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Abstract. In 1978 De Giorgi formulated the following conjecture. Let u be a
solution of ∆u = u3 − u in all of Rn such that |u| ≤ 1 and ∂xnu > 0 in
Rn. Is it true that all level sets {u = λ} of u are hyperplanes, at least if
n ≤ 8? Equivalently, does u depend only on one variable? When n = 2, this
conjecture was proved in 1997 by N. Ghoussoub and C. Gui. More recently,
L. Ambrosio and the author have proved it for n = 3. The question, however,
remains open for n ≥ 4. A connection with the Bernstein problem for minimal
hypersurfaces suggests that the conjecture may be true at least if n ≤ 8. The
results for n = 2 and 3 apply also to the equation ∆u = F ′(u) for every
nonlinearity F ∈ C2.

1. Introduction

In 1978 De Giorgi [7] stated the following conjecture:

Conjecture. ([7]) Let u ∈ C2(Rn) be a solution of

∆u = u3 − u in Rn

such that

|u| ≤ 1 and ∂xnu > 0

in the whole Rn. Is it true that all level sets {u = λ} of u are hyperplanes, at least
if n ≤ 8?

When n = 2, this conjecture was proved by Ghoussoub and Gui [9] in 1997.
More recently, Ambrosio and the author [2] have proved it in dimension n = 3.
The conjecture, however, remains open for all n ≥ 4.

Note that the level sets of u are hyperplanes if and only if u depends only on
one variable. Thus, the question of De Giorgi is concerned with the one-dimensional
character or symmetry of bounded solutions u of semilinear elliptic equations in
the whole space Rn, under the assumption that u is monotone in one direction,
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say, ∂xnu > 0 in Rn. The proofs for n = 2 and 3 use some techniques developed by
Berestycki, Caffarelli and Nirenberg in [4] for the study of symmetry properties of
solutions of semilinear equations in half spaces.

We will see in section 3 that the conjecture of De Giorgi has some relations
with the theories of minimal hypersurfaces and phase transitions. In particular, a
connection with the Bernstein problem for minimal graphs is probably the reason
why De Giorgi [7] includes “at least if n ≤ 8” in his statement of the question.

The positive answers to the conjecture in dimensions two and three apply
not only to the scalar Ginzburg-Landau equation ∆u+ u− u3 = 0, but to general
nonlinearities. Indeed, we have the following:

Theorem 1.1. ([9, 2, 1]) Assume that F ∈ C2(R). Let u be a bounded solution of

∆u− F ′(u) = 0 in Rn (1)

satisfying

∂xnu > 0 in Rn . (2)

If n = 2 or n = 3, then all level sets of u are hyperplanes, i.e., there exist a ∈ Rn
and g ∈ C2(R) such that

u(x) = g(a · x) for all x ∈ Rn .

For the model case F ′(u) = u3 − u, the function tanh(s/
√

2) is the unique
(up to a translation of the independent variable s) one-dimensional solution of the
equation. Hence, in this case the conclusion of theorem 1.1 is that

u(x) = tanh
(
a · x− c√

2

)
in Rn ,

for some c ∈ R and a ∈ Rn, with |a| = 1 and an > 0. It is also easy to verify that
if F ∈ C2(R) satisfies F > F (−1) = F (1) in (−1, 1) and F ′(−1) = F ′(1) = 0,
then h′′−F ′(h) = 0 has an increasing solution h(s) satisfying lims→±∞ h(s) = ±1,
which is unique up to a translation in s.

Several articles have also considered the question of De Giorgi in a slightly
simpler version. It consists of assuming the hypothesis of the conjecture and, in
addition, that

lim
xn→±∞

u(x′, xn) = ±1 for all x′ ∈ Rn−1 . (3)

Here, the limits are not assumed to be uniform in x′ ∈ Rn−1. Even in this simpler
form, the conjecture was first proved in [9] for n = 2, in [2] for n = 3, and it
remains open for n ≥ 4.

In theorem 1.1 the direction a of the variable on which u depends is not
known apriori. Indeed, if u is a one-dimensional solution satisfying (2), we can
“slightly” rotate coordinates to obtain a new one-dimensional solution still sat-
isfying (2). The same remark applies to assumption (3). Instead, if one further
assumes that the limits in (3) are uniform in x′ ∈ Rn−1, then an apriori choice of
the direction a is imposed, namely a · x = xn. Furthermore, with this additional



Symmetry for Elliptic Equations in Rn 3

assumption one knows apriori that every level set of u is contained between two
parallel hyperplanes. In this respect, it has been established in [3, 5, 8] (indepen-
dently and using different techniques) that, for every dimension n, if the limits
in (3) are assumed to be uniform in x′ ∈ Rn−1 then u only depends on the vari-
able xn, that is, u = u(xn). This result applies to equation (1) for various classes of
nonlinearities F which always include the Ginzburg-Landau model ∆u+u−u3 = 0.

The first partial result towards the question of De Giorgi was proved by
Modica and Mortola [14] in 1980. They gave a positive answer to the conjecture
when n = 2 under the additional assumption that the level sets of u are the graphs
of an equi-Lipschitz family of functions. Note that, since ∂xnu > 0, each level set
of u is the graph of a function of x′. In 1985 Modica [11] proved that if F ≥ 0 in
R then every bounded solution u of ∆u − F ′(u) = 0 in Rn satisfies the gradient
bound

1
2
|∇u|2 ≤ F (u) in Rn . (4)

In 1994 Caffarelli, Garofalo and Segala [6] generalized this bound to more general
equations. They also showed that, if equality occurs in (4) at some point of Rn,
then the conclusion of the conjecture is true.

2. Sketch of the Proofs in Dimensions Two and Three

The proof of theorem 1.1 relies on the following method, already used by Beresty-
cki, Caffarelli and Nirenberg in [4] to establish (also for low dimensions) a very
general result on the symmetry of positive solutions in half spaces. The idea is to
consider the functions

ϕ := ∂xnu > 0 and σi :=
∂xiu

∂xnu

for each i ∈ {1, . . . , n− 1}. Since

ϕ2∇σi = ∂xnu∇∂xiu− ∂xiu∇∂xnu
and ∆∂xju = F ′′(u)∂xju, the function σi satisfies the equation

div(ϕ2∇σi) = 0 in Rn . (5)

The goal is to prove that σi is constant, since then the theorem follows. Indeed, if
for every i ∈ {1, . . . , n− 1} we have

∂xiu = ci ∂xnu

for some constant ci, then u is constant along the n − 1 directions ∂xi − ci∂xn .
We then conclude that u is a function of the variable a · x alone, where a =
(c1, . . . , cn−1, 1).

The proof that σi is necessarily constant in dimensions two and three uses
the following Liouville theorem for equation (5). Its proof is already contained in
the paper [4] by Berestycki, Caffarelli and Nirenberg; see also [2].
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Proposition 2.1. Let ϕ ∈ L∞loc(Rn) be positive in Rn. Suppose that σ ∈ H1
loc(Rn)

satisfies

σ div(ϕ2∇σ) ≥ 0 in Rn (6)

in the distributional sense. For every R > 1, let BR = {|x| < R} and assume that∫
BR

(ϕσ)2 ≤ CR2 , (7)

for some constant C independent of R. Then σ is constant.

The proof of this proposition is based in a simple Cacciopoli type estimate
for the function σ.

Returning to the conjecture of De Giorgi, we note that

ϕσi = ∂xiu .

Hence, assumption (7) in the Liouville theorem will hold if one shows that, for
each R > 1, ∫

BR

|∇u|2 ≤ CR2 (8)

for some constant C independent of R. Using standard local elliptic estimates and
that u ∈ L∞(Rn) is a solution of ∆u−F ′(u) = 0, we deduce that ∇u also belongs
to L∞(Rn). Therefore, estimate (8) is obviously true if n = 2. This finishes the
proof of theorem 1.1, and hence of the conjecture of De Giorgi, when n = 2.

In order to prove the theorem in dimension three, it suffices to establish (8).
This bound is a consequence (when n = 3) of new energy estimates established in
[2] and [1]. A first estimate which holds in all dimensions is given by the following:

Theorem 2.2. ([2]) Let F ∈ C2(R) and u be a bounded solution of ∆u−F ′(u) = 0
in Rn. Assume that

∂xnu > 0 in Rn and lim
xn→+∞

u(x′, xn) = 1 for all x′ ∈ Rn−1 .

Then, for every R > 1, we have∫
BR

{
1
2
|∇u|2 + F (u)− F (1)

}
dx ≤ CRn−1 (9)

for some constant C independent of R.

Note that the previous estimate is clearly true (and optimal) for one-dimensio-
nal solutions. The energy functional in BR,

ER(u) =
∫
BR

{
1
2
|∇u|2 + F (u)− F (1)

}
dx ,

has ∆u− F ′(u) = 0 as Euler-Lagrange equation. In 1989 Modica [12] proved that
if F − F (1) ≥ 0 in R and u is a bounded solution of ∆u− F ′(u) = 0 in Rn, then
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the quantity

ER(u)
Rn−1

is a nondecreasing function of R. Theorem 2.2 establishes that this quotient is,
in addition, bounded from above. Moreover, the upper bound of theorem 2.2 is
optimal. Indeed, if ER(u)/Rn−1 → 0 as R→∞ then the monotonicity formula of
Modica would give that ER(u) = 0 for every R > 0, and hence that u is constant
in Rn.

The proof of the energy estimate of theorem 2.2 relies on the consideration
of the path of functions ut(x) = u(x′, xn + t) connecting u (for t = 0) and 1 (for
t = +∞). Note that the functions ut have different boundary values on ∂BR(0),
but they are all solutions of the same Euler-Lagrange equation. The desired energy
estimate follows from a bound for the variation of energy with respect to t, in a
fixed ball BR(0), which is obtained using the key hypothesis ∂xnu > 0; see [2].

For the model case F ′(u) = u3 − u, we have F (u) = (1 − u2)2/4 and hence
F (u) − F (1) ≥ 0. It follows then that (8) is a consequence of (9) when n = 3.
Moreover, the assumption limxn→+∞ u(x′, xn) = 1 in theorem 2.2 may be removed
when n = 3 (see [2]). In this way, the proof of the conjecture of De Giorgi in
dimension three is completed. The argument applies not only to F (u) = (1−u2)2/4
but also to a large class of nonlinearities F .

The proof of the conjecture in dimension three for every nonlinearity F ∈ C2

(see theorem 1.1) has been obtained by Alberti, Ambrosio and the author in [1].
It relies on the following local minimality property of u.

Theorem 2.3. ([1]) Let F ∈ C2(R) and let u be a bounded solution of ∆u−F ′(u) =
0 in Rn satisfying ∂xnu > 0 in Rn. Consider the functions

u(x′) = lim
xn→−∞

u(x′, xn) and u(x′) = lim
xn→+∞

u(x′, xn) .

Then ∫
BR

{
1
2
|∇u|2 + F (u)

}
dx ≤

∫
BR

{
1
2
|∇v|2 + F (v)

}
dx

for every function v ∈ C1(Rn) such that {v 6= u} has compact closure contained
in BR and

u(x′) < v(x′, xn) < u(x′) for all x = (x′, xn) ∈ BR . (10)

The theorem states that every solution u which is monotone in one direction
is a minimizer of the energy in every ball with respect to the class of functions v
with same boundary values as u and satisfying condition (10). Before we discov-
ered theorem 2.3, a hint for its validity had been given in [2], where we pointed
out that the condition ∂xnu > 0 implies (by the maximum principle) that the
second variation of energy at u is nonnegative definite with respect to compact
perturbations —a necessary condition for minimality.
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The proof of theorem 2.3 is based on the construction of an appropriate cali-
bration or null-lagrangian (a classical tool in the Calculus of Variations) associated
to the extremal field ut(x) = u(x′, xn + t) for t ∈ R. Note that the graphs of the
functions ut are disjoint due to the monotonicity condition ∂xnu > 0.

In [1] we use theorem 2.3 to obtain an improved version of the energy es-
timate of theorem 2.2, in which F (1) is replaced by the infimum of F on the
range of u. The improved estimate leads to the gradient bound (8), and hence
to the one-dimensional symmetry result (theorem 1.1 in dimension three) for all
nonlinearities F ∈ C2.

3. Relation with the Bernstein Problem for Minimal Graphs

In this section we present the heuristic argument that relates the conjecture of De
Giorgi with the Bernstein problem for minimal graphs. We suppose that F (u) =
(1 − u2)2/4, for simplicity. With u as in the conjecture, one considers the blown-
down sequence

uR(y) = u(Ry) for y ∈ B1 ⊂ Rn ,
and the penalized energy of uR in B1

HR(uR) =
∫
B1

{
1

2R
|∇uR|2 +RF (uR)

}
dy .

Note that HR(uR) is a bounded sequence, by theorem 2.2. By a result of Modica
and Mortola [13], as R→∞ the functionals HR Γ-converge to a functional which
is finite only for characteristic functions with values in {−1, 1} and equal (up to
the multiplicative constant 2

√
2/3) to the area of the hypersurface of discontinuity.

The sequence uR is therefore expected to converge to a characteristic function
whose hypersurface of discontinuity S has minimal area, by the local minimality
property of theorem 2.3. Moreover, S is expected to be the graph of a function
defined on Rn−1 (since the level sets of u are graphs due to hypothesis ∂xnu > 0),
possibly with vertical parts. The set S describes the behavior at infinity of the
level sets of u. The conjecture of De Giorgi states that the level sets of u are
hyperplanes. The connection with the Bernstein problem (see Chapter 17 of [10]
for a complete survey on this topic) is due to the fact that every minimal graph of
a function defined on Rm = Rn−1 is known to be a hyperplane whenever m ≤ 7,
i.e., n ≤ 8. Hence, S is expected to be a hyperplane when n ≤ 8. Using the local
minimality property of u (theorem 2.3), we have given in [1] a rigorous proof of
this convergence result, up to subsequences of radii Rk →∞.
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