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Abstract. The random graph, or Rado’s graph (the unique countable homo-
geneous graph) has made an appearance in many parts of mathematics since
its first occurrences in the early 1960s. In this paper I will discuss some old
and new results on this remarkable structure.

1. The Random Graph

Consider the following two countably infinite graphs.
For the first graph, take any countable model of the Zermelo-Fraenkel axioms

for set theory. (The existence of such models, the so-called Skolem paradox, follows
from the downward Löwenheim-Skolem theorem of first-order logic.) Abstractly,
this is a countable set with an asymmetric membership relation. Now form an undi-
rected graph by symmetrising the relation; that is, x and y are adjacent (written
x ∼ y) if either x ∈ y or y ∈ x.

For the second graph, the vertices are the primes congruent to 1 mod 4. Let
p ∼ q hold if p is a quadratic residue mod q. By the law of quadratic reciprocity,
this relation is already symmetric.

Remarkably, these two graphs are isomorphic.
To see this, we first note that each of them has the following property: if U

and V are finite disjoint sets of vertices, then there exists a vertex z such that
u ∼ z for all u ∈ U , while v 6∼ z for all v ∈ V . (We write v 6∼ z to indicate that
v and z are not adjacent.) In the first graph, this property is demonstrated using
the Pairing, Union, and Foundation axioms. In the second graph, the proof uses
the Chinese Remainder Theorem and Dirichlet’s Theorem on primes in arithmetic
progression.

This property of a graph G can be stated another way. If A and B are
finite graphs with A an induced subgraph of B, then every embedding of A into
G extends to an embedding of B into G. The stated property asserts this when
|B| = |A|+1, and the general case follows by induction. We call this the I-property,
because it is a form of injectivity.

Now any two countable graphs having the I-property are isomorphic. This
is a standard application of the back-and-forth technique from model theory. If
G1 and G2 are countable graphs with the I-property, we build successively larger
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finite partial isomorphisms between them by going alternately from G1 to G2 and
from G2 to G1; the result after countably many steps is an isomorphism.

The argument shows more. If we take G1 = G2 = G, and begin with a given
finite partial isomorphism, we see that every isomorphism between finite subgraphs
of G extends to an automorphism of G. We call a graph with this property ho-
mogeneous; we have shown that a graph with the I-property is homogeneous. The
converse also holds, provided that we formulate the I-property correctly: we re-
quire that the two finite graphs A and B must belong to the age of G, the class
of all finite graphs embeddable in G.

So the two graphs with which we started this section, despite appearances,
are isomorphic, and are homogeneous, although no symmetries are visible to the
casual observer.

There are several more features of this story. First, Fräıssé [11] showed that
two countable homogeneous graphs with the same age are isomorphic (essentially
by the argument given above); he also characterised the ages of homogeneous
graphs. They are the classes of finite graphs which are closed under isomorphism,
closed under taking induced subgraphs, and have the amalgamation property. (This
asserts that, if two members of the age have isomorphic induced subgraphs, then
they can be embedded in another graph in the class in such a way that the isomor-
phism becomes equality.) If these conditions are satisfied by the class C of finite
graphs, then the unique countable homogeneous graph G whose age is C is called
the Fräıssé limit of C.

Subsequently, all the countable homogeneous graphs were determined by
Lachlan and Woodrow [18]:

Theorem 1.1. The countably infinite homogeneous graphs are the following:
(a) the disjoint union of m complete graphs of size n, where m and n are finite

or countable (and at least one is infinite);
(b) the complements of the graphs under (a);
(c) the Fräıssé limit of the class of graphs containing no complete subgraph of

size r, for given finite r ≥ 3;
(d) the complements of the graphs under (c);
(e) the Fräıssé limit of the class of all finite graphs.

The graphs in case (c) were first constructed and studied by Henson [12]. The
unique graph under (e) is the one with which we began this section. It is called
the random graph (for reasons which will shortly appear) or Rado’s graph (since
the first explicit construction of it was given by Rado [19]).

We digress to give Rado’s construction. Let us first define an asymmetric
relation → on the set of non-negative integers by the rule that x → y if the xth
digit in the base-2 expression of y is 1 (that is, when y is written as a sum of
distinct powers of 2, then 2x is one of these powers). Now the symmetrised form
of→ defines a graph on N which is the graph R. For the relation→ just defined is
a model of the Zermelo-Fraenkel axioms (including the Axiom of Choice) except
for the Axiom of Infinity: every finite set X of natural numbers is represented by
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the single natural number y =
∑
x∈X 2x, and x → y if and only if x ∈ X. Now

the Axiom of Infinity was not used in our proof that the symmetrised membership
relation defines the graph R.

Fräıssé also observed that there is nothing special about graphs: the relation
between homogeneity, the I-property, and the amalgamation property holds for
arbitrary relational structures. (We need to include one extra condition in the
statement of Fräıssé’s Theorem in general, namely that there are only countably
many structures in the class C, up to isomorphism. This is to rule out the possibility
of, for example, infinitely many unary relations, any subset of which might hold
on a particular element of the domain; by Cantor’s Theorem, a countable set does
not contain enough elements for all possibilities to be realised.)

The homogeneous relational structures of various types have been determined
by various authors: partially ordered sets by Schmerl [20]; tournaments by Lach-
lan [17], simplified by Cherlin [7]; directed graphs by Cherlin [8]. Remarkably,
there are only three countable homogeneous tournaments: the linear order Q; the
circular tournament, otherwise known as the local order or locally transitive tour-
nament, and has arisen in diverse areas such as permuutation groups [4] and com-
puter science [16]; and the analogue of R, the random tournament, which admits
a construction similar to our second construction of the random graph, but using
primes congruent to −1 mod 4 instead. On the other hand, there are uncountably
many countable homogeneous directed graphs (this had been pointed out earlier
by Henson [13]).

There is no need to stick to relational structures. The argument essentially ex-
tends to all lofally finite first-order structures, and even beyond this class with care.
For a recent treatment of these ideas in group theory, see Higman and Scott [14].

Finally, we come to the reason for the term random graph. We use the simplest
possible model for the random graph on a given finite or countable vertex set: we
decide, with probability 1/2, whether a given pair of vertices is an edge or a
non-edge, independently of all other choices. If the vertex set is finite, then every
possible graph occurs, with probability inversely proportional to the order of its
automorhism group; indeed, graphs with no symmetry at all predominate. On the
other hand, Erdős and Rényi [9] showed the following:

Theorem 1.2. There is a countable graph R such that, with probability 1, the ran-
dom graph on a countable vertex set is isomorphic to R.

Of course, R is the graph we met above, the Fräıssé limit of the class of all
finite graphs. The proof is simple: we have to show that the I-property holds with
probability 1. SInce the union of countably many null sets is null, and there are
only countably many pairs of finite disjoint sets of vertices, it suffices to show that,
for given finite disoint sets U and V , the probability that no vertex z with the
correct joins exists is zero.

But the probability that a given vertex z is not correctly joined is (1−1/2n),
where n = |U ∪ V |; by independence, the probability that no vertex is correctly
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joined is

lim
k→∞

(1− 1/2n)k = 0 .

The result of Erdős and Rényi was described, in their account of it by Erdős
and Spencer [10], as demolising the theory of countable random graphs. In its
place, we have the theory of the countable random graph! A survey of some of the
remarkable properties of R and their generalisations to other classes of structures is
given in [5]. In the remainder of this paper, some recent results will be mentioned.

2. The Pigeonhole Property

If a countably infinite set is partitioned into two parts, then at least one of the two
is countable, and hence is isomorphic to the original set. We say that a structure
has the pigeonhole property if, whenever it is partitioned into two parts, one of the
parts is isomorphic to the original structure.

Theorem 2.1. The only countable graphs with the pigeonhole property are the com-
plete and null graphs and the random graph.

For the proof, see [5]. The proof that the random graph has the pigeonhole
property is very short, and goes as follows. Suppose that it has a partition such
that neither of the two parts X1 and X2 is isomorphic to R. Then there exist finite
disjoint subsets Ui and Vi of Xi such that no vertex of Xi is joined to all vertices
in Ui and none in Vi, for i = 1, 2. But then no vertex of R is joined to all vertices
in U! ∪ U2 and to none in V1 ∪ V2, a contradiction.

This remarkable characterisation of R suggests either weakening the defini-
tion of the pigeonhole property or considering other classes of structures. The first
approach ahs not yielded much yet. I merely pose a question:

Which countable graphs G have the property that, whenever G
is partitioned into two parts, one of the parts has an induced
subgraph isomorphic to G?

More is known about the second case. Bonato and Delic [2, 3] determined
the tournaments with the pigeonhole property. Note that there are no complete or
null tournaments.

Theorem 2.2. Let T be a countable tournament with the pigeonhole property. Then
either

(a) T or its converse is an ordinal power of ω; or
(b) T is the random tournament.

Some results are known about more general binary relations such as directed
graphs, but there is not yet a complete classification of these.
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3. Automorphism Groups

The random graph R is homogeneous. Hence, its automorphism group Aut(R)
is transitive on finite subgraphs of any given isomorphism type; in particlar, it
is transitive on vertices, edges, and non-edges, and so is a primitive permutation
group of rank 3 on vertices.

A number of properties of this group are known:
(a) It has cardinality 2ℵ0 .
(b) It is simple [21].
(c) It has the strong small index property (see below) [15].
A permutation group on a countable set X is said to have the small index

property if every subgroup of index less than 2ℵ0 contains the pointwise stabiliser
of a finite set; it has the strong small index property if every such subgroup lies
between the pointwise and setwise stabilisers of a finite set.

Truss [21] found all the cycle structures of automorphisms of R. In particular,
R has cyclic automorphisms. The easiest way to see this is as follows. Choose a
set S of positive integers independently at random. Construct a graph Γ(S) with
vertex set Z by joining x and y if and only if |x − y| ∈ S. The resulting graph
admits the cyclic shift x 7→ x+ 1 as an automorphism; and, with probability 1, it
is isomorphic to R. Similarly it follows from Truss’s classification that R admits
an automorphism with one fixed vertex v and two infinite cycles (necessarily the
neighbours and the non-neighbours of v).

Bhattacharjee and Machperson [1] settled a question of Peter Neumann by
the following remarkable combination of the two types of automorphisms just
described.

Theorem 3.1. There exist automorphisms f , g of R such that
(a) f , g generate a free subgroup of Aut(R),
(b) f has a single cycle on R, which is infinite,
(c) g fixes a vertex v and has two cycles on the remaining vertices (namely,

the neighbours and non-neighbours of v),
(d) the group 〈f, g〉 is oligomorphic, and transitive on vertices, edges, and non-

edges of R, and each of its non-identity elements has only finitely many
cycles on R.

The existence of cyclic auutomorphisms of R shows that in fact it is a Cayley
graph for the infinite cyclic group. Cameron and Johnson [6] generalised this as
follows.

Theorem 3.2. Let G be a countable group which cannot be expressed as the union
of finitely many translates of square-root sets of non-identity elements. Then, with
probability 1, a random Cayley graph for G is isomorphic to R.

Here, the square-root set of an element g is {x : x2 = g}.
Wielandt called a group G a B-group if every primitive permutation group

containing the regular representation of R is doubly transitive. The B stands for
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Burnside, who gave the first examples: the finite cyclic groups of prime-power (non-
prime) order. In fact, it follows from the Classification of Finite Simple Groups
that, for almost all n (that is, all but a set of density zero), every group of order n
is a B-group. (However, the finite non-B-groups have not been determined.) In the
infinite case, things are very different: no countable B-group is known, although
many groups are known not to be B-groups.

It follows from the above theorem of Cameron and Johnson that, if a count-
able group G is not the union of finitely many translates of square-root sets of
non-identity elements, then G is not a B-group; for it is a regular subgroup of the
primitive but not doubly transitive group Aut(R). Other countable homogeneous
structures have been examined in the hope of finding further non-B-groups, but
this has not been successful. (Note however that the above result does not exhaust
the list of groups which are not B-groups. For example, any group which is the di-
rect product of two countable subgroups is a non-B-group, since it is contained in
the primitive group Sω oS2 (in its product action).) The two results together show
that no countable abelian group is a B-group. For let G be a countable abelian
group. If the subgroup A2 of involutions has infinite index in A, then A satisfies
the hypotheses of the Cameron-Johnson theorem. If not, it has finite exponent,
and so is a direct product of two infinite factors.

I mention an unsolved problem arising from the search for regular groups
of automorphisms of countable structures. Recall Henson’s construction [12] of
countable homogeneous graphs Hr, where Hr is the Fräıssé limit of the class of
finite graphs containing no complete subgraph of size r. Henson showed in that
paper that H3 has cyclic automorphisms but Hr does not for r ≥ 4. His argument
in fact shows more:

Theorem 3.3. For r ≥ 4, Hr is not a normal Cayley graph of any countable group.

A Cayley graph for G is normal if it admits both left and right translation
by G, in other words, if the set of neighbours of the identity is a normal subset.
Now we can pose the open problem: Is the Henson graph Hr for r ≥ 4 a Cayley
graph?
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