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Abstract. In this paper I treat the problem of determining the dimension of
the vector space of homogeneous polynomials in a given number of variables
vanishing with some of their derivatives at a finite set of general points in
projective space. I will illustrate the geometric meaning of this problem and
the main results and conjectures about it. I will finally point out its connection
with the so-called Waring’s problem for forms, of which I will also indicate
the geometric meaning.

1. Introduction

The classical polynomial interpolation theory of functions in numerical analysis is
based on the elementary fact, recalled in §2, that a polynomial of degree d in one
variable is uniquely determined by its zeroes with their multiplicities. In the present
expository paper I will deal with an extension of this property to polynomials in
more variables. This extension has to do with linear systems of hypersurfaces in
projective space with finitely many assigned base points of given multiplicities.
The general setting is presented in §3, where I will also state the main problems.
Among these, I will mainly discuss the general dimensionality problem, which,
roughly speaking, can be stated as follows: given a linear system of hypersurfaces
in projective space and finitely many general points with assigned multiplicities at
each point, what is the dimension of the subsystem of the given one formed by all
hypersurfaces having at the given points at least the assigned multiplicities? This
problem, which is elementary to state and somehow basic in algebraic geometry,
has been considered, in one form or another, since the beginnings of this discipline.
It can be traced back in Bezout’s work in the XVIII century, it is present in Plücker,
Cremona, M. Noether, Bertini, C. Segre etc. in the XIX century and contributions
have been given in the XX century by Castelnuovo, Enriques, Severi, Terracini,
among the others. Its relations with other topics have been considered by several
authors, like [63] and [57]. So-far however the problem is still unsolved in its
generality. I will discuss here what is known about it and what are the techniques
involved, what are the conjectures, the open problems and the connections of this
problem with others.
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In §4 I will concentrate on the case of linear systems of plane curves. I will
state and explain the main conjectures on the general dimensionality problem
and in §5 I will illustrate the main results about it. In §6 I turn to the higher
dimensional case and I will state and discuss the main result, which is a theorem
of Alexander and Hirschowitz. In the last section §7 I will show the connection of
Alexander-Hirschowitz’s theorem with a famous algebraic problem, the Waring’s
problem, of which I will illustrate the geometric meaning. This will lead us to the
geometry of secant varieties and to the classification of defective varieties, the ones
whose secant varieties have dimension smaller than expected, about which I will
recall the main known results.

This is a survey paper, which contains and expands the material covered
by my talk at the ECM of Barcelona 2000. For other interesting surveys on the
subject I refer the reader to [38] and [61].

2. Polynomial Interpolation

A polynomial f(x) = a0 + a1x + · · · + adx
d ∈ K[x] of degree at most d over a

field K depends on d + 1 parameters, namely its coefficients a0, a1, . . . , ad. If we
fix d + 1 distinct points x0, . . . , xd ∈ A1

K on the affine line over K and set the
values:

f(xi) = fi ∈ K, i = 0, . . . , d (1)

then, by linear algebra, there is some polynomial f(x) satisfying the conditions (1).
Moreover this polynomial is unique. The reason for this is that there is no non-zero
polynomial of degree d with zeros at x0, . . . , xd.

More generally, if we fix distinct points x1, . . . , xd ∈ A1
K and positive integers

m1, . . . ,mh such that m1 + · · ·+mh = d+ 1 and set the values of the derivatives:

f (j−1)(xi) = fi,j , i = 1, . . . , h, j = 1, . . . ,mi (2)

again there is a unique polynomial f(x) satisfying the conditions (2). This is
because there is no non-zero polynomial of degree d with zeros of multiplicities
m1, . . . ,mh at x0, . . . , xh.

In particular, the following happens. Let F (x) be a differentiable function of
a real variable. Fix x1, . . . , xh distinct points where F (x) is defined, and positive
integers m1, . . . ,mh such that m1 + · · · + mh = d + 1. Then there is a unique
polynomial f(x) of degree d satisfying (2) with fi,j = F (j−1)(xi), i = 1, . . . , h,
j = 1, . . . ,mi. The polynomial f(x) approximates F (x) and of course the ap-
proximation is better and better as d increases. This approximating procedure of
differentiable functions is called polynomial interpolation.

What is the situation in n ≥ 2 variables? A polynomial f(x1, . . . , xn) ∈
K[x1, . . . , xn] of degree at most d depends on Nn,d + 1 := ( d+n

n ) parameters,
namely its coefficients. Again we may fix points pi = (x1i, . . . , xni) ∈ An

K , i =
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1, . . . , h, in the n-dimensional affine space over the field K and integers m1, . . . ,mh

such that:
h∑

i=1

(
mi + n− 1

n

)
= Nn,d + 1 (3)

and we may impose D(j−1)f(xi) = 0, i = 1, . . . , h, j = 1, . . . ,mi, where D(k) is
any derivative of order k. Notice that, according to (3), the number of conditions
imposed equals the number of parameters on which the polynomials depend. In
analogy with the one-variable case we may then ask: is the resulting polynomial f
identically zero?

This is the question I will mainly deal with in this talk. Interestingly enough,
there is yet no general answer to it and I will try to indicate the classical and
recent developments on the subject and the techniques involved. It is useful to
address the above question in a more general setting. This is what I will do next.

3. Linear Systems with Multiple Base Points

Let X be a smooth, irreducible, projective, complex variety of dimension n. Let
L be a complete linear system of divisors on X. I will often abuse notation and
denote with the same letter a linear system L and the corresponding line bundle
on X. Fix p1, . . . , ph distinct points on X and m1, . . . ,mh positive integers. I will
denote by L(−

∑h
i=1 mipi) the sublinear system of L formed by all divisors in L

having multiplicity at least mi at pi, i = 1, . . . , h.
Having a point of multiplicity m at a fixed point p imposes ( m+n−1

n )
linear conditions on the divisors of L. Indeed this translates, for the equation
f(x0, . . . , xn) = 0 of a divisor of L in local coordinates (x0, . . . , xn) centered at p,
in the vanishing of all monomials of degree at most m− 1 appearing in the Taylor
expansion of f(x0, . . . , xn). Thus, it makes sense to define the expected dimension
of L(−

∑h
i=1 mipi) as:

expdim(L(−
h∑

i=1

mipi)) := max{dim(L) −
h∑

i=1

(
mi + n− 1

n

)
,−1}

and one clearly has:

dim(L(−
h∑

i=1

mipi)) ≥ expdim(L(−
h∑

i=1

mipi)) . (4)

The system L(−
∑h

i=1 mipi) is said to be non-special if the equality holds in
(4). Otherwise it is said to be special. Notice that, by definition, a system which
is empty is non-special. For a not empty system instead non-speciality means that
the imposed conditions are independent. It is natural to expect that most systems
are non-special. The dimensionality problem can be posed as follows: classify all
special systems.



4 C. Ciliberto

Put in this way, the problem is too complicated. Indeed one moment of
reflection shows that the answer depends not only on the numerical data in-
volved in it, but also on the position of the points p1, . . . , ph on X. However,
dim(L(−

∑h
i=1 mipi)) is an upper-semicontinuous function in the position of the

points p1, . . . , ph, hence it reaches its minimum for p1, . . . , ph in general position
on X.

When the points p1, . . . , ph are sufficiently general on X, we set:

L(−
h∑

i=1

mipi) := L(m1, . . . ,mh)

or equivalently:

L(m1, . . . ,mh) := L(ml1
1 , . . . ,mlt

t )

if l1+· · ·+lt = h and mi is repeated li times. The case t = 1 is called homogeneous.
The case t = 2, l1 = 1 is called quasi-homogeneous.

Then we define the general dimension of the linear system L(−
∑h

i=1 mipi)
as:

gendim(L(−
h∑

i=1

mipi)) := dim(L(m1, . . . ,mh)) .

With this definition in mind, the dimensionality problem splits as:

(i) the general dimensionality problem: is gendim(L(−
∑h

i=1 mipi)) equal to
the expected dimension? Or rather, put in a different, but equivalent way:
classify all systems L(m1, . . . ,mh) which are special;

(ii) the hard dimensionality problem: describe the stratification of Xh deter-
mined by the closures of the loci of h-tuples of points where

dim(L(−
h∑

i=1

mipi)) > gendim(L(−
h∑

i=1

mipi)) .

The hard dimensionality problem has never been systematically explored. In the
rest of this paper I will therefore stick to the general dimensionality problem.

Of course one can also ask more refined questions about systems of the
type L(m1, . . . ,mh), like: describe its base locus, its general element, etc. Very
little is known about this kind of questions and we will only touch upon some of
them later on.

Notice that the general dimensionality problem is equivalent to the problem
of determining the Hilbert function of the 0-dimensional subscheme of P2 given
by the union of h general fat points of given multiplicities. One may of course
ask for more refined questions like: what is the resolution of the ideal sheaf of
this 0-dimensional scheme? This is also an active field of research, which I will
not report on here, referring the reader, for example, to the recent paper [34] for
information and references.
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As in the interpolation problem, the general dimensionality problem is trivial
in one variable, namely in the case of curves, i.e. if n = dim(X) = 1. In this case all
systems L(m1, . . . ,mh) are non-special. Another case which never causes speciality
is when all the points have multiplicity one, i.e. m1 = · · · = mh = 1: imposing
to the divisors of a not empty linear system to contain a general point of the
variety (e.g. a non base point of the system) certainly imposes one condition. By
contrast, the problem becomes quite difficult in more variables, namely as soon as
n = dim(X) ≥ 2, and higher multiplicities, namely m1, . . . ,mh ≥ 2, the situation
which we will consider from now on.

A first wise reduction of the problem is to consider, for the time being, par-
ticular varieties X and linear systems L on them. From this viewpoint, the first
obvious choice it to take X = Pn and L = Ln,d := |OPn(d)| the system of all
hypersurfaces of degree d in Pn. It should be clear to the reader that, in this set-
ting, the problem essentially coincides with the original interpolation problem for
polynomials in more variables considered in §2.

In this case

expdim(Ln,d(−
h∑

i=1

mipi)) = max{virtdim(Ln,d(−
h∑

i=1

mipi)),−1}

where:

virtdim(Ln,d(−
h∑

i=1

mipi)) :=
(
d + n
n

)
− 1 −

h∑
i=1

(
mi + n− 1

n

)

is the so-called virtual dimension of Ln,d(−
∑h

i=1 mipi).

4. The Planar Case

I will consider now the case X = P2, in which there is a very precise conjecture
about the general dimensionality problem, namely the Harbourne-Hirschowitz con-
jecture 4.8. This section is devoted to state this important conjecture.

The prototype of this conjecture goes back to B. Segre [78] who apparently
has been the first one to stress that speciality yields reducibility and even non re-
ducedness of the general curve of the involved linear systems with general multiple
base points.

Conjecture 4.1. (B. Segre, 1961) If a linear system of plane curves with general
multiple base points L2,d(m1, . . . ,mh) is special, then its general member is non re-
duced, namely the linear system has, according to Bertini’s theorem, some multiple
fixed component.

B. Segre’s conjecture has been made more precise by A. Gimigliano [37] in
1987, on the basis of various examples, which we will partly mention in a moment:
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Conjecture 4.2. (A. Gimigliano, 1987) Consider a linear system of plane curves
with general multiple base points L2,d(m1, . . . ,mh). Then one has the following
possibilities:

(i) the system is non-special and its general member is irreducible;
(ii) the system is non-special, its general member is reduced, reducible, its fixed

components are all rational curves, but at most one (this may occur only
if the system has dimension 0), the general member of its movable part is
either irreducible or composed of rational curves in a pencil;

(iii) the system is non-special of dimension 0 and it consists of a unique mul-
tiple elliptic curve;

(iv) the system is special and it has some multiple rational curve as a fixed
component.

I want now to state the Harbourne-Hirschowitz conjecture. I will later explain,
in §5, the relations among the various conjectures. In order to do so, let us consider
the blow-up π : P̃2 → P2 of the plane P2 at p1, . . . , ph. Let E1, . . . , Eh be the
exceptional divisors corresponding to the blown-up points p1, . . . , ph and let H be
the pull-back of a general line of P2 via π. The strict transform of the system L :=
L2,d(−

∑h
i=1 mipi) is the system L̃ = |dH −

∑h
i=1 miEi|.

Consider two linear systems of this type L := L2,d(−
∑h

i=1 mipi) and L′ :=
L2,d(−

∑h
i=1 m

′
ipi). We define their intersection product by using the intersection

product of their strict transforms on P̃2, i.e. we set:

L · L′ := L̃ · L̃′ = dd′ −
h∑

i=1

mim
′
i

as dictated by the classical Bezout’s theorem. Also consider the anticanonical
class −K := −K2

P̃
of P̃2 corresponding to the linear system L2,3(−

∑h
i=1 pi),

which, by abusing notation, we also denote by −K.
The adjunction formula tells us that the arithmetic genus pa(L̃) of a curve

in L̃ is:

pa(L̃) =
L · (L + K)

2
+ 1 =

(
d− 1

2

)
−

h∑
i=1

(
mi

2

)

which one defines to be:

gL = the geometric genus of L .

This is the classical Clebsch’s formula. The theorem of Riemann-Roch then says
that:

dim(L) = dim(L̃) =
L · (L −K)

2
+ h1(P̃2, L̃) − h2(P̃2, L̃) =

= L2 − gL + 1 + h1(P̃2, L̃) = virtdim(L) + h1(P̃2, L̃)
(5)
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because clearly h2(P̃2, L̃) = 0. Hence:

L is non-special ⇔ h0(P̃2, L̃) · h1(P̃2, L̃) = 0 . (6)

According to a recent terminology, this is expressed by saying that L, or rather
L̃, has natural cohomology, meaning with this that at most one of the cohomology
groups of the line bundle L̃ is different from zero.

Now we can see how, in this setting, special systems naturally arise. Indeed
let us look for an irreducible curve C on P̃2, corresponding to a linear system L on
P2, which is expected to exist but its double is not expected to exist. However crazy
this requirement may appear, it translates in the following set of inequalities:

virtdim(L) ≥ 0
gL ≥ 0

virtdim(2L) ≤ −1 .
(7)

This system is equivalent to:

C2 − C ·K ≥ 0

C2 + C ·K ≥ −2

2C2 − C ·K ≤ 0

(8)

and it has the only solution:

C2 = C ·K = −1

which makes all the inequalities in (7) and (8) equalities. Accordingly C is a
rational curve, i.e. a curve of genus 0, with self-intersection −1. Surface theorists
call these curves (−1)-curves. A famous theorem of Castelnuovo’s (see [10, pg. 27])
says that these are the only curves that can be contracted to smooth points via a
birational morphism of the surface on which they lie to another surface. By abusing
terminology the curve Γ ⊂ P2 corresponding to C is also called a (−1)-curve.

Example 4.3. (i) A line through two points L2,1(−p − q) is a (−1)-curve.
Hence L2,2(−2p−2q), a conic with two double points, is special. Its virtual
dimension is −1, namely it is expected not to exist, however it exists, and
consists precisely of the line through the two points counted twice.

(i’) More generally L := Ln,2(−
∑h

i=1 2pi) is special if h ≤ n. Actually,
quadrics in Pn singular at h independent points p1, . . . , ph are cones with
vertex the Ph−1 spanned by p1, . . . , ph. Therefore the system is empty as
soon as h ≥ n + 1, whereas, if h ≤ n one easily computes:

dim(L) = virtdim(L) +
(
h
2

)
.

(ii) A conic through five general points L2,2(−
∑5

i=1 pi) is a (−1)-curve. Hence
the system L2,4(−

∑5
i=1 2pi) of quartics singular at five general points is

special. Again its virtual dimension is −1, but it is not empty, consisting
of the conic through the five points counted twice.
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(ii’) Similarly for L := Ln,4(−
∑h

i=1 2pi). Speciality arises if:

virtdim(L) < 0, virtdim(Ln,2(−
h∑

i=1

pi)) ≥ 0

which occurs if and only if (n, h) is one of the pairs (2, 5), (3, 9), (4, 14).

More generally, one has special linear systems in the following situation. Let
L be a linear system on P2 which is not empty, let C be a (−1)-curve on P̃2

corresponding to a curve Γ on P2, such that L̃ · C = −N < 0. Then C [resp. Γ]
splits off with multiplicity N as a fixed component from all curves of L̃ [resp. L],
and one has:

L̃ = NC + M̃, [resp. L = NΓ + M]

where M̃ [resp. M] is the residual linear system. Then one computes:

dim(L) = dim(M) ≥ virtdim(M) = virtdim(L) +
(
N
2

)

and therefore, if N ≥ 2, then L is special.

Example 4.4. One immediately finds examples of special systems of this ty-
pe by starting from the (−1)-curves of example 4.3. For instance consider L :=
L2,2d(−

∑5
i=1 dpi) which is not empty, consisting of the conic L2,2(−

∑d
i=1 pi)

counted d times, though it has virtual dimension − ( d
2 ).

Even more generally, consider a linear system L on P2 which is not empty,
C1, . . . , Ck some (−1)-curves on P̃2 corresponding to curves Γ1, . . . ,Γk on P2,
such that L̃ · Ci = −Ni < 0, i = 1, . . . , k. Then:

L =
k∑

i=1

NiΓi + M, L̃ =
k∑

i=1

NiCi + M̃

and M̃ · Ci = 0, for i = 1, . . . , k. As before, L is special as soon as there is an
i = 1, . . . , k such that Ni ≥ 2. Furthermore Ci · Cj = δij , because the union of
two (−1)-curves meeting moves, according to Riemann-Roch theorem, in a linear
system of positive dimension on P̃2, and therefore it cannot be fixed for L̃. In this
situation, the reducible curve C :=

∑k
i=1 Ci [resp. Γ :=

∑k
i=1 NiΓi] is called a

(−1)-configuration on P̃2 [resp. on P2].

Example 4.5. Consider L := L2,d(−m0p0 −
∑h

i=1 mipi), with m0 + mi = d + Ni,
Ni ≥ 1. Let Γi be the line joining p0, pi. It splits off Ni times from L. Hence
L =

∑h
i=1 NiΓi + L2,d−

∑h
i=1 Ni

(−(m0 −
∑h

i=1 Ni)p0 −
∑h

i=1(mi − Ni)pi). If we

require the latter system to have non negative virtual dimension, e.g. d ≥
∑h

i=1 mi

if m0 = d, and some Ni > 1 we have as many special systems as we want.

With all this in mind we can now give a definition:
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Definition 4.6. A linear system L on P2 is (−1)-reducible if L̃ =
∑k

i=1 NiCi +M̃,
where C =

∑k
i=1 Ci is a (−1)-configuration, M̃ · Ci = 0, for all i = 1, . . . , k, and

virtdim(M) ≥ 0.
The system L is called (−1)-special if, in addition, there is an i = 1, . . . , k

such that Ni > 1.

Remark 4.7. This is an effective definition once one has an algorithm to produce
(−1)-curves. We do not discuss this aspect here but refer the reader to [25] and
[26], where the question is treated.

We are finally ready to state Harbourne-Hirschowitz conjecture (see also [40,
41, 45, 25] and [26]), which, with the terminology we just introduced, sounds very
simple.

Conjecture 4.8. (Harbourne-Hirschowitz, 1989) A linear system of plane curves
L := L2,d(m1, . . . ,mh) with general multiple base points is special if and only if it
is (−1)-special.

This is a rather bold conjecture, whose basic motivation lies in the fact that,
in more than a century of research on the subject, no special system has been
discovered except (−1)-special systems. On the other hand, as we shall see in
the next section, there are several recent results that make the conjecture rather
plausible.

We can complement it and Gimigliano’s one with another conjecture, men-
tioned in [58] and also attributed to Hirschowitz:

Conjecture 4.9. (Hirschowitz) Consider a linear system of plane curves L :=
L2,d(m1, . . . ,mh) with general multiple base points p1, . . . , ph which is not empty
and non-special, with gL ≥ 0. Then the general curve C ∈ L is irreducible, smooth
off the multiple base points p1, . . . , ph where it has ordinary singularities of multi-
plicities exactly m1, . . . ,mh, unless d = 3m, h = 9, m1 = · · · = m9 = m ≥ 2, in
which case L consists of the unique cubic through p1, . . . , p9, counted with multi-
plicity m.

I close this section with the following useful remark:

Remark 4.10. Suppose that the Harbourne-Hirshowitz conjecture holds. Let
p1, . . . , ph be general points of P2 and let C be an irreducible curve on the blow-
up P̃2 at those points. Then one has C2 ≥ pa(C) − 1 ≥ −1 and C2 = −1 if and
only if C is a (−1)-curve. This is an immediate consequence of the Riemann-Roch
theorem (5).

5. Results on the Harbourne-Hirschowitz Conjecture

In this section I will present what is known about the conjectures introduced in
§4, and I will try to briefly explain what are the techniques involved in the proofs.
I will mainly follow the chronological development of the subject. As the reader
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will see, though the subject is so classical, almost all results do not go back more
than twenty years and most of them are very recent.

As shown by (6), a not empty linear system L in the plane P2 is non-special
if and only if the corresponding linear system L̃ on P̃2 has h1(P̃2, L̃) = 0. Any
algebraic geometer knows that the literature is full of vanishing theorems for coho-
mology spaces. Think about Kodaira’s or Kawamata-Vieweg’s vanishing theorem
(see [48]) and, in the surface case we are specifically dealing with, Mumford’s and
Franchetta-Ramanujam’s ones (see [62, 70, 71]). If one tries to apply one of these
theorems to the general dimensionality problem, one, unfortunately, does not go
too far. It turns out that, in order to usefully apply them, one needs −K to be
effective on P̃2, hence all the points we blow-up have to lie on a cubic. If we
blow-up h general points, this means that h ≤ 9. In this way one proves a result
already known to Castelnuovo [16], and later rediscovered by several authors like
Nagata [64], Gimigliano [37] and Harbourne [41].

Theorem 5.1. (Castelnuovo, 1891; Nagata, 1960; Gimigliano, Harbourne, 1986)
The Harbourne-Hirschowitz conjecture holds for all linear systems with h ≤ 9
general multiple base points.

Recall that we are considering linear systems L2,d(m1, . . . ,mh) such that
m1, . . . ,mh ≥ 2. The simplest case to look at is therefore the homogeneous case
m1 = · · · = mh = 2. This case was classically examined by Campbell [15], Pala-
tini [66] and Terracini [84] in a wider context, as we will see later in §7. In recent
times it has been reconsidered by Arbarello and Cornalba [7] in 1981. Their ap-
proach relies on the use of a classical infinitesimal deformation technique consisting
in moving the base points of the system and computing the first order deformation
of a curve which moves keeping its singularities. Arbarello-Cornalba’s result, in the
case they consider, is half way between Harbourne-Hirschowitz conjecture 4.8 and
Hirschowitz conjecture 4.9.

Theorem 5.2. (Arbarello-Cornalba, 1981) Consider L := L2,d(2h). Assume:

(i) d(d+3)
2 ≥ 3h, i.e. virtdim(L) ≥ 0;

(ii)
(

d−1
2

)
≥ h, i.e. gL ≥ 0.

Then L is non-special, and C ∈ L general is irreducible, with nodes at the
imposed general double points p1, . . . , ph, and elsewhere smooth, except for L2,6(29)
which is a double cubic.

The infinitesimal deformation computation performed by Arbarello and Cor-
nalba is a particular case of a lemma which goes back to Terracini and we will
come back to it later (see lemma 6.3 and [82]). Unfortunately it works well only in
the case of double points. In the higher multiplicity case infinitesimal deformation
techniques have never been successfully used in this problem. However work in
progress by C. Ciliberto, H. Clemens and R. Miranda [22], suggests that there are
some chances in this direction. In particular they have been able to examine the
case of triple points with infinitesimal deformation techniques.
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A conceptually opposite approach, which is also natural to the problem, is
to argue by degeneration, meaning with this that one specializes the base points
of the linear system in order to be able to better compute the dimension of the
linear system. Recall that the dimension of L := Ln,2(−

∑h
i=1 mipi) is upper-

semicontinuous in the position of the points p1, . . . , ph. Therefore if one finds
a particular set of points q1, . . . , qh such that L0 := Ln,2(−

∑h
i=1 miqi) is non-

special, then also L is non-special. Unfortunately, this is often too naive: as soon
as one puts the points p1, . . . , ph in a particular position, e.g. one puts them
on some curve on which they should not lie, then the dimension of L tends to
increase, and the method, in this crude form, does not work. However, there is
still something which one can do: even if the dimension of L increases, one can
actually compute the limit of L when p1, . . . , ph approach q1, . . . , qh. There is no
time here to enter in any detail about this idea, which is the one elaborated by
A. Hirschowitz in his paper [44]. He called his degeneration technique la méthode
d’Horace, i.e. the Horace’s method, consisting in successive specializations of the
multiple base points on particular curves. Exploiting it, he has been able to prove
the:

Theorem 5.3. (Hirschowitz, 1985) The Harbourne-Hirschowitz conjecture holds in
the homogeneous case L2,d(mh), m ≤ 3.

The application of the Horace’s method usually requires a deep geometric
understanding of the problem and a special capability of guessing the right spe-
cializations to be performed. The unfortunate circumstance of this is that the
Horace’s method seldom appears to be systematic, rather it seems ingenuous but
too ad hoc to become a theory.

More recently a different specialization technique has been introduced, and
successfully used, in this problem by Ciliberto and Miranda [25, 26]. The idea,
which I will explain in some detail a few lines below, basically consists in using a
degeneration technique worked out by Z. Ran [72] mainly for studying enumerative
problems of families of plane nodal curves. It consists in degenerating the plane to
a reducible surface and in following the linear system in the degeneration. The re-
striction of the limit linear system to the components of the reducible limit surface
are easier than the system one starts with, so that one can hope to successfully use
induction. The outcome of this method is the following substantial improvement
of Hirschowit’s theorem 5.3:

Theorem 5.4. (Ciliberto-Miranda, 1998) The Harbourne-Hirschowitz conjecture
holds in the quasi-homogeneous cases L2,d(n,mh), m ≤ 3 and in the homogeneous
cases L2,d(mh), m ≤ 12.

Remark 5.5. It is worth mentioning, along the same lines, a recent result indepen-
dently proved, with similar techniques, by J. Seibert [79] and A. Laface [50], to the
effect that the Harbourne-Hirschowitz conjecture holds in the quasi-homogeneous
case L2,d(n, 4h), and a result of Laface’s [50], who proves that a suitable version
of the Harbourne-Hirschowitz conjecture holds in the homogeneous case L(mh),
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m ≤ 3, for any linear system L on a Hirzebruch surface Fn. Recall that Fn

is the unique minimal rational ruled surface with an irreducible curve of self-
intersection −n (see [10, Chapter III]).

Note that a contribution to the case L2,d(4h), with different combinatorial
methods coming from numerical analysis, is due to G. Lorentz and R. Lorentz [55]
(see also [53, 54]). These methods however can be interpreted as an application of
degeneration techniques rather similar to those used by Evain in [31], on which I
will come back later on.

Let us now go back to the proof of theorem 5.4. As promised, I want to give
some details of the ideas involved into it. For more information, I refer to the
original papers [25, 26].

First, let me describe Z. Ran’s degeneration of the plane. Let ∆ be a disc in
C with centre the origin. Let p : X → ∆ be the flat family obtained by blowing-up
∆ × P2 along a line L in the fibre of 0 ∈ ∆. The general fibre of the family is
Xt = p−1(t) = P2, for t �= 0, whereas the central fibre is X0 = p−1(0) = P ∪ F,
where P = P2, F = F1 is the exceptional divisor of the blow-up, and P ∩ F = L.
Notice that X0 thus appears as a flat limit of P2.

Next one takes to the limit the linear system. The natural map π : X →
P2 endowes X with a line bundle OX(d) := π∗(OP2(d)) for any integer d. Of
course OX(d)|Xt

� OP2(d) for all t �= 0. But, for any integer k, one has also
OP2(d) = OX(d) ⊗ OX(kP)|Xt

. Hence each one of the line bundles OX0(d, k) :=
OX(d) ⊗ OX(kP)|X0 is a limit of OP2(d) on the limit, reducible surface X0. The
failure of the uniqueness of the limit line bundle plays in our favour, inasmuch as
the presence of the parameter k gives us more freedom in the numerical choices
we will have to do next.

Send now b < h of the h limiting points q1, . . . , qh on X0 to F as general
points, the remaining h−b to P as general point, and consider the linear system L0

of all divisors in the linear system associated to OX0(d, k) having multiplicty at
least mi at qi, i = 1, . . . , h. This is a limit linear system of L2,d(m1, . . . ,mh),
which is called a (k, b)-degeneration L0 of L2,d(m1, . . . ,mh). The usual upper-
semicontinuity argument tells us that if the dimension of L0 equals the expected
dimension of L, then L is non-special.

Notice now that the two components P and F of X0 are a plane and a plane
blown-up at a point. Hence the restrictions of L0 to the two components P and
F of X0 are basically again linear systems of plane curves with general multiple
base points. Thus one is in a position to use induction in order to estimate the
dimension of L0. A basic ingredient in this computation is a transversality lemma,
which, roughly speaking, tells us that the restrictions of L0 to P and F in turn
restrict to L = P ∩ F in the most general possible way. A systematic use of
(m, b)-degenerations leads then to the following result of independent interest:

Proposition 5.6. There is a function D(m) = m2

3 +o(m) such that if the Harbourne-
Hirschowitz conjecture holds for every homogenous system L2,d(mh) with d ≤
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D(m), then the same conjecture holds for all homogenous systems of the form
L2,d(mh).

The final part of the strategy is to try to prove the Harbourne-Hirschowitz
conjecture for all homogenous systems L2,d(mh), with d ≤ D(m), i.e. with d small
with respect to m. In order to do so, one uses other (k, b)-degenerations, with other
k’s, but this does not work in all cases. For example Dixmier’s example L2,19(610)
worked out by Hirschowitz in [44] with the Horace’s method, cannot be attacked
with (k, b)-degenerations. So one has to use also ad hoc geometric arguments or
rely on the help of suitable computer programs. This is what is done in [26] in the
cases m ≤ 12.

Remark 5.7. As a concluding remark on the proof of theorem 5.4, I want to stress
that a (k, b)-degeneration can be seen, ultimately, as a way of degenerating the
set of points p1, . . . , ph by putting b of them on a line, and of letting the line
split from the curves of the linear system k times. Thus, in principle, there is
not so great a difference with the Horace’s method. However this approach seems
quite systematic and has given so far very good results. Indeed, in principle, there
is no reason why it should not work for higher values of m and in fact there
is promising work in progress with F. Cioffi, R. Miranda and F. Orecchia on the
algorithmic side mentioned a few lines above, in order to improve the bound m ≤ 12
in theorem 5.4. So far we have been able to work out a computer program which
verifies the Harbourne-Hirschowitz conjecture for L2,d(mh). We tested the program
and we have been able in this way to prove the conjecture for m ≤ 20.

I strongly believe that the method of (k, b)-degenerations can be still pushed
further, to give better and better results along these lines.

Another aspect of the results in [25, 26] to be mentioned is the full classifica-
tion of homogenous (−1)-special systems, which is rather interesting and surprising
in its own and plays an important role in the induction process described before.

First a little combinatorial analysis leads to the following:

Proposition 5.8. (Classification of homogenous (−1)-configurations) The only ho-
mogeneous linear systems L2,d(mh) which are (−1)-configurations are:

L2,1(12) : a line through 2 points

L2,2(15) : a conic through 5 points

L2,3(23) : 3 lines each through 2 of 3 points

L2,12(56) : 6 conics each through 5 of 6 points

L2,21(87) : 7 cubics each through 6 points, double at another

L2,48(178) : 8 sextics double at 7 points, triple at another .

This leads to the following:
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Theorem 5.9. (Classification of homogenous (−1)-special systems) The only ho-
mogeneous linear systems L2,d(mh) which are (−1)-special are:

L2,d(m2) with m ≤ d ≤ 2m− 2

L2,d(m3) with
3m
2

≤ d ≤ 2m− 2

L2,d(m5) with 2m ≤ d ≤ 5m− 2
2

L2,d(m6) with
12m

5
≤ d ≤ 5m− 2

2

L2,d(m7) with
21m

8
≤ d ≤ 8m− 2

3

L2,d(m8) with
48m
17

≤ d ≤ 17m− 2
6

.

As a remarkable consequence we have that the Harbourne-Hirschowitz con-
jecture for homogenous system takes the form:

Conjecture 5.10. Every homogenous system of the form L2,d(mh) with h ≥ 10 is
non-special.

It is probably this the right moment for recalling another famous conjecture
concerning singular plane curves. In [63] Nagata showed a counterexample to the
fourteenth problem of Hilbert. In his construction, he proved that if the linear
system L2,d(mk2

) is not empty for a integer k ≥ 4, then one has d > km. He
also conjectured that a similar result should hold for any, not necessarily a square,
number of points in general position, namely he fomulated the following:

Conjecture 5.11. (Nagata, 1960) L2,d(mh) is empty as soon as h ≥ 10 and d ≤√
h ·m.

It is worth pointing out the following fact:

Remark 5.12. Harbourne-Hirschowitz conjecture 4.8 or 5.10, implies Nagata’s con-
jecture 5.11. Indeed, let L := L2,d(mh), h ≥ 10, be not empty and let C be an
irreducible component of the strict transform of the general element of L2,d(mh)
on P̃2. By remark 4.10 we have C2 ≥ pa(C) − 1. On the other hand one cannot
have C2 = −1, pa(C) = 0, since, by proposition 5.8, there is no (−1)-configuration
for h ≥ 10. Thus C2 ≥ 0. Hence L2 ≥ 0, which reads d2 ≥ hm2.

Before going back to our main topic, I cannot resist indicating the following
connection of Nagata’s conjecture, hence of Harbourne-Hirschowitz conjecture,
with another interesting subject.

Remark 5.13. Let C be a curve of genus g. Curves on the product C × C are
correspondences of the curve into itself. Similarly curves on the symmetric prod-
uct C(2) are symmetric correspondences of C. A version of Petri’s problem (see
[8]) for correspondences is: describe the effective cone of the symmetric prod-
uct C(2) when C is a general curve of genus g. It is known that, if C is general of
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genus g, then NS(C(2)) � Z〈x, δ
2 〉, where x is the class of the curve and δ is the

diagonal. The structure of the effective cone of C(2) for C general of genus g is
known when g ≤ 3. Ciliberto and Kouvidakis’ paper [24] (see also [49]), suggests
the following conjecture: if g ≥ 4 there is no curve of negative self-intersection on
C(2) except the diagonal. This conjecture would imply that the effective cone of
C(2) is bounded by the line spanned by the diagonal and the line of slope − 1√

g−1 in

the (x, δ
2 )-plane, which is an open boundary line as soon as g ≥ 5. One of the re-

sults in [24] is that: Nagata’s conjecture implies Ciliberto-Kouvidakis’ conjecture.
The rather unespected connection is provided by the fact that one may degenerate
C to a rational g-nodal curve so that the curves on C(2) degenerate to suitable
plane curves.

For more information on Nagata’s conjecture and recent results on the sub-
ject, see [42, 74, 31].

Going back to the Harbourne-Hirschowitz conjecture, the following recent
results are worth to be mentioned.

Theorem 5.14. (A. Bruno [14], 1998) L = L(m1, . . . ,mh) is non-special if
virtdim(L) ≥ 0 and gL ≥ 0 and the general curve in L has ordinary mi-tuple
points at pi, i = 1, . . . , h.

This result is quite interesting, though the hypothesis about the general curve
in L is certainly too strong. The proof uses a bit of deformation theory, which
reappears here after Arbarello-Cornalba’s theorem 5.2. However, the main tool in
Bruno’s proof is the use of the moduli space of curves, of stable reduction, and
of the theory of limit linear series on reducible curves (for a general introduction
to these ideas, see Harris-Morrison’s book [43]). This is a really new idea in this
setting and may possibly give further good results in the future.

The following theorem is due to T. Mignon in his thesis [58, 59] and it is
based on the use of the Horace’s method:

Theorem 5.15. (T. Mignon, 1998) Let L = L(m1, . . . ,mh). Then:
(i) if mi ≤ 4 Harbourne-Hirschowitz conjecture 4.8 holds;
(ii) if gL ≤ 4 and virtdim(L) ≥ 0 then Harbourne-Hirschowitz conjecture 4.8

and Hirschowitz conjecture 4.9 both hold;
(iii) if mi ≤ 3, d ≥ 33, virtdim(L) ≥ 0 and gL ≥ 0 then Harbourne-Hirschowitz

conjecture 4.8 and Hirschowitz conjecture 4.9 both hold.

The interest of the next theorem, due to L. Evain [32], resides in the fact that
it is the only evidence, so far, that the Harbourne-Hirschowitz conjecture holds for
L2,d(mh) for infinitely many values of h.

Theorem 5.16. (L. Evain, 1998) L2,d(mh) is never special if h is of the form h=4k.

The proof uses a suitable version of the Horace’s method. Evain lets all the
multiple points come together in a smart way in a unique singular point which gives
independent conditions to curves of any degree. Some of these techniques go back
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to Hirschowitz [44] and to Caporaso-Harris (1996, unpublished) where they prove
the Harbourne-Hirschowitz conjecture in the homogeneous case m ≤ 6 under some
restrictive hypotheses. Using Evain’s ideas one can probably prove that L2,d(mh)
is non-special in other situations, e.g. if h = k2 + l, l ≤ 2k and either d ≤ km or
d ≥ km + m + l − 3, giving more information on Nagata’s conjecture. Also other
cases like h = 4kl2, h = 9k etc. can probably be analysed in the same way. There
is also work in progress by Ciliberto and Miranda, who are able to give a rather
easy proof of Evain’s theorem using a Z. Ran’s type of degeneration of the plane,
like for the proof of theorem 5.4. This also gives some hope of further extensions
to other values of h.

A further important application of a refined version of the Horace’s method
(what the authors call the differential Horace method, see [6]) is to get asymptotic
results confirming the Harbourne-Hirschowitz conjecture. The prototype of results
of this sort is the following theorem of Hirschowitz [45]:

Theorem 5.17. The system L2,d(m1, . . . ,mh) is non-special as soon as [ (d+3)2

4 ] >∑h
i=1

(
mi+2

2

)
.

A much deeper results is the following theorem of Alexander-Hirschowitz [6]:

Theorem 5.18. (Alexander-Hirschowitz, 1998) Given any projective, reduced va-
riety X and an ample line bundle L on it, there is a function d(m) such that if
mi < m, i = 1, . . . , h, and d > d(m) then L⊗d(m1, . . . ,mh) is non-special.

Note the independence of d(m) by h the number of points: this makes theo-
rem 5.18 stronger than theorem 5.17. More precise results about the function d(m)
in the planar case are due to other authors (see [9, 60, 39, 85]).

I will finish this section discussing the relations between the various conjec-
tures 4.1, 4.2, 4.8. While it is clear that both, the Harbourne-Hirschowitz conjec-
ture and Gimigliano’s conjecture, imply Segre’s one, it is rather surprising that
the three conjectures are essentially equivalent. This is the content of the following
theorem, whose proof will appear in a paper [22] in preparation:

Theorem 5.19. (Ciliberto-Clemens-Miranda, 2000) Segre’s conjecture 4.1 implies
both Gimigliano’s conjecture 4.2 and the Harbourne-Hirschowitz conjecture 4.8.
In particular, given a linear system L := L2,d(m1, . . . ,mh) of plane curves with
general multiple base points p1, . . . , ph, if Segre’s conjecture holds then:

(i) L is special if and only if it is (−1)-special;
(ii) if L �= ∅, then C ∈ L general has multiplicity mi at pi, i = 1, . . . , h;
(iii) if L is non-special, then either C ∈ L general is irreducible, or L is

(−1)-reducible, or L consists of a unique, may be multiple, elliptic curve,
or L is composed of a pencil of rational curves.

The surprisingly easy proof is based on standard surface theory. I want also to
mention, from the same paper [22], the following result, which goes in the direction
of Hirschowitz conjecture 4.9:
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Corollary 5.20. (Ciliberto-Clemens-Miranda, 2000) Suppose Segre’s conjecture is
true. Consider a non-special, not (−1)-reducible, linear system L :=L2,d(m1,. . .,mh)
of plane curves with general multiple base points such that the general curve C ∈ L
is reducible. Then there is a Cremona transformation sending L to one of the two
systems:

L2,d(d), d-tuples of lines through a point p

L2,3d(d9), the cubic through 9 general points, counted d-times .

The proof is a consequence of theorem 5.19 and of the following classical fact:

Lemma 5.21. (Noether’s lemma) Let L be as in the statement of corollary 5.20,
let C ∈ L general be irreducible of genus g ≤ 1. Then there is a Cremona trans-
formation sending L to one of these systems:

a linear system of lines, dim(L) ≤ 2, g = 0

L2,2, dim(L) = 5, g = 0

L2,d(d− 1), dim(L) = 2d, g = 0

L2,d(1, d− 1), dim(L) = 2d− 1, g = 0

L2,3(1h), h ≤ 9, dim(L) = 9 − h, g = 1

L2,4(22), dim(L) = 8, g = 1 .

6. Interpolation in More Variables

Little is known about the general dimensionality problem for linear systems in
Pn, n ≥ 3. That little is mostly concentrated in the following beautiful result of
Alexander-Hirschowitz which classifies the special linear systems Ln,d(2h):

Theorem 6.1. (Alexander-Hirschowitz, 1996) Ln,d(2h) is non-special unless:

n any 2 3 4 4
d 2 4 4 4 3
h 2, . . . , n 5 9 14 7 .

(9)

Remark 6.2. The statement of Alexander-Hirschowitz theorem was divined by
Bronowski in [11], but he had only a plausibility argument rather than a proof
of it. Terracini [83] instead has a proof for the case n = 3.

Almost all the special systems shown in table (9) have been met already in
examples 4.3, (i’) and (i”). The only new one is L4,3(27) whose virtual dimension
is −1 whereas it is not empty. In fact there is a unique rational normal quar-
tic curve Γ through 7 general points p1, . . . , p7 in P4. The secant variety of Γ,
i.e. the variety described by all lines meeting Γ at two points, is a hypersurface of
degree 3 and it is singular along Γ, hence it is singular at p1, . . . , p7, thus it sits
in L4,3(27). This examples was well know to Terracini [82] and it has been more
recently rediscovered by Ciliberto-Hirschowitz [23].
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The original proof of the theorem of Alexander-Hirschowitz requires the full
strengh of the Horace’s method and it is long and difficult. Indeed it occupies
a whole series of papers [1]–[5]. An easier proof has been recently provided by
K. Chandler [18]. It still uses the Horace’s method but in a much simpler way, by
subsequent specializations of part of the general double points of the linear system
to a hyperplane. Work in progress by Ciliberto and Miranda indicates that an
alternative and quite simple proof can be also obtained by using suitable Z. Ran’s
type of degenerations of Pn. In essence, this approach is not so different from
Chandler’s one, but, again, it looks more systematic and it gives some hope to
extend the analysis to higher multiplicities.

The important feature of the special systems appearing in table (9) is the
following: for each special Ln,d(2h), the general member D ∈ Ln,d(2h) is singu-
lar along a positive dimensional variety containing the general double base points
of the system Ln,d(2h). Roughly speaking the phenomenon of speciality is not
concentrated at the base points but somehow propagates in space! At least for
double base points, this observation has a quite general meaning, and goes back
to Terracini [81] (for a modern version see [23]):

Lemma 6.3. (Terracini, 1915; Ciliberto-Hirschowitz, 1991) Let X be any projective
variety, let L be a linear system on X, let p1, . . . , ph be general points of X. If
L(−

∑h
i=1 2pi) is special then every D ∈ L(−

∑h
i=1 2pi) is singular along a positive

dimensional variety containing p1, . . . , ph.

The proof of the lemma is based on an easy first order infinitesimal compu-
tation, to the effect that any first order deformation of a singular hypersurface D
which preserves the singularities of D is a hypersurface D′ containing the singular
locus of D. As already mentioned before, this computation is basically the one
needed for the proof of Arbarello-Cornalba’s theorem 5.2.

It is quite natural to conjecture that the phenomenon of propagation in space
of speciality of linear systems with multiple general base points should take place
for higher multiplicities too. This is the content of the following conjecture, which
I share with R. Miranda:

Conjecture 6.4. (Ciliberto-Miranda) Let L = Ln,d(m1, . . . ,mh) be a linear system
with multiple base points at p1, . . . , ph. If the general member D ∈ L has isolated
singularities at p1, . . . , ph, then L is non-special.

Remark 6.5. Notice that the converse of the conjecture certainly does not hold. If
L is non-special then the general member D ∈ L may very well have non isolated
singularities containing p1, . . . , ph. An example is L3,4(28), which, according to
Alexander-Hirschowitz’s theorem, is non-special, hence of dimension 2. Notice that
there is a pencil of quadrics P = L3,2(18) through the 8 base points, having a base
locus Γ which is an elliptic quartic curve. Then L3,4(28) is composed of all pairs
of elements of P and therefore the general element of L3,4(28) is singular along Γ.
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Conjecture 6.4 would be in perfect analogy with Segre’s conjecture 4.1. How-
ever one can be bolder, and try to make a conjecture which parallels Harbourne-
Hirschowitz’s one. Let us try to do it now.

Let me start with a definition. Recall, in the course of it, that a theorem of
Bellatalla-Grothendieck [10, pg. 43], asserts that any vector bundle on P1 splits
in a unique way as a direct sum of line bundles.

Definition 6.6. Let X be a smooth, projective variety of dimension n, let C be a
smooth, irreducible curve on X and let NC|X be the normal bundle of C in X. We
will say that C is a negative curve if there is a line bundle N of negative degree
and a surjective map NC|X → N .

The curve C is called a (−1)-curve of size a, with 1 ≤ a ≤ n − 1, on X if
C � P1 and NC|X � OP1(−1)⊕a ⊕ N , where N has no summands of negative
degree.

We are now ready to make our general conjecture:

Conjecture 6.7. Let X be the blow-up of Pn at general points p1, . . . , ph and let
L = Ln,d(m1, . . . ,mh) be a linear system with multiple base points at p1, . . . , ph.
Then:

(i) the only negative curves on X are (−1)-curves;
(ii) L is special if and only if there is a (−1)-curve C on X corresponding to a

curve Γ on Pn containing p1, . . . , ph such that the general member D ∈ L
is singular along Γ;

(iii) if L is special, let B be the component of the base locus of L containing Γ
according to Bertini’s theorem. Then the codimension of B in Pn is equal
to the size of C and B appears multiply in the base locus scheme of L.

Remark 6.8. Of course, the above conjecture concides with conjecture 4.8 for di-
mension n = 2 (see also remark 4.10 for part (i) of the conjecture).

As a general warning, I should stress that there is not too much evidence for
conjecture 6.7, to the extent that I do not even know whether it is true for general
multiple double points. In particular the case L4,4(214) remains rather difficult to
attack, whereas in the other cases in table (9) the conjecture holds.

For instance, in the case L3,4(27), the rational quartic curve Γ through the
7 double base points p1, . . . , p7, corresponds to a curve C � P1 on the blow-up of
P4 at p1, . . . , p7, whose normal bundle is OP1(−1)⊕3, hence C is a (−1)-curve of
size 3. This fits with conjecture 6.7.

The other case in table (9) is L3,4(29) which consists of the unique quadric
B ∈ L3,2(19) counted twice. On B there is a unique rational quintic curve Γ through
the nine base points, which corresponds to a curve C on the blow-up X = P̃3. Since
the normal bundle to Γ � P1 is OP1(8) ⊕ OP1(10), then the normal bundle to C
in X is OP1(−1)⊕OP1(1). Hence C is a (−1)-curve of size 1 on X, which again
fits with the conjecture.

It goes without saying that, at the present moment, I have no idea about the
possible relations between the two conjectures 6.4 and 6.7 above. Another related
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interesting question would be: describe the set of (−1)-curves on the blow-up X
of Pn at general points p1, . . . , ph. If n = 2, for instance, it is known that this set
is finite if and only if n ≤ 8 and its behaviour under the action of the so-called
Kantor group is known also in the infinite case n ≥ 9 (see [30]). Is there any
extension of this to the case n ≥ 3?

7. The Waring’s Problem and Defective Varieties

The birthplace of the Waring’s problem is number theory. It can be stated as
follows:

Problem 7.1. (Waring’s problem) Given positive integers d, h, may we write any
positive integer as a sum of h non-negative d-th powers?

One of the first instances of this problem is the famous Gauss’ four squares
theorem to the effect that: every positive integer is a sum of 4 squares. A theorem
which is sharp, inasmuch as there are integers, like 7, which cannot be written as
a sum of 3 squares.

I will not be interested here in the original, number theoretic problem 7.1,
but rather in the following transposition of it to the realm of polynomials:

Problem 7.2. (Waring’s problems for forms) Given positive integers d, h, n, may
we write any homogeneous polinomial f(x0, . . . , xn) of degree d as a sum of h
d-th powers of linear forms li(x0, . . . , xn), i = 1, . . . , h, i.e. as f(x0, . . . , xn) =∑h

i=1 li(x0, . . . , xn)d?

The relations of this problem with the general dimensionality problem intro-
duced in §3 will be clear in a while, once we give a geometric interpretation of
it based on secant varieties and Terracini’s lemma, ideas which have been devel-
oped by the classical Italian school of algebraic geometry. One word of warning
before doing that: an equivalent interpretation can be given in a slightly different
way using other concepts like differential operators and inverse systems. This ap-
proach, classically developed by Macaulay [56], has been in recent times taken up
by various authors, staring with Iarrobino [46] and [47]. Via the classical and well
known notion of apolarity, the two approachs are basically equivalent, so that I
feel free of presenting here only the first one, referring the reader to [46] or to the
nice expository paper [61] for the other.

First I recall a basic definition:

Definition 7.3. Let X ⊆ PN be an irreducible, non-degenerate projective variety of
dimension n and let k be a positive integer. Take k+1 independent points p0, . . . , pk

of X. The span 〈p0, . . . , pk〉 is a subspace of PN of dimension k which is called
a (k + 1)-secant Pk of X. By Seck(X) we denote the closure of the union of all
(k + 1)-secant Pk’s of X. This is an irreducible algebraic variety which is called
the k-th secant variety of X.
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A basic parameter count shows that:

dim(Seck(X)) ≤ min{(n + 1)(k + 1) − 1, N} (10)

the right hand side of (10) is the expected dimension of Seck(X). If the strict
inequality holds in (10), then X is said to be k-defective, and its k-defect is
δk(X) := min{(n + 1)(k + 1) − 1, N} − dim(Seck(X)).

Let now P := PNn,d be the projective space P(C[x0, . . . , xn]d) associated to
the vector space C[x0, . . . , xn]d of all complex homogeneous polynomial of degree d
in the variables x0, . . . , xn. Recall that Nn,d = ( d+n

n )−1. A remarkable subvariety
of P is the so called dual d-th Veronese of Pn, namely the set Vn,d of all d-th
powers of linear forms in x0, . . . , xn. Of course f(x0, . . . , xn) ∈ C[x0, . . . , xn]d is
a sum of h d-th powers of linear forms if and only if [f ] ∈ P is contained in a
h-secant Ph−1 to Vn,d. Thus, given the positive integers d, h, n, if the Waring’s
problem has an affirmative answer for all forms f(x0, . . . , xn) ∈ C[x0, . . . , xn]d
then Sech−1(Vn,d) = PNn,d , which implies that h(n + 1) − 1 ≥ Nn,d, i.e. one has
h ≥ � 1

n+1 · ( d+n
n ) .

The main question is then: does the converse hold? It turns out that the
answer is provided by Alexander-Hirschowitz’s theorem 6.1 In order to explain
why this is the case, we need another bit of geometric information, namely the
following result (see [81, 27]) which is the basic tool for understanding defective
varieties:

Lemma 7.4. (Terracini’s lemma) Let X ⊆ PN be an irreducible, non-degenerate
projective variety of dimension n and let k ≤ N be a positive integer. Take k +
1 general points p0, . . . , pk of X and let p ∈ 〈p0, . . . , pk〉 be a general point in
Seck(X). Then the tangent space TSeck(X),p to Seck(X) at p is given by TSeck(X),p =
〈∪k

i=0TX,pi〉.
Hence, assume that h ≥ � 1

n+1 · ( d+n
n ) and that Waring’s problem has no

solution for f(x0, . . . , xn) ∈ C[x0, . . . , xn]d general. Then Sech−1(Vn,d) is not
equal to PNn,d and therefore, for p1, . . . , ph ∈ Vn,d general, one has that the
subspace 〈∪h

i=1TVn,d,pi
〉 must be contained in a hyperplane of PNn,d .

To connect all this with the general dimensionality problem and Alexander-
Hirschowitz theorem, dualize and look at Vn,d in PNn,d as Pn embedded via the
complete linear system Ln,d. Thus a hyperplane H in PNn,d cuts out on Vn,d a
divisor whose pull-back to Pn is hypersurface DH of degree d, i.e. a member of Ln,d.
If p is a point in Vn,d, we abuse notation and denote by p also the corresponding
point in Pn. The hyperplane H is tangent to Vn,d at p, i.e. it contains TVn,d,p, if
and only if the corresponding hypersurface DH is singular at p.

In conclusion, if Waring’s problem has no solution for a general f(x0, . . ., xn)∈
C[x0, . . . , xn]d, then for p1, . . . , ph ∈ Pn general points, there is a hypersur-
face D ∈ Ln,d singular at p1, . . . , ph. Since h(n + 1) − 1 ≥ Nn,d is equivalent
to virtdim(Ln,d(2h)) ≤ −1, we see that the cases in which Waring’s problem has
no solution for f(x0, . . . , xn) ∈ C[x0, . . . , xn]d general and h(n + 1) − 1 ≥ Nn,d

are exactly those listed in table (9) from Alexander-Hirschowitz theorem 6.1.
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Remark 7.5. The above cases of failure of a positive answer to Waring’s problem
were well known to the old geometers and invariant theorists. Besides the case of
quadrics, which is trivial, the case of plane quartics was known to Clebsch (see
the citation in [83]), who proved that in that case the sum of 6, instead of 5, as
expected, fourtuple powers of linear forms is needed to obtain a general form of
degree 4 in 3 variables. The remaining three cases where known to Palatini [69]
and Terracini [83], who also proved that one more summand than expected is needed
to represent a general form in each of the cases in question.

In the old times an interesting extension of the Waring’s problem has also
been considered. It goes back to Darboux [29], Reye [73], London [52], Palatini [65],
Bronowski [12], Terracini [82] and is the following:

Problem 7.6. (Extended Waring’s problem) Given positive integers d, h, n, s, may
we write any s homogeneous polinomial fj(x0, . . . , xn), j = 1, . . . , s, of degree d
as linear combinations of the same h d-th powers of linear forms li(x0, . . . , xn),
i = 1, . . . , h?

This leads right away to the following quite intriguing geometric problem:

Problem 7.7. What is the dimension of the variety Secl,k(X) described by all Pl’s
contained in (k + 1)-secant Pk’s to a variety X of dimension n in PN?

The expected dimension of Secl,k(X), which is contained in the grassmannian
G(l, N), is min{(l + 1)(N − l), (k + 1)n+ (l + 1)(k− l)}, but its actual dimension
may be smaller. Thus a refined, grassmannian version of the concept of defect
arises. Unfortunately there is no Terracini type lemma which helps in this situation.
However there is recent interesting work of Chiantini-Coppens [19] on the case n =
2, N = 5, l = 1, k = 2 for problem 7.7. It should also be noticed that Terracini
claims in [82] that for n = s = 2 he has a complete solution to problem 7.6: the
only exception to the expected answer is for d = 3, i.e. the lines contained in a
5-secant P4 to V2,3 ⊂ P9 are not all the lines of P9 as a parameter count suggests.

Like the original Waring’s problem is related to the Alexander-Hirschowitz’s
theorem, the extended Waring’s problem 7.6 might lead to interesting extensions
of the Alexander-Hirschowitz’s theorem. I believe this is an open, promising field
of research.

In the same circle of ideas presented in this section, one is lead in a natural
way to the problem of the classification of defective varieties, which thus appears
as another geometric counterpart of the general dimensionality problem introduced
in §3. This is a classical, basic question concerning the extrinsic geometry of pro-
jective varieties, which has also applications to other branches of mathematics. For
instance, computation of defects of Segre varieties, i.e. the products of projective
spaces, is related to the linear algebra problem of determining the rank of a general
tensor, which again is a relevant question in numerical analysis (see [17, 33, 51]
and [80])

Among the main tools here there are the two Terracini’s lemmas 6.3 and 7.4.
It is not possible to enter now in too many details, but, before finishing, I will
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briefly recall, without any pretense of being exhaustive, some of the main results
on the subject.

As in the general dimensionality problem, curves are never defective. Sur-
faces instead, can be defective. The subject of defective surfaces has been consid-
ered classically by Palatini [67] and [68], whose classification theorem contained
a serious gap, and Terracini [84], who completed Palatini’s classification (see also
Scorza’s [76] and Bronowski’s [13] papers on the subject). Both Palatini and Ter-
racini’s papers are quite obscure and difficult to read. In more recent times Palatini-
Terracini’s classification of defective surfaces has been reconsidered, rediscovered
and worked out again by M. Dale [28].

As for higher dimensional defective varieties, we are rather far away from a
classification. In Zak’s book [86] one finds several general properties. In particular a
smooth, irreducible, non-degenerate, 1-defective variety X ⊂ PN of dimension n is
such that N + 1 ≤

(
n+1

2

)
and if the equality holds then X = Vn,2 is the Veronese

variety of quadrics of Pn in which case the defect is 1 (see [86, Theorem 2.1,
pg. 126]). Zak has similar, equally beautiful, theorems for 1-defective varieties
with higher defect (see [86, Chapter VI]).

A weaker concept than the one of a k-defective variety, is the concept of
a k-weakly defective variety. This is a variety X ⊂ PN such that the general
hyperplane which is tangent at k + 1 general points p0, . . . , pk, is tangent along
a positive dimensional variety contanining p0, . . . , pk. Recalling lemma 6.3, it is
clear that a k-defective variety is also k-weakly defective. The converse does not
hold in general. It turns out that the classification of weakly defective varieties
of dimension smaller than n matters in the classification of defective varieties of
dimension n.

A full classification of weakly defective surfaces, which extends previous par-
tial results by Terracini [84], has been recently obtained by Chiantini-Ciliberto [20].
This can be also seen as a wide extension of Arbarello-Cornalba’s theorem 5.2. In
addition this gives some hope for the complete classification of defective three-
folds. This is a subject which has classically been studied by Scorza [75], who
claims to have a classification of all 1-defective 3-folds. He also studied defective
4-fold in [77]. In more recent times the subject has been reconsidered by other
authors, e.g. Zak [86], Fujita-Roberts [36] and Fujita [35], who essentially con-
sider the case of smooth threefolds. For any threefold, without any smoothness
assumption, Ciliberto-Chiantini [21] have reworked Scorza’s classification of 1-de-
fective threefolds. Their approach, easier and faster than Scorza’s original one, is
essentially based on a refined version of lemma 6.3. The result is the following:

Theorem 7.8. An irreducible, non-degenerate, projective 3-fold X ∈ PN is 1-de-
fective if and only if it is of one of the following types:

(i) X is a cone;
(ii) X sits in a 4-dimensional cone over a curve;
(iii) N = 7 and X is contained in a 4-dimensional cone over the Veronese

surface V2,2 in P5;
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(iv) X is the 2-Veronese embedding V3,3 of P3 in P9 or a projection of it in
P8;

(v) N = 7 and X is a hyperplane section of the Segre embedding of P2 × P2

in P8.

Work in progress by Ciliberto-Chiantini indicates that along the same lines
one may possibly obtain the full classification of defective threefolds.
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uscripta Math., 50 (1985), 337–388.

[45] A. Hirschowitz, Une conjecture pour la cohomologie des diviseurs sur les surfaces
rationelles génériques , J. Reine Angew. Math., 397 (1989), 208–213.

[46] A. Iarrobino, The inverse system of a symbolic power II: the Waring problem for
forms, J. Algebra, 174 (1995) 1091–1110.

[47] A. Iarrobino and V. Kanev, Power sums, Gorestein algebras and determinantal loci,
Lecture Notes in Math., Springer-Verlag 1721 (1999).

[48] J. Kollár, Vanishing theorems for cohomology groups, Proceedings Symp. Pure Math.,
46 (1) (1987), 233–243.

[49] A. Kouvidakis, Divisors on symmetric products of curves, Transactions Amer. Math.
Soc., 337 (1) (1993), 117–128.

[50] A. Laface, On the dimension of linear systems with fixed base points of given multi-
plicity, Tesi di Dottorato, Univ. di Milano (1999).

[51] T. Lickteig, Typical tensorial rank, Linear algegra and its applications, 69 (1985),
95–120.

[52] F. London, Ueber die Polarfiguren der ebenen Kurven dritter Ordnung, Math. Ann.,
36 (1890).

[53] G. Lorentz and R. Lorentz, Solvability problems of bivariate interpolation. I., Con-
structive approximation, 2 (1986), 153–170.

[54] G. Lorentz and R. Lorentz, Solvability problems of bivariate interpolation. II: appli-
cations, Approximation Theory and applications, 3, (1987), 79–97.

[55] G. Lorentz and R. Lorentz, Bivariate Hermite interpolation and applications to al-
gebraic geometry, J. Num. Math., 57, 6/7 (1990), 669–680.

[56] F. S. H. Macaulay, The algebraic theory of modular systems, Cambridge Univ. Press,
Crambridge, UK (1916).

[57] D. McDuff and L. Polterovich, Symplectic packings and algebraic geometry, Inven-
tiones Math., 115 (1994), 405–429.
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