains
a separated sequence Λ0 with D−

u (Λ0) > τ
π and Λ ⊂ R is interpolating for B∞

τ if
and only if it is separated and D+

u (Λ) < τ
π . In particular, no stable sampling inter-

polating sequences exist in the sup-norm case. Beurling results had been recently
extended to arbitrary sequences Λ ⊂ C in [24].
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In the L2-case B2
τ , it is not hard to see that an interpolating sequence must

be separated, and, on the other hand every stable sampling sequence contains a
separated stable sampling subsequence. Thus one can restrict attention to sepa-
rated sequences. For separated sequences Beurling results for B∞

τ imply in a trivial
way that

D−
u (Λ) > τ/π ⇒ Λ stable sampling ⇒ D−

u (Λ) ≥ τ/π

D+
u (Λ) < τ/π ⇒ Λ free interpolation ⇒ D+

u (Λ) ≤ τ/π

and hence it is clear that the sequences of stable sampling with no redundancy
(E(Λ) Riesz basis) must have uniform density

D(Λ) = lim
r→∞

#{Λ ∩ [x, x+ r]}
r

=
τ

π

meaning that for large r, every integral of length r must have τ
π r + o(r) points of

Λ. Of course, the prototype is the sequence Z π
τ .

The description of the stable sampling no redundant sequences of B2
π (that is

the Riesz basis of L2(−π, π) of type E(Λ)) was for a while a very central problem,
and was solved by the Russian school ([26, 22, 21]). On the way a number of
perturbative results appeared among which Kadec’s 1/4-theorem is the most well-
known: if |tk − k| ≤ r < 1/4, Λ = {tk} is such a sequence.

Every such sequence Λ gives raise to a series analogous to the cardinal series.
Indeed, (assuming λ0 = 0 in case 0 ∈ Λ)

S(z) = (z − λ0) lim
R→∞

∏
|tk|<R
k 	=0

(
1 − z

tk

)

defines the so called generating function of Λ and the reconstruction from ak =
f(tk) is given by

f(t) =
∑
k∈Z

ak
S(t)

S′(tk)(t− tk)
.

There are different formulations of Pavlov’s theorem none of which is easy,
as they are all related to BMO functions or A2 weights. We record one of them
for completeness (see [11]): E(Λ) is a Riesz basis for B2

π if and only if S has a
exponential type π and |S(x)|2

d(x,Λ)2 satisfies the Muckenhoupt A2-condition:
“There exists a constant C such that(∫

I

|S(x)|2
d(x,Λ)2

dx

) (∫
I

d(x,Λ)2

|S(x)|2 dx

)
≤ C ∀ interval I .”

In spite of all this progress, the description of stable sampling (separated)
sequences for B2

τ has been an open and subtle question till very recently. Indeed,
it has been known for a long time that the stable sampling sequences Λ with
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D−
u (Λ) > τ

π contain a stable sampling and non redundant (interpolating) subse-
quence, but also examples of stable sampling sequences with no such subsequences
are known ([32]).

A very important breakthrough has been recently done in [25]. Ortega-Cerdà
and Seip succeed, by bringing into the picture the de Branges’s theory of Hilbert
spaces of entire functions, to give a complete characterization of the stable sampling
sequences for the Paley-Wiener space B2

π, or, which is the same thing, the Fourier
frames E(Λ). This is one more example of the remarkable influence of de Branges
work in modern analysis.

A de Branges space is a Hilbert space H of entire functions fulfilling:

(H1) If f ∈ H, ζ /∈ R and f(ζ) = 0, the function g(z) = f(z) z−ζ
z−ζ is in H with

the same norm.
(H2) For every ζ /∈ R, f �→ f(ζ) is a continuous functional.
(H3) If f ∈ H, the function f∗(z) = f(z) is also in H with the same norm.

A fundamental theorem of de Branges ([6]) states that such a spaceH is of the
following form: there exists a function E in the Hermite-Biehler class HB (entire
functions with no zeros in the upper half plane and such that |E(z)| ≥ |E(z)| for
Im z > 0) and H consists of the entire functions f such that

sup
y

∫ +∞

−∞

|f(x+ iy)|2
|E(x+ i(y))|2 dy < +∞

the norm of f being ‖f‖2
E =

∫ +∞
−∞

|f(x)|2
|E(x)|2 dx. The Paley-Wiener space B2

π corre-
sponds to E(z) = e−iπz.

With these definitions, the result by Ortega-Cerdà and Seip is stated as
follows: a separated sequence Λ of real numbers is stable sampling for B2

π if and
only if there exist two entire functions E,F ∈ HB such that H(E) = B2

π and Λ is
the zero-sequence of EF + E∗F ∗.

The functions E ∈ HB such that H(E) = B2
π have been described in [18].

An obvious comment about this theorem is that the description does not involve
Λ itself alone; such a description is probably not possible with a simple formu-
lation. In spite of this, Ortega-Cerdà and Seip are able to draw some interesting
applications of the theorem. For instance, they show that there exists a complete
interpolating sequence Γ = {γk}k∈Z such that for every k ∈ Z there is at least one
t ∈ Λ with γk ≤ t < γk+1, that is, a stable sampling sequence is always denser than
some complete interpolating sequence. Another interesting feature that they show
is the following: if Λ is a stable sampling sequence for B2

π there is another Hilbert
space H of entire functions, bigger than B2

π, such that Λ becomes a complete
interpolating sequence for H in the appropriate sense.

As far as I know, no analogous progress has been made in the problem of
describing the interpolating sequences for B2

π.
In connection with signal analysis applications to band-limited functions the

following problem might be interesting: for which sequences of measures {µk}k∈Z ,
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say with disjoint supports, does it hold

A

∫ +∞

−∞
|f(t)|2 dt ≤

∑
k

∣∣∣∣∫ +∞

−∞
f dµk

∣∣∣∣2 ≤ B

∫ +∞

−∞
|f(t)|2 dt, f ∈ B2

π

for some constants A, B? The case in which the µk are the Lebesgue measures of
a sequence of disjoint intervals should of course be studied first.

To close this section we briefly consider now multiband signals. This means
functions in L2(R) whose spectrum is contained in a set S consisting of a finite
number of disjoint intervals I1, . . . , Im, which we call B2

S . Here, no easy description
of B2

S as a space of entire functions is available, and no complex analysis meth-
ods work. Using operator-theory methods, Landau ([15]) was able to prove that
whenever Λ is of stable sampling for B2

S ,

n−(r) ≥ m(S)
2π

r −A log+ r −B

for some constants A, B, whereas

n+(r) ≤ m(S)
2π

r +A log+ r +B

in case Λ is of free interpolation. In particular, one has that D−
u (Λ) ≥ m(S)

2π ,
D+
u (Λ) ≤ m(S)

2π are necessary conditions for sampling and interpolation, respec-
tively, in B2

S . It must be pointed out that in the multiband case the Beurling-
Landau conditions cannot provide a complete solution to these problems; arith-
metic relations among the points of Λ then play an important role and no density
condition seems appropriate. Indeed, for instance Landau [14] constructed a sym-
metric sequence Λ arbitrarily close to the integers for which E(Λ) is complete in
L2(S), where S is any finite union of the intervals |x−2πn| < π−δ, with arbitrarily
large measure. As far as I know the following basic question is still unanswered.

Question. Does there at all exist, for every finite union S = I1 ∪ · · · ∪ Im of finite
intervals, a real sequence Λ such that E(Λ) is a Riesz basis in L2(S)?

It is known that there exist complex sequences Λ lying in horizontal strips
such that E(Λ) is a Riesz basis. The answer to the question is yes if the lengths of
the intervals Ii are commesurable, and also for two intervals ([17]). The question
is essentially a trivial one in case S is a convenient explosion of an interval of the
same length |S|, as pointed out in general in the next section.

4. Uniqueness and Stable Sampling for Multidimensional Signals

Let us replace the interval [−τ, τ ] by a general measurable set S in R
n, and let B2

S

denote the closed subspace of L2(Rn) consisting of functions whose Fourier trans-
form f̂(ζ) = (2π)−n/2

∫
Rn f(t)e−it·ζ dt is supported on S. The problem is: what

can be said about uniqueness sequences, stable sampling sequences, interpolating
sequences, complete interpolating sequences Λ = {tk}k∈Z for B2

S? As before, these
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notions correspond to the family of exponentials E(Λ) = {eitk·ζ}k∈Z , where now
tk · ζ denotes the inner product in R

n, being complete, a frame, free or a Riesz
bases, respectively, of L2(S).

There are of course certain trivial cases that can be treated just making
“direct product” of the one-variable results: if S is a rectangle |ζi| ≤ τi, i =
1, . . . , n, and Λi ⊂ R is a uniqueness sequence for B2

τi
(that is E(Λi) complete

in L2(−τi, τi)) it is immediate that Λ1 × · · · × Λn is a uniqueness sequence for
B2
S , and an analogous fact occurs with frames or Riesz basis. It is also easy to

produce examples for some special sets S. We show this for the case of orthonormal
basis; from the proof of the KSW theorem indicated at the beginning, it is clear
that one will have a “cardinal series” development for functions in B2

S as soon
as the exponentials {eik·ζ}k∈Zn constitute an orthonormal basis of L2(S). This
is of course the case for S0 = [−π, π]n but also for L2(S) if S is what results
if we break S0 into a finite number of pieces and move each piece by an integer
vector keeping them disjoint. Moreover, exploiting the nice behaviour of the Fourier
transform under the action of the linear group, we may replace S0 by US0 and Zn

by (UT )−1Zn = Λ. In this way one can obtain an orthonormal basis of exponentials
for L2(S) and a cardinal series development for functions in B2

S whenever S is a
fundamental region of a translation group.

In this connection there is an interesting conjecture by Fuglede [9]: L2(S)
admits an orthonormal basis of exponentials E(Λ) if and only if S tiles R

n by
translations, in the sense that there exists a discrete set T ⊂ R

n such that up to
sets of measure 0, the sets S + t, t ∈ T are disjoint and fill R

n. Fuglede himself
proves the conjecture if either Λ of T is a lattice. The convex sets S tiling R

n by
translations have been completely characterized ([20]); in dimension n = 2, they
are exactly the symmetric polygons of 4 or 6 sides. Moreover, in this case, T may be
chosen to be a lattice, and hence, by Fuglede’s theorem, L2(S) has an orthonormal
basis of exponentials. Significant progress has been made on Fuglede’s conjecture
in some other special cases (see [13] and the references there).

As in dimension one, functions in B2
S are restriction to R

n of certain en-
tire functions in C

n. As space of entire functions, B2
S can be described in neat

terms only if S is convex: in this case f ∈ B2
S if and only if f ∈ L2(Rn) and

|f(x+ iy)| = O(eϕS(y)), x, y ∈ R
n where ϕS(y) = sup

ζ∈S
ζ · y is the support function

of S. For instance, when S is the rectangle |ζi| ≤ τi, i = 1, . . . , n we get the
condition log |f(z)| ≤ τ1|y1| + · · · + τn|yn| + c.

Certain generalizations of Levinson theorem are known ([28, 1]). For instance,
if Λ is a separated sequence with separation constant h = inf

k 	=�
‖tk − t�‖∞, (where

‖x‖∞ = maxj |xj |) and lim sup
r→∞

#{Λ∩Tr}
(2r)n = d > 0 (here Tr = {ζ : |ζi| ≤ r}),

then Λ is a uniqueness sequence for B2
S , for every rectangle S = {|ζi| ≤ τi} with

τ1 + · · · + τn <
πn

(n−1)!2n−1h
n−1d. Note however that this result does not cover the
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trivial case Λ = Zn for S = Tπ. Another result of this type can be found in [5,
page 310].

In general dimension n, the most important contribution remains that of
Landau ([15]). He was able to generalize Beurling’s necessary conditions for stable
sampling and interpolation, for general S, using methods from operator theory. The
uniform upper and lower densities D±

u (Λ) of a separated sequence are defined in
an analogous way: if n+(r), n−(r) denote respectively the maximum and minimum
number of points of Λ to be found in a translate of rU , U being the unit cube,

D+
u (Λ) = lim sup

r→∞

n+(r)
rn

, D−
u (Λ) = lim inf

v→∞
n−(r)
rn

.

It may be seen that the result does not change replacing U by another set of
measure one. Landau’s results are:

if Λ is a sequence of stable sampling for B2
S , then D−

u (Λ) ≥ m(S)
(2π)n

;

if Λ is a sequence of free interpolation, then D+
u (Λ) ≤ m(S)

(2π)n
.

The method of proof of Landau is to give a firm-ground justification of the fol-
lowing, which a fortiori follows from the existence of stable sampling sequences.
Suppose a rectangle R fixed, it has a finite number of points of Λ: if one thinks
in functions well concentrated on R it is intuitively clear from the stability of
the sampling that the sampled values off R must not affect too much and maybe
thought as 0. In this way they are essentially characterized by a finite number
of samples, whence one concludes that the space of functions in B2

S which “leave
essentially in a rectangle R” has a “finite dimension”. In a certain way, Landau
reverses this line of reasoning. Landau’s results imply that the Nyquist rate of
sampling cannot be improved by any means.

Let us assume that n = 2, S = [−τ1, τ1] × [−τ2, τ2], and let Λ1, Λ2 be two
separated sequences in R. Then it is not hard to see that Λ = Λ1 ×Λ2 is of stable
sampling for B2

S if and only if each Λi is for B2
Si

. On the other hand, D−
u (Λ) is at

least D−
u (Λ1)D−

u (Λ2), whence it may be made ≥ τ1τ2
π2 taking D−

u (Λ1) big enough
and D−

u (Λ2) small, say < τ2
π . Combining both facts we see that D−

u (Λ) > m(S)
(2π)n

cannot be a sufficient condition if n ≥ 2. The same considerations suggests that
some “directional uniform density conditions” should come into the picture in
order to obtain sharp results.

Concerning Riesz basis in B2
S , the following natural question seems unan-

swered.

Question. Does there at all exist a sequence Λ ⊂ R
n such that E(Λ) is a Riesz

basis for B2
S?

Besides the “direct product” situations and the trivial ones described before
the only known result, as far as I know, is a recent one in [19]: the answer is yes
if S is a convex symmetric polygon. The case when S is a ball seems particularly
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appealing. For this case, Beurling gave a sufficient condition for stable sampling in
B∞
S : if S has radius r, and sup dist(ζ,Λ) < π/2r, Λ is of stable sampling for B∞

S

([5, page 30]).
Let us close this section with some basic comments about entire functions

in several variables. Dealing with these kind of questions, and leaving aside that
only for convex S we can understand B2

S as a space of entire functions in C
n, the

common situation one encounters is: f ∈ B2
S vanishes on Λ ⊂ R

n. Either f is given
and we want to understand how small Λ must be or else Λ is given and we must
construct f . In dimension one, complete interpolating sequences and also stable
sampling sequences appear, as we have mentioned, as zero sequences of generating
functions, and one can use infinite products to construct entire functions. Now, in
dimension n > 1, the zeros of analytic functions have complex dimension n − 1,
and one needs n − 1 analytic functions to define, generically speaking, a discrete
set. In one dimension, division of analytic functions is an easy task, not at all
so in dimension ≥ 2. All this helps explaining the difficulties in dealing with the
multidimensional problem.

In several complex variables, varieties of zeros of analytic functions and in-
terpolation problems from these varieties have of course been considered, and
very intensively, in the last decades. But the motivation comes from other sources.
Among them, one of the most important is of course Partial Differential Equations,
and we show by an example what the connexion is. Let P (D) be a partial differ-
ential operator with constant coefficients D =

(
−i ∂

∂x1
, . . . ,−i ∂

∂xn

)
: if z0 ∈ C

n

satisfies P (z0) = 0 then a solution of P (D)u = 0 is u(x) = exp(ix · z0), and also
one has solutions Q(x)eix·z0 with a polynomial Q depending on the multiplicity.
These are called exponential-polynomial solutions. Euler proved that in dimen-
sion one, the finite linear combinations of exponential-polynomial solutions give
all solutions. An n-dimensional version of this is the Fundamental Principle of
Ehrenpreis-Palamodov: f ∈ C∞(Rn) is a solution of P (D)f = 0 if and only if it
can be represented as

f(τ) =
J∑

j=1

∫
Vj

∂j(eix−z) duj(z)

where the Vj are algebraic varieties contained in V = {z ∈ C
n : P (z) = 0},

the ∂j are partial differential operators with constants coefficients and the uj are
measures supported on Vj . P (D)f = 0 is equivalent to 0 = 〈f, tP (D)u〉 for every
distribution u with compact support, whence to f defining a well-defined func-
tional on the quotient space E ′(Rn)/tP (D)E ′(Rn): by Fourier transform this is
Ê ′(Rn)/p · Ê ′ which is a space of analytic functions on V . Proving the theorem
amounts to understanding this quotient space, and this is about functions vanish-
ing on V and also about extending functions defined on V .

Incidentally, Beurling applied his condition about sampling for B2
S , S a ball,

to deal with the equation P (D)u = f , say with f ∈ L2(S). By Fourier transform
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the solution u must satisfy P (ζ)û = f̂ , whence û = f̂/P but this may lead to
problems because of the zeros of P . Beurling’s idea is quite nice and simple: if Λ
is of stable sampling for B2

S , without loosing information, the above is equivalent
to P (ζ)û(ζ) = f̂(ζ) for ζ ∈ Λ, and choosing Λ so that |P (ζ)| is bounded below on
Λ (which is always possible) one can invert P (D) in a stable way. In terms of the
dual frame ẽk of eiλkζ in L2(S), if

f(ζ) =
∑
k

〈f, ẽk〉eiλkζ

the solution is simply

u(z) =
∑
k

〈f, ẽk〉
P (λk)

eiλkζ .

This method can be used as well to show the existence of a fundamental solution.
Note that the fundamental principle has something in common, in fact, with

the questions we are discussing, namely, the issue is to represent certain functions
as superpositions of complex exponentials. A general setting would be as follows:
we are given N , M in C

n and ask which functions on N can be represented as
Fourier-Laplace transforms of functions or measures on M

f(ω) =
∫
M

eizωg(z) dσ(z), ω ∈ N .

A fortiori, these functions must be restrictions to N of entire functions but if N
is totally real this would imply no restriction. Usually g is obtained from f by
some kind of Fourier-Laplace transform too, so this is, vaguely, a question about
inverting Fourier-Laplace transforms. A general scheme leading to such formulas,
which includes most of the known cases has been showed in [3]. Stable sampling
sequences Λ for B2

S correspond to N = S, M = Λ. In dimension n > 1, there
is more choice for the dimension of M , e.g. it could be of dimension k, 0 ≤ k ≤
n − 1. For instance, for Paley-Wiener spaces B2

S with S ⊂ R
n it makes sense,

mathematically speaking, (maybe not so from the signal analysis point of view)
to ask for “sampling manifolds” M of dimension k ≥ 1, which would correspond
to “continuous frames”. The point we want to emphasize is that the techniques
developed in several complex variables so far are better adapted to deal with the
case k = n− 1.

5. Time-Frequency Analysis and Gabor Wavelets

In time-frequency analysis, the exponentials eiζ·t are replaced by localized ver-
sions Gb,ζ(t) = G(t− b)eiζt. Here G is a window function, that is, an L2-function
with ‖G‖2 = 1, which we may think as being centered at 0, and localized in time.
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The following analogous of Fourier formula holds for every f ∈ L2(R)

f(t) =
1
2π

∫ +∞

−∞

∫ +∞

−∞
〈f,Gb,ζ〉Gb,ζ(t) db dζ

∫ +∞

−∞
|f(t)|2 dt =

1
2π

∫ +∞

−∞

∫ +∞

−∞
|〈f,Gb,ζ〉|2 db dζ .

The function f̃(b, ζ)= 〈f,Gb,ζ〉 is called the windowed Fourier transform of f ; in
view of the above 1

2π |f̃ |2 is a density energy in the time-frequency plane. In time,
Gb,ζ is thought as centered at b and with most of its energy in [b−σ, b+σ], where
σ=σ(G)=

∫
t2|G(t)|2 dt; a computation shows that (Gb,ζ)∧(w)=eib(ζ−w)Ĝ(w−ζ);

assuming Ĝ centered at 0 as well, in loose terms one can thus think in the atomGb,ζ

as occupying in the time-frequency plane a box centered at (b, ζ) with sides σ(G),
σ(Ĝ) respectively. The above formulas say that f �→ f̃ is an isometry up to
a constant, of L2(R) onto a closed subspace HG of L2(R2) and that the fam-
ily {Gb,ζ}b,ζ∈R is a sort of “doubling continuous” orthonormal basis in L2(R)
because

f =
1
2π

∫∫
〈f,Gb,ζ〉Gb,ζ db dζ .

The windowed Fourier transform f̃ is of interest in signal analysis because it pro-
vides local information about f simultaneously in time and frequency. The “pre-
cision” of this information is measured by σ in time and σ̂ = σ(Ĝ) in frequency
(because f̃(b, ζ) = 〈f,Gb,ζ〉 = 〈f̂ , Ĝb,ζ〉). The uncertainty principle in Harmonic
Analysis states that σσ̂ is bounded below, meaning that it is impossible to made
precise both information simultaneously. It is well-known that σ(G)σ(Ĝ) achieves
its minimum value for Gaussian windows. The Gb,ζ are called Gabor atoms or
Gabor wavelets.

It is intuitively clear that f̃(b, ζ) being a function of two variables, there
exists redundancy in the above representation. It is therefore quite natural to try
to discretize this representation and to extract redundancy. In this way we are led
to the following questions: for which discrete sequences Λ = {(bk, ζk)}k∈Z of points
in R

2 the family G(Λ) of time-frequency atoms Gk = Gbk,ζk
is complete, a frame,

or a Riesz basis in L2(R)? This is equivalent to the sequence Λ being of uniqueness,
of stable sampling or complete interpolating for the space HG. For some special
choices of the window function G the space HG is isometric to a Hilbert space of
entire functions. For instance, for G(x) = π− 1

4 e−
x2
2 , one gets, with z = b− iζ

f̃(b, ζ) = e−
i
2 bζe−

1
4 |z|

2
Bf(z)

where Bf(z) is the entire function (Bargmann transform)

Bf(z) = π− 1
4 e−

τ2
4

∫ +∞

−∞
f(t)e−

t2
2 etz dt .
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The entire functions F = Bf arising in this way satisfy thus∫
|F (z)|2e−

|z|2
2 dA(z) < +∞

and constitute the so called Bargmann-Fock space.
For separated sequences Λ = {(bk, ζk)}k∈Z , the densities to be taken under

consideration are again the Beurling-Landau uniform densities

D−
u (Λ) = lim inf

r→∞
n−(r)
πr2

, D+
u (Λ) = lim sup

r→∞

n+(r)
πr2

where n+(r), n−(r) respectively denote the maximum and minimum number of
points of Λ to be found in a disc of radius r. The Landau necessity conditions hold
as well in this case for general windows ([27]), that is, a frame G(Λ) must satisfy
D−
u (Λ) ≥ 1

2π and a free system G(Λ) must satisfy D+
u (Λ) ≤ 1

2π . In particular, Riesz
basis G(Λ) can occur only if Λ has a uniform density 1

2π . For a regular lattice Λ of
the form (nb0,mζ0)n,m∈Z , this amounts to b0ζ0 = 2π. But for regular lattices with
b0ζ0 = 2π, the Balian-Low theorem establishes that if G(Λ) is a frame then either
σ(G) = +∞ or σ(Ĝ) = +∞. That is, at the critical density, one cannot have a
Riesz basis with good localization properties both in time and frequency (see [7]).
The situation is thus quite different than the one with band-limited functions.

I do not know whether it exists a version of the Balian-Low theorem for
general (separated) sequences. It is known that for windows satisfying∫

|x|2+ε|g(x)|2 dx < +∞,

∫
|ζ|2+ε|ĝ(ζ)|2 dζ < +∞

for some ε > 0, no orthonormal basis of Gb,ζ ’s exists. One might guess for in-
stance that whenever σ(G)+σ(Ĝ) is finite (or some other localization property of
G, Ĝ) then Landau’s necessary conditions can be strengthened to strict inequali-
ties D−

u (Λ) > 1
2π , D+

u (Λ) < 1
2π .

For gaussian windows this is indeed the case, and even the converse is true:
G(Λ) is a frame if and only if D−

u (Λ) > 1
2π and a free system if and only if

D+
u (Λ) < 1

2π . This has been proved by complex analysis method’s, using the
Bargmann-Fock model space, in [29] and [30]. Incidentally, G(Λ) for a regular
lattice with b0ζ0 = 2π is an example of a complete system which is not a frame
(unstable sampling). Under mild conditions on the window G, it is not hard to see
that if dist(p,Λ) ≤ ε = ε(G) for every p ∈ R

2, then G(Λ) is a frame for L2(R). In
particular a regular lattice Λ = (nb0,mζ0)n,m∈Z works if b0ζ0 is small enough (an
obviously expected fact in view of the doubly continuous representation above).

In particular, no complete interpolating sequences exists in the Bargmann-
Fock space, no Riesz basis of Gabor wavelets exists in L2(R). This is in strong
contrast with the Paley-Wiener space B2

π and leads naturally to the following
question.
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Question. Which is the property of a Hilbert space of entire functions upon which
depends the existence of complete interpolating sequences, that is, the existence of
Riesz basis of Bergman kernels?

It must be pointed out that if one replaces the exponentials by suitable cosines
and sines then it is possible to obtain orthonormal basis of L2(R) (Wilson and Mal-
var bases) with good time-frequency localization properties (see [7, Section 4.2.2]
and the references there).

The results on the Bargmann-Fock space have been successfully generalized
to more general spaces F 2

φ of the following type

‖F‖2
φ = ‖Fe−φ‖2

2 =
∫

C

|F (z)|2e−2φ(z) dA(z) < +∞

where φ is a subharmonic function in C satisfying 0 < m ≤ ∆φ(z) ≤ M . In this
case the densities are defined as follows:

D−
φ (Λ) = lim inf

r→+∞
inf
z∈C

#(Λ ∩D(z, r))∫
D(z,r)

∆φ

D+
φ (Λ) = lim sup

r→+∞
sup
z∈C

#(Λ ∩D(z, r))∫
D(z,r)

∆φ
.

In this setting, a sequence Λ = {γk}k∈Z is called of stable sampling if ‖F‖2
φ

is comparable to
∑
k

|F (γk)|2e−2φ(γk) and interpolating if the interpolation prob-

lem F (γk) = ak has a solution F with ‖F‖φ < +∞ for all sequences (ak) such that∑
k

|ak|2e−2φ(γk) < +∞. In the papers [2, 23] it has been proved that a (separated)

sequence Λ is interpolating if and only if D+
φ (Λ) < 1

2π and stable sampling if and

only if D−
φ (Λ) > 1

2π (the Bargmann-Fock space corresponds to φ(z) = |z|2
4 for

which ∆φ = 1).
For certain window functions G = e−Ψ there is a variant of the Bargmann

transform allowing to identify HG with F 2
φ for some φ depending on Ψ; for these

cases one has thus a way to obtain strict inequalities.
The results for the spaces F 2

φ have been recently generalized to several vari-
ables in [16]. In this case φ is a 2-homogeneous, plurisubharmonic function, and
the densities D−

φ (Λ), D+
φ (Λ) are defined analogously replacing the discs D(z, v) by

balls B(z, r) and ∆φ by 4n(i∂∂φ)n; the result is that a (separated) stable sampling
sequence satisfies D−

φ (Λ) ≥ 1
(2π)nn! , and an interpolating sequence must be sepa-

rated and satisfy D+
φ (Λ) ≤ 1

(2π)nn! (the strict inequalities should hold too). It is
worthwhile explaining the reason why (i∂∂φ)n appears instead of ∆φ. The simple
example φ(z1, z2) = α1|z1|2+α2|z2|2 in C

2 and Λ a lattice of the type Λ = Λ1×Λ2,
Λi = ai(Z× iZ) will do; if Λ is to be of stable sampling, then both Λ1 and Λ2 must
be so in one variable, and hence a−2

i > 2αi/π. The asymptotic number of points in
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Λ in a big ball B(z, r) is vol(B(z, r))/a2
1a

2
2, which thus exceeds vol(B(z, r)) 4α1α2

π2 ,
expression which involves (i∂∂φ)n rather than ∆φ.

The situation is similar to the one discussed before for the Paley-Wiener
spaces in several variables and Landau’s necessary conditions. Similar consider-
ations show as well that these density necessary conditions can not be sufficient
if n > 1. It is interesting to note a (formal) connection between the two prob-
lems. The Paley-Wiener space B2

S is not a space of type F 2
φ , but it is “almost

it” with φ(z) = ϕS(Im z). For instance, for S =
n∏
i=1

[−τi, τi], φ(z) =
∑
i

τi| Im zi|;

in the distribution sense, 4n(i∂∂φ)n equals n!2nτ1τ2 . . . τn dm(x) where dm de-
notes the Lebesgue measure in R

n. For a real sequence Λ ⊂ R
n, one has thus

D+
u (Λ) = 2nn!τ1τ2 . . . τnD+

φ (Λ), and we see that the critical value 1
(2π)nn! becomes

2nτ1...τn

(2π)n = m(S)
(2π)n as in Landau’s result. This computation can be seen to hold for

a general convex S. As with the Paley-Wiener spaces, one might guess that some
condition involving “directional densities” should be necessary.

6. Time-Scale Analysis

In time-scale analysis, the atoms Gb,ζ are replaced by wavelets Ψb,a(t) =
a−1/2Ψ

(
t−b
a

)
obtained by translation and dilation of a (real) fixed function Ψ ∈

L2(R) with ‖Ψ‖2 = 1 (here b ∈ R, a > 0). If 2π
∫ ∞
0

|Ψ̂(ζ)|2|ζ|−1 dζ = c(Ψ) < +∞,
then one has again a reconstruction formula

f =
1

c(Ψ)

∫ +∞

−∞

∫ ∞

0

〈f,Ψb,a〉Ψb,a
da

a2
db

with ∫ +∞

−∞
|f(t)|2 dt =

1
c(Ψ)

∫ +∞

−∞

∫ ∞

0

|〈f,Ψb,a〉|2
da

a2
db .

The function WΨf(b, a) = 〈f,Ψb,a〉 =
∫ +∞
−∞ f(t)Ψb,a(t) dt is called the (continu-

ous) wavelet transform of f , and establishes an isometry from L2(R) to a closed
subspace WΨ of L2

(
R

2
+,

dadb
a2

)
. Analogously as before, it is quite natural to try to

discretize this representation and to extract redundancy: for which sequences Λ =
{zk}k∈Z of points in the upper half space the family WΨ(Λ) of wavelets Ψtk is
a frame, a Riesz (or orthonormal) basis of L2(R)? This amounts requiring Λ to
be of stable sampling or a complete interpolating sequence for the space WΨ (it
is precisely in this context that frames came back after their introduction in [8]).
The first historical example is the Haar basis, for which Ψ(x) equals 1 in (0, 1/2),
−1 in (1/2, 1) and is zero otherwise, and Λ is the grid (n2m, 2m)n,m∈Z . Notice that
a grid of type (nb0am0 , a

m
0 )n,m∈Z with a0 > 1, b0 > 0 is hyperbolically regular, that

is, the dyadic squares Qn,m = {(b, a) : am0 < a < am+1
0 , nb0a

m
0 < b < (n+ 1)b0am0 }

have constant measure with respect the hyperbolically invariant measure dadb
a2 of

R
2
+ appearing above; these are the regular lattices Λ(a0, b0) to be considered here.
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Under very general conditions on Ψ (for instance Ψ in the Schwarz class and∫
Ψ(t) dt = 0) it is not hard to see that if a0, b0 are small enough then WΨ(Λ)

is a frame for the regular lattice Λ = Λ(a0, b0) (see [7]). This holds as well for a
general Λ which is hyperbolically separated and such that distH(p,Λ) ≤ ε = ε(Ψ)
(hyperbolic distance) is small enough.

If WΨ(Λ) is an orthonormal basis for a regular lattice Λ = Λ(a0, b0) then
c(Ψ) = b0 ln a0 (see [7, p. 63]). Normalizing c(Ψ), this suggests, in analogy with
the Gabor wavelet case, that b0 ln a0 could maybe play the same role as b0ζ0 and
that some critical density might exist for orthonormal or Riesz bases. Pushing the
analogy further one might think as well in a version of the Balian-Low theorem
for wavelets, establishing for instance that no orthonormal basis WΨ(Λ) exist for
regular Λ and Ψ well localized in time and frequency.

All this turns out to be (fortunately) false. Stromberg and Meyer constructed
nice Ψ’s for which the Ψn,m(t) = 2−m/2Ψ(2−mt − n), n,m ∈ Z constitute an or-
thonormal basis of L2(R). Later, the theory of multiresolution analysis (MRA)
developed by Mallat and Meyer provided a natural framework and lead to a pro-
cedure to construct plenty of such basis, even with a regular and compactly sup-
ported Ψ. Concerning the existence of a critical density, the Meyer wavelet is a
counterexample too, for it can be proved that WΨ(Λ(2, b)) is a Riesz basis for all
b close enough to 1 (see [7] for all these facts).

But Riesz basis WΨ(Λ) do not always exist. For some mother wavelets Ψ the
situation is in fact similar to the Gabor case and a critical density exists. This is
so, for instance, for the Poisson wavelet Ψ(t) for which Ψ̂(ζ) = c|ζ|e−|ζ|; in this
case the space WΨ is isometric to the space of all holomorphic functions F (z) of
z = b+ ia in R

2
+ such that

‖F‖2
2 =

∫ +∞

−∞

∫ +∞

0

a|F (z)|2 db da < +∞ .

This is called a (weighted) Bergman space.
In this isometry, the frames WΨ(Λ) correspond as usual with the stable

sampling sequences, which here are those Λ = {zk = bk + iak} for which ‖F‖2
2

is comparable to
∑
k

|F (zk)|2a3
k, and the interpolating sequences (corresponding

to free systems WΨ(Λ)) are those for which F (zk) = λk has a solution for all
sequences (λk)k such that

∑
k

|λk|2a3
k < +∞. Seip ([31]) characterized both type

of sequences in terms of Beurling-type densities. The (pseudo)hyperbolic distance
between z, w ∈ R

2
+ being dH(z, w) =

∣∣∣ z−w
z−w̃

∣∣∣, for a pseudohyperbolically separated
sequence Λ, let n(z, r) the number of points of Λ in the dH -disc centered at z of
radius r, and let a(r) denote the hyperbolic area of that disc. Writing

N(z, r) =
∫ r

0

n(z, t) dt, A(r) =
∫ r

0

a(t) dt
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the densities D+
u (Λ), D−

u (Λ) are now defined

D+
u (Λ) = lim sup

r→1
sup
z

N(z, r)
A(r)

D−
u (Λ) = lim inf

r→1
inf
z

N(z, r)
A(r)

.

For a regular lattice Λ = {nb0am0 + iam0 , n,m ∈ Z} it turns out that D+
u (Λ) =

D−
u (Λ) = 2π/b0 ln a0; Seip proved that Λ is a stable sampling sequence if and only

if D−
u (Λ) > 1, and interpolating if and only if D+

u (Λ) < 1. In particular, no wavelet
bases WΨ(Λ) exist for the Poisson wavelet.

We will finish this section with some comments about wavelet bases in L2(Rn)
with n > 1. One of the basic constructions is the “tensor product technique”
leading to separable wavelet bases of L2(Rn) (see [7]), but other constructions
which do not single out the n axis directions are possible. In the more general
context, for a mother wavelet Ψ ∈ L2(Rn), ‖Ψ‖2 = 1, a family of wavelets {Ψb,M}
is obtained from Ψ replacing the scale parameter a in one dimension by a matrixM
in the linear group GL(Rn):

Ψb,M (x) = (detM)−1/2Ψ(M−1(x− b)), M ∈ GL(Rn), b ∈ R
n .

The continuous wavelet transform f ∈ L2(Rn) is then the function WΨf(b,M) =
〈f,Ψb,M 〉 =

∫
Rn f(x)Ψb,M (x) dx.

Let now H be a (connected) closed subgroup of GL(Rn) and let dσ(M)
denote the left-invariant Haar measure on H. It is not hard to see that if Ψ is
H-admissible in the sense that∫

H

|Ψ̂(ζM)|2 dσ(M) = c(Ψ) < +∞ independently of ζ

then one has again a reconstruction formula

f =
1

c(Ψ)

∫
H

∫
Rn

〈f,Ψb,M 〉Ψb,M db
dσ(M)
|detM | .

The subgroup H is called admissible if some H-admissible Ψ exists. For instance,
the whole H = GL(Rn) is not if n > 1; in general, if H is transitive acting on
R
n\{0}, H is admissible if and only if the isotropy group SH(x) = {M : Mx = x}

is compact for all x �= 0. More generally, if H has an open orbit U such that SH(x)
is compact for x ∈ U , H is admissible (see [4] and [10]). Of course, other examples
of admissible groups, with no open orbits, are known. For instance for H = R Id,
H-admissible functions exist (necessarily radial).

The question of discretizing the continuous representation, that is, sampling
it on a discret Λ ⊂ R

n×H is very little studied, as far as I know. When H has an
open orbit U with SH(x) trivial, then H must have dimension n, as a Lie group.
For n = 2 there are, up to conjugation, four connected subgroups of GL(R2) of
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dimension 2: the diagonal matrices, the triangular ones, and

H =
{(

a 0
b aε

)
, a, b ∈ R, a �= 0

}
H =

{(
a b
−b a

)
, a, b ∈ R, ab �= 0

}
.

For all of them it is possible to choose an admissible function Ψ (with Fourier
transform Ψ̂ being an indicator function) and a discrete subgroup H0 of H such
that the Ψb,M with M ∈ H0 and b ∈M(Zn) form an orthonormal basis of L2(Rn).
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The author thanks Joaquim Ortega-Cerdà for his help in the preparation of this
survey.

References

[1] B. Berndtsson, Zeros of analytic functions in several variables, Ark. Mat. 16 (1978),
251–262.
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