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Abstract. We discuss two different ways to construct new invariants of Leg-
endrian knots in the standard contact R3. These invariants are defined com-
binatorially, in terms of certain planar projections, and (sometimes) allow to
distinguish Legendrian knots which are not Legendrian isotopic but have the
same classical invariants.

1. Introduction

A smooth knot L in the standard contact space (R3, α) = ({(p, q, u)}, du − pdq)
is called Legendrian if the restriction of α to L vanishes (or, in other words, if L is
everywhere tangent to the 2-plane distribution given by α = 0). The general, open,
problem of the theory of Legendrian knots is to give a classification of Legendrian
knots up to Legendrian isotopy. The latter is defined as follows: two Legendrian
knots are said to be Legendrian isotopic if they can be connected by a path in the
space of Legendrian embeddings (or, equivalently, if one can be sent to another
by a diffeomorphism g of R3 such that g∗α = ϕα, where ϕ > 0). It is easy
to show that every smooth knot is isotopic to a Legendrian one. However, two
different Legendrian knots belonging to the same smooth isotopy class may be not
Legendrian isotopic.

The so-called classical invariants of an oriented Legendrian knot L are defined
as follows. First of them is just the smooth isotopy type of L. The Thurston-
Bennequin number β(L) of L is the linking number (with respect to the orientation
defined by α ∧ dα) between L and s(L), where s is a small shift along the u
direction. The Maslov number m(L) (which actually is an invariant of Legendrian
immersion) is twice the rotation number of the projection of L to the (p, q) plane
(or, equivalently, the value of the Maslov 1-cohomology class on the fundamental
class of L). That m and β are indeed invariant under Legendrian isotopy follows
since vectors tangent to a Legendrian curve are never parallel to the u axis. The
change of orientation on L changes the sign of m(L) and preserves β(L).

One can ask whether there exists a pair of Legendrian knots which have the
same classical invariants but are not Legendrian isotopic. Eliashberg and Fraser
showed that this cannot happen when the knots are trivial as smooth knots [4, 6].
However, it turns out that there exist Legendrian knots with the same classical
invariants but not Legendrian isotopic to each other. In the present talk, we discuss
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two entirely different new constructions of invariants of Legendrian knots [1, 2] that
sometimes allow to distinguish Legendrian knots with the same classical invariants.
These new invariants are combinatorially defined in terms of projections of L to
certain planes. They does not change when the orientation of the knot changes, so
essentially they are invariants of non-oriented Legendrian knots. There is no visible
relation between the two constructions. Neither of them is known to provide a priori
stronger invariants; there are examples where the first construction works better.
Both constructions extend, with minor modifications, to the case of Legendrian
links, which we do not discuss here.

In order to visualize a knot in R3, it is convenient to use its projection
to a plane. In the Legendrian case, the character of the resulting picture will
depend on the choice of the projection. We shall use two of them: π : R3 → R2,
(p, q, u) 7→ (p, q) and σ : R3 → R2, (p, q, u) 7→ (q, u).

We say that a Legendrian knot L ⊂ R3 is generic with respect to π, or
π-generic, if all self-intersections of the immersed curve π(L) are transverse double
points. We can represent a π-generic Legendrian knot L by its (π-)diagram: the
curve π(L) ⊂ R2, at every crossing of which the overpassing branch (the one with
the greater value of u) is marked. Of course, not every abstract knot diagram
in R2 is a diagram of a Legendrian knot, or is oriented diffeomorphic to such.
Thus it requires a bit of extra work (which we are going to skip here) to check
that the diagrams we draw indeed correspond to Legendrian knots. The Thurston-
Bennequin number of a π-generic Legendrian knot can be computed by counting
the crossings of its diagram with signs:

β(L) = #
( )

−#
( )

,

(where the p axis is horizontal and the q axis vertical). The Maslov number m(L)
is twice the rotation number of π(L). Properties of the projection σ are discussed
in section 3.

Theorem 1.1. ([1, 2]) Legendrian knots L, L′ whose π-diagrams are given in figure 1
have the same classical invariants (smooth knot type 52, m = 0, β = 1) but are
not Legendrian isotopic.

It is easy to check that the classical invariants are the same. Two different
constructions of invariants distinguishing L and L′ are given in section 2 and
section 3.

2. First Construction: Differential Algebra

2.1. Introduction
In order to construct new invariants of Legendrian knots, we associate with every
π-generic Legendrian knot L a differential graded algebra (A, ∂) over Z2. Our
constructions can be viewed as an algebraically refined combinatorial version of
certain particular case of a more general Morse-Witten-type theory, an outline of
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which was given by Eliashberg, Givental, and Hofer [5]. Similar results were also
announced by Eliashberg.

2.2. Definitions and results
Let {a1, . . . , an} be the set of crossings of Y = π(L). Define A to be the tensor
algebra (free associative unital algebra) T (a1, . . . , an) generated by a1, . . . , an. The
grading on A, which takes values in the group Z/m(L)Z, is defined as follows.
Given a crossing a, consider the points z+, z− ∈ L such that π(z+) = π(z−) = a
and u(z+) > u(z−) (where u(z) denotes the u coordinate of a point z ∈ R3).
These points divide L into two pieces, γ1 and γ2, which we orient from z− to
z+. We can assume, without loss of generality, that the intersecting branches are
orthogonal at a. Then, for ε ∈ {1, 2}, the rotation number of the curve π(γε) has
the form Nε/2+1/4, where Nε ∈ Z. Clearly, N1−N2 is equal to ±m(L). Hence N1
and N2 represent the same element of the group Γ = Z/m(L)Z, which we define
to be the degree of a.

We are going to define the differential ∂. For every natural k, fix a (curved)
convex k-gon Πk ⊂ R2 whose vertices xk

0 , . . . , xk
k−1 are numbered anticlockwise.

The form dp ∧ dq defines an orientation on R2. Denote by Wk(Y ) the collection
of smooth orientation-preserving immersions f : Πk → R2 such that f(∂Πk) ⊂ Y .
Note that f ∈ Wk(Y ) implies f(xk

i ) ∈ {a1, . . . , an}. Consider the set of non-
parametrized immersions ˜Wk(Y ), which is the quotient of Wk(Y ) by the action of
the group {g ∈ Diff+(Πk) | g(xk

i ) = xk
i }.

The diagram Y divides a neighbourhood of each of its crossings into four
sectors. We call positive two of them which are swept out by the underpassing curve
rotating anticlockwise, and negative the other two (see figure 2). For each vertex xk

i

of the polygon Πk, a smooth immersion f ∈ ˜Wk(Y ) maps its neighbourhood in
Πk to either a positive or a negative sector; we shall say that xk

i is, respectively, a
positive or negative vertex for f . Define the set W+

k (Y ) to consist of immersions f ∈
˜Wk(Y ) such that the vertex xk

0 is positive for f , and all other vertices are negative.
Let W+

k (Y, aj) = {f ∈ W+
k (Y ) | f(xk

0) = aj}.
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Figure 2

Denote A1 = {a1, . . . , an}⊗Z2 ⊂ A, Ak = (A1)⊗k. Then A = ⊕∞l=0Al. There
is a decomposition ∂ =

∑

k≥0 ∂k, where ∂k(Ai) ∈ Ai+k−1. Define

∂k(aj) =
∑

f∈W+
k+1(Y,aj)

f(x1) · · · f(xk) ,

which, in particular, means ∂0(aj) = #(W+
1 (Y, aj)), and extend ∂ to A by linearity

and the Leibniz rule.

Theorem 2.1. The differential ∂ is well defined. We have deg(∂) = −1 and ∂2 = 0.

The above theorem allows us to consider the homology ring ker(∂)/ im(∂),
which turns out to be a Legendrian isotopy invariant:

Theorem 2.2. Let (A, ∂), (A′, ∂′) be the differential graded algebras associated with
Legendrian isotopic (π-generic) Legendrian knots L, L′. Then the homology rings
of (A, ∂) and (A′, ∂′) are isomorphic as graded rings.

The hard part in the proof of theorem 2.1 is to show that ∂2 = 0. The proof of
this fact mimics, in a combinatorial way, the classical gluing-compactness argument
of the Floer theory (cf. [7]). The proof of theorem 2.2 involves a careful study of
the behaviour of the differential graded algebra associated with a Legendrian knot
when the diagram goes through elementary bifurcations (Legendrian Reidemeister
moves).

2.3. Examples
2.3.1. Consider the Legendrian knots L1, L2, L3 whose diagrams are given in
figure 3. The diagram Y1 = π(L1) is the simplest possible diagram of a Legendrian
knot. The classical invariants of L1 are as follows: m(L1) = 0, β(L1) = −1,
the knot is an unknot in the smooth category. Since m(L1) = 0, the grading
on the algebra A = T (a) takes values in Z. We have deg(a) = 1. The set of
immersions ˜Wk(Y1) is empty for k > 1 and consists of two elements f1, f2 ∈
W+

1 (Y1, a), whose images are the closures of the two bounded components of R2 \
Y1. Hence ∂(a) = 1 + 1 = 0.

The Legendrian knot L2 is a right-handed (with respect to the orientation
defined by α ∧ dα) trefoil as a smooth knot. We have m(L2) = 0, β(L2) = 1, A =
T (a1, . . . , a5), where deg(a1) = deg(a2) = 1, deg(a3) = deg(a4) = deg(a5) = 0,
∂(a1) = 1 + a3 + a5 + a3a4a5, ∂(a2) = 1 + a3 + a5 + a5a4a3, ∂(a3) = ∂(a4) =
∂(a5) = 0.
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The Legendrian knot L3 is a left-handed trefoil as a smooth knot. We have
m(L3) = ±2, β(L3) = −6. A = T (a1, . . . , a6), where all generators have degree 1 ∈
Z2, ∂(a1) = 1+a4a6, ∂(a2) = 1+a5a4, ∂(a3) = 1+a6a5, ∂(a4) = ∂(a5) = ∂(a6) =
0.

2.3.2. Let (A, ∂) = (T (a1, . . . , a9), ∂) be the differential graded algebra associ-
ated with the Legendrian knot L given in figure 1. We have m(L) = 0, β(L) = 1,
deg(ai) = 1 for i ≤ 4, deg(a5) = 2, deg(a6) = −2, deg(ai) = 0 for i ≥ 7,
∂(a1) = 1+a7+a7a6a5, ∂(a2) = 1+a9+a5a6a9, ∂(a3) = 1+a8a7, ∂(a4) = 1+a8a9,
∂(ai) = 0 for i ≥ 5.

Let (A′, ∂) = (T (a1, . . . , a9), ∂) be the differential graded algebra associated
with the Legendrian knot L′ given in figure 1. We have m(L′) = 0, β(L′) = 1,
deg(ai) = 1 for i ≤ 4, deg(ai) = 0 for i ≥ 5, ∂(a1) = 1+a7 +a5 +a7a6a5 +a9a8a5,
∂(a2) = 1 + a9 + a5a6a9, ∂(a3) = 1 + a8a7, ∂(a4) = 1 + a8a9, ∂(ai) = 0 for i ≥ 5.

2.4. Poincaré polynomials
Homology rings of differential graded algebras are rather hard to handle. That is
why we introduce another, a bit more subtle, invariant of Legendrian knots. This
invariant is a finite subset of the group monoid N0[Γ], where N0 = {0, 1, . . . },
Γ = Z/m(L)Z. Assume that ∂0 = 0. Then ∂2

1 = 0. Since ∂(A1) ⊂ A1, we can
consider the homology H(A1, ∂1) = ker(∂1|A1)/ im(∂1|A1), which is a vector space
graded by the cyclic group Γ. Define the Poincaré polynomial P(A,∂) ∈ N0[Γ] by

P(A,∂)(t) =
∑

λ∈Γ

dim
(

Hλ(A1, ∂1)
)

tλ ,

where Hλ(A1, ∂1) is the degree λ homogeneous component of H(A1, ∂1).
Define the group Aut0(A) to consist of graded automorphisms of A such that

for each i ∈ {1, . . . , n} we have g(ai) = ai+ci, where ci ∈ A0 = Z2. (of course, ci =
0 when deg(ai) 6= 0). Consider the set U0(A, ∂) consisting of automorphisms g ∈
Aut0(A) such that (∂g)0 = 0 (where ∂g = g−1 ◦ ∂ ◦ g). Define

I(A, ∂) = {P(A,∂g) | g ∈ U0(A, ∂)} .

Since Aut0(A) has at most 2n elements, this invariant is not hard to compute. We
can associate with every (π-generic) Legendrian knot L the set I(L) = I(AL, ∂L).
The set I(L) can be empty (see section 4) but no examples are known where I(L)
contains more than one element.
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Theorem 2.3. If L is Legendrian isotopic to L′ then I(L) = I(L′).

Theorem 2.3 is not a direct consequence of theorem 2.2. It is proved by
showing that the differential graded algebras associated with Legendrian isotopic
Legendrian knots not only have isomorphic homology rings but satisfy a stricter
equivalence relation: they become tame isomorphic after (iterated) stabilizations.
We are skipping the details here.

By theorem 2.3, the following assertion, which is straightforward to verify,
implies theorem 1.1:

Proposition 2.4. For the knots L, L′ given in figure 1, we have
I(L) = {t−2 + t1 + t2}, I(L′) = {2t0 + t1}.

As an obvious corollary of the definitions we get

Proposition 2.5. If P ∈ I(L) then P (−1) = β(L).

Thus the relation between the Thurston-Bennequin number and the coef-
ficients of the polynomial P is the same as between the Casson invariant of a
homology 3-sphere and its Floer homology. This analogy was the starting point
for developing the theory described above.

3. Second Construction: Decompositions of Fronts

In this section, we present the invariants of Legendrian knots constructed in [2].
These invariants are defined in terms of the σ-projection.

3.1. Fronts of Legendrian knots
Given a Legendrian knot L ⊂ R3, its σ-projection, or front, σ(L) ⊂ R2 is a
singular curve with nowhere vertical tangent vectors (the q axis is horizontal and
the u axis vertical). Its singularities, generically, are semi-cubic cusps. We say
that L is σ-generic if, moreover, all self-intersections of σ(L) are transverse double
points with different q coordinates. Every closed planar curve with these types of
singularities and nowhere vertical tangent vectors is a front of a Legendrian knot.
Note that there is no need to explicitly indicate the type of a crossing of σ(L)
(which was necessary for π(L)): the overpassing branch (the one with the greater
value of p) is always the one with the greater slope.

The Maslov number a σ-generic oriented Legendrian knot L can be com-
puted by counting the right cusps of the front σ(L) with signs depending on the
orientations:

m(L) = #
( )

−#
( )

.

The Thurston-Bennequin number of L equals the sum of crossings of σ(L) with
signs minus half the total number of cusps:

β(L) = #
( )

+ #
( )

−#
( )

−#
( )

−#
( )

.
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Given a σ-generic oriented Legendrian knot L, denote by C(L) the set of
points that correspond to cusps of σ(L). Define the Maslov index r : L \ C(L) →
Γ = Z/m(L)Z to be a locally constant function, uniquely defined up to adding
a constant, whose value changes near points of C(L) as shown in figure 4. We
say that a crossing of Σ = σ(L) is Maslov if r takes the same value on both its
branches.

i 1+ i 1+

i i

Figure 4

3.2. Admissible decompositions
Assume that Σ = σ(L) is a union of closed curves X1, . . . , Xn that have finitely
many self-intersections and meet each other at finitely many points. Then we call
the set {X1, . . . , Xn} a decomposition of Σ.

We are going to formulate the main definition. A decomposition {X1, . . . , Xn}
is called admissible if it satisfies the four conditions stated below. The first two of
them are as follows:

(1) Each curve Xi bounds a topological disk: Xi = ∂Bi.
(2) For each i ∈ {1, . . . , n}, q ∈ R, the set Bi(q) = {u ∈ R | (q, u) ∈ Bi} is

either a segment, or consists of a single point u such that (q, u) is a cusp
of Σ, or is empty.

Conditions (1) and (2) imply that each curve Xi has exactly two cusps (and hence
the total number of cusps is 2n). These cusps divide Xi into two pieces, on which
the coordinate q is a monotone function. Near a crossing point x ∈ Xi ∩Xj , the
curves Xi and Xj may look in one of three ways represented in figure 5, (one drawn
by solid lines and the other by dashed ones). Conditions (1) and (2), in particular,
forbid the case shown in figure 5a. We call the crossing point x switching if Xi and
Xj are not smooth near x (figure 5b), and non-switching otherwise (figure 5c). We

a b c

Figure 5

can now formulate the remaining two conditions:
(3) If (q0, u) ∈ Xi ∩Xj (i 6= j) is switching then for each q 6= q0 sufficiently

close to q0 the set Bi(q) ∩ Bj(q) either coincides with Bi(q) or Bj(q), or
is empty.

(4) Every switching crossing is Maslov.
Denote by Adm(Σ) the set of admissible decompositions of Σ. Given D ∈ Adm(Σ),
denote by Sw(D) the set of its switching points. Define θ(D) = #(D)−#(Sw(D)).
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Theorem 3.1. If σ-generic Legendrian knots L,L′ ⊂ R3 are Legendrian isotopic
then there exists a one-to-one mapping g : Adm(σ(L)) → Adm(σ(L′)) such that
θ(g(D)) = θ(D) for all D ∈ Adm(σ(L)). In particular, the number #(Adm(σ(L)))
is an invariant of Legendrian isotopy.

3.3. Remarks

3.3.1. Decompositions of fronts were first considered by Eliashberg in [3]. He
stated a theorem, a particular case of which asserts that if a σ-genericLegendrian
knot L is Legendrian isotopic to the one whose front is shown in figure 6a then
σ(L) admits a decomposition satisfying conditions (1) and (2) (the proofs has not
yet appeared). The results of [3] in their general formulation cannot be proved by
the methods of [2].

3.3.2. In the definition of admissible decomposition one can skip condition (4),
or weaken it by replacing the group Γ with its quotient Z/m̃Z (the condition
becomes void when m̃ = 1). A complete analogue of theorem 3.1 will hold for
thus defined larger sets Admem(σ(L)). However, it seems that the corresponding
invariants are weaker.

3.3.3. The proof of theorem 3.1 goes as follows: we connect L with L′ by a
generic path in the space of Legendrian knots and define a canonical way to extend
admissible decompositions through the points where the front is not σ-generic. The
mapping g depends on the choice of the path: going along a loop in the space of
Legendrian knots we can produce a non-trivial automorphism of Adm(σ(L)) even
when the loop is contractible. It is not clear whether this phenomenon has some
geometrical meaning, or is due to imperfections of the construction.

3.4. Examples

3.4.1. Before considering examples illustrating the definition of an admissible de-
composition, notice that every admissible decomposition D of a front Σ is uniquely
defined by its set of switching points. Indeed, denote by X(Σ) the set of crossings
of Σ, then each subset E ⊂ X(Σ) defines a decomposition D(E) of Σ which near
x ∈ X(Σ) has the form shown in figure 5b if x ∈ E, and the form shown in figure 5c
otherwise. Clearly, if E = Sw(D) then D = D(E).

a b c

dcba

Figure 6
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3.4.2. Each of the fronts shown in figure 6abc (the corresponding Legendrian
knots are Legendrian isotopic to each other) admits a single admissible decom-
position, all crossings being switching. Consider the front Σ0 given in figure 6d.
All of its three crossings a, b, c are Maslov. It is easy to that if E ⊂ X(Σ0) is
empty or consists of 2 elements then the decomposition D(E) consists of a single
curve, and condition (1) is not satisfied. It is straightforward to check that each of
the subsets {a}, {c}, {a, b, c} defines an admissible decomposition. The decompo-
sition D({b}) is not admissible since condition (3) is not satisfied at the point b.

c3c2

c1

c5c4

c6

c2

c4

c5

c1

c3 c6

"Σ

Σ

Figure 7

3.4.3. The Legendrian knots corresponding to the fronts Σ, Σ′ represented in
figure 7 are respectively Legendrian isotopic to the Legendrian knots L, L′ defined
in figure 1. We are going to show that #(Adm(Σ)) 6= #(Adm(Σ′)) and hence
theorem 1.1 is a consequence of theorem 3.1.

Assume that D ∈ Adm(Σ). Consider the curve X1 ∈ D containing the piece
of Σ indicated by the lower arrow. Being applied to X1, conditions (1) and (2)
imply that c2, c3 ∈ Sw(D). Similarly, looking at the curve X2 ∈ D containing the
piece of Σ indicated by the upper arrow, one concludes that c4, c5 ∈ Sw(D). Since
c1 and c6 are not Maslov, we have Sw(D) = {c2, c3, c4, c5}. It is not hard to check
that this decomposition is indeed admissible, and hence #(Adm(Σ)) = 1. Arguing
similarly, one can find that #(Adm(Σ′)) = 2, the admissible decompositions D1,
D2 being defined by Sw(D1) = {c2, c3, c4, c5}, Sw(D2) = {c1, c2, c3, c4, c5, c6}.

4. Instability of Invariants

There are two stabilizing operations, S− and S+, on Legendrian isotopy classes
of oriented Legendrian knots, defined as follows. Given an oriented Legendrian
knot L, we perform one of the operations described in figure 8 in a small neigh-
bourhood of a point on L. One can check that, up to Legendrian isotopy, the
resulting Legendrian knot S±(L) does not depend on the choices involved, and the
operations S−, S+ commute. An important observation is that two Legendrian
knots L, L′ have the same classical invariants if and only if they are stable Legen-
drian isotopic in the sense that there exist n−, n+ ∈ N0 such that Sn−

− (Sn+
+ (L))

is Legendrian isotopic to Sn−
− (Sn+

+ (L′)) (see e. g. [8]).
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Thus the invariants constructed in sections 1 and 2 cannot be stable. In fact,
they fail already after the first stabilization. The set I(S±(L)) is always empty.
The reason is that the differential graded algebra (A, ∂) for S±(L) can be obtained
from that for L by adding a new generator a such that ∂(a) = 1 (while I(S±(L))
being nonempty would imply 1 /∈ ∂(A)). The set Adm(σ(S±(L))) is empty as well.
This follows since conditions (1) and (2) cannot hold for the piece containing the
newly created cusps.

It is not known whether there exists a pair of stable Legendrian isotopic but
not Legendrian isotopic Legendrian knots such that at least one of them has the
form S±(L).
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