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Abstract. We consider a quantum system of non-interacting fermions at tem-
perature T', in the framework of linear-response theory. We show that semi-
classical theory is an appropriate framework for describing some of their ther-
modynamic properties, in particular through exact expansions in A (Planck
constant) of their dynamical susceptibilities. We show how the orbits of the
classical motion in phase space manifest themselves in these expansions, in
the regime where T is of order h.

Consider a system of N non-interacting fermions confined by an external
potential, and in contact with an exterior reservoir at temperature 7. Assume
that a time-varying external perturbation drives the system out, but near, its
equilibrium state. The response of this quantum system to the external time-
dependent perturbation is a subject of high physical interest, and which can be
investigated experimentally, in particular the so-called dynamical susceptibility. A
complete rigorous analysis of this problem is still lacking, although recent progress
is being made in the understanding of non-equilibrium statistical mechanics, and
its link with the underlying chaotic dynamics [10, 11, 17, 18, 19].

A semi-empirical route which has been proposed and followed (see classical
textbooks [14, 13]) consists, for small perturbations, to investigate the response
function “to first order in the perturbation”, i.e. the so-called “linear response
theory”. This semi-empirical route is being given a firmer foundation, in classical
as well as quantum statistical mechanics, in terms of hyperbolicity properties of
the dynamics, and the so-called KMS states [18, 19].

Here we are not following this line of research and do not address the ques-
tion of validity of the linear response theory. We rederive, formally, the first order
response function for the quantum fermionic system under study, i.e. the so-called
“generalized Kubo formula” (see also [2]) and investigate semiclassical expansions
for it, assuming suitable “chaoticity assumptions” on the one-body classical under-
lying dynamics. These semiclassical expansions are developed in a similar spirit
as previous studies on the “semiclassical magnetic response for non-interacting
electrons” [16, 1, 4, 9, 7, 12, 15], i.e. we exhibit a low temperature regime where
the closed classical orbits of one-particle motion manifest themselves as oscillating
corrections to the response function.
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Consider a system of N non-interacting fermions, living in R™, subject to a
one-body Hamiltonian H, which is the Weyl quantization of a classical Hamilton-
ian H(gq,p) of the form

2
H(g,p) = 2p—m + Vi(g) (H.1)
with V' € C*°(R™) such that
V(g) > co(1+ |q|*)*/? some s,¢o>0. (H.2)

Under these assumptions, H is self-adjoint in L2 (R™), and its spectrum is pure
point and contained in [0, 00). Furthermore, if p is the Fermi level at tempera-
ture T, and f the Fermi-Dirac distribution

f(o) = folw—p) = (14 X)) 1)

where
B =1/kT (k being the Boltzmann constant) (2)
Peq = f(ﬁ) (3)

is a trace-class operator in L?(R™), which describes the fermionic equilibrium state,
and

N =Tr f(H). (4)

Now assume that a one-body perturbation A is switched adiabatically. The one-
body perturbed Hamiltonian takes the form

H(t)= H + AF(t) (5)

where A is self-adjoint in L2(R"™) (being the Weyl quantization of a symbol A(qg, p)
that we shall make precise later), and

F(t) = {e”t t<O0

1 t>0.

(In the usual Kubo formula for conductivity, A s simply Z - E where T is the

position operator in R, and E an exterior electric field.) In the “linear response

theory” we try to solve the following problem: find a “density matrix” p(t) (i.e. a

trace-class operator in L?(R™)), which, to first order in the perturbation solves:
dp

ihe = [H(1).p) (6)

with “initial condition” at ¢ = —oo being

im p(t) = peg -



Semiclassical Results 3

Let V(t,tp) be the unitary evolution operator induced by H(t) (with Vit tg) =
Identity), and
U(t) =: e~ tH/n, (7)

We can show that p(t) solution of (6) is

plt) = lim V(t to)peq V(to,1). (8)
From (5) it follows that:
1/t ~
V(t,to) =U(t —to) + ﬁ/ dt' Ut —t") F(t') AV(t' 1) (9)
to

and the linear response density matrix pr(¢) is obtained from V(¢,%0)peq V (to,t)
by
— retaining only the lowest order contributions with respect to perturba-

tion A
— letting tg — —o0.

But using (9) we easily see that, up to highest orders in A:
V(£ to)peq V(Fort) = peg + %/j d' U(t —t') F(t)[A, peg U — 1) (10)
so that, by the above prescription:
put) = puat 5 [ ; dt' F() Ut — ) A, pegU(E —1). (11)

Let B be a suitable self-adjoint operator that we want to “measure” in the sta-
te pr(t), as compared to its mean-value in the stationary state p. Thus we consider

J(t) = Tr [Blpr(t) - pes)] (12)

which, according to (11) can be rewritten as

J(t) = —% /_ o R 1 {BUG ) A, pe U — 1)) (13)

(the norm convergence of the integral at ¢ = —oo is ensured by the function F(¢'),
which allows to insert the trace operation inside the integral). If B is the velocity
operator z[ﬁ, z], and A= Z-E, J(t) is the quantum current at time ¢ (in the linear
response {ramework).

(13) is therefore of the form
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where ®(t) is by definition the “dynamical susceptibility” in the linear response
framework. It is given by

a(t) = - T {BO)lpe, A}

= %Tr {peq[é(t)vg]}

where we have used the commutativity of the Trace, and we employ the usual
notation for Heisenberg observables at time ¢ evolved by the (unperturbed) Hamil-
tonian H:

(15)

B(t) = U(=t)BU(t) = *A/h Be=itH/n (16)

Let now take the Fourier transform, in the distributional sense, of ®(¢): this gives
the so-called generalized susceptibility:

+oo
x(w) = / o(t) e dt (17)

which is the quantity we shall study now, in the particular case where A=B.
Let (Ey)nen and (¢n)nen denote respectively the eigenvalues and eigenstates
of the one-particle hamiltonian H. It follows from (15)—(17) that

X(w) = Z [(@n. A\Sﬁm>|2 §(hw + Ey — En) - [f(En) — f(Em)]. (18)
n,meN

Now, using the analyticity of f:

F(E) = f(E + hw) = ;; o (E)

so that (18) is rewritten as

=S Al S+ B, — B, S S k, LB )
k=1

n,meN

where we use the notation

After a careful justification of the commutation of various infinite summations,
(19) yields:

= O fam 98) 3 (A P58 — B)5 (e + B B) (21
k=1

n,meN

and we therefore have to study, semiclassically, the behaviour of distributions in
E and w of the form:

C(E,w) =Y |Anm|* 8(E — Ey) 6(hw + E, — Ep,) (22)

n,m
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acting on suitable test functions, and in particular on derivatives of the Fermi-
Dirac distribution f. However in all that follows, like in [7], we are only able to
replace f, by f, * p; for any fixed 7 as large as we want, where

o= ph (23)

is a fixed parameter which has the dimension of time and p, is the Fourier trans-
form of a C§° function p,:

p-(t) = p(t/T)

o =1 st
PPN =0 it > 2

where

[ p(t)dt = 1.
Let g be a C* function such that its Fourier transform g has compact support
contained in [T, T, for some T > 0. Then denote:

By = (£ 45, ) (B) (24)

(if 7 — o0, £ (%) would be simply kP derivative of the Fermi-Dirac function k >

1)
@@ (S )= 3 At (B2 o(B) )

n,meN

The RHS of (25) can be rewritten, using Fourier transform, as

1 [T = , E,—pu
dt ~ t E Anm 2 zt(En—Em)/hg n
27_(_ B g( ) [l I | € h

1t f 20

= Lm dt §(t) {TrA(t)Ae <T“>} .

Now since g is of compact support, and so is ( (Fourier transform of £) due to

its definition (24), we can adapt our treatment of semiclassical trace formulae using

coherent state decomposition [6] to this situation. Here the quantum observable

appearing inside the Trace is the product of observable A with its Heisenberg

time translated A(t) given by (16). We thus have also to make use of Egorov’s

theorem [8] to recognize, as a dominant classical symbol of A(t)A simply (A o
¢¢)(2)A(z) where z = (z,£) € R™ x R™ is the classical phase-space point.

We therefore define the various “classical objects” that will manifest them-

selves, in the limit as i — 0, in the semiclassical expansion of (26).
First of all, the classical flow induced by the classical Hamiltonian H is ¢y,
since H does not depend explicitly on time, the classical flow lives on the energy
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surface
>, = {r= @ e R Hw,6) = i}

and we denote by do, the Liouville measure living on ) u- We call v a generic
periodic orbit living on Z#, ie.

v={2:3T,>0: ¢, (2) =z} .

T, is therefore the classical period of orbit <, which can be a repetition of a
primitive orbit v*. The classical action along the closed orbit v is called S, o,
is the corresponding Maslov index, and P, the corresponding Poincaré map. (See

[6].)
Cou(t) =: / do,(2) A(z) Ao éi(2) (27)
>

m

is the classical autocorrelation of A on the energy surface at the Fermi level p

T, «
o) = [ ds A06u() Aodas(a) (28)

is the classical autocorrelation of A along the closed primitive orbit ~*. It is inde-
pendent of the point z of v* where we start the integration, and it is of course 7~
periodic, as a function of ¢. Therefore it can be expanded in Fourier series in the
following form:

Cpr(t) =D eyep T (29)
pEZ

Now we state the result

Theorem 1. Assume (HI-2) together with

(H.3) p is non-critical for H.

(H.4) On Zu’ the set (T',)r of classical periodic orbits v with period smaller
than 7 is such that the corresponding Poincaré maps P, do not have eigen-
value 1.

Then, as i — 0, (26) has a complete expansion in I of the following form:

/dt g(t) Q7™ 2(0) Cu(t) + >R N(4)

Jj=1
1Sy /htio /2 .
[ —— t B! di (¢t
T Z |det(1 — P,)[1/2 U(Ty) cy( )"’Z (4,1)

YET ) Jj=20

where \j(-,t) and dJ(-,t) are distributions supported respectively by {0} and {T}.
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The proof of this theorem will be given elsewhere [5].

From this theorem, we can deduce an important result for y(w), as a dis-
tribution, or rather to x,(w), a “regularized” version of it where the Fermi-Dirac
function f is replaced by f * p; /. This yields the following result:

Corollary 2. Assume (HI-4) together with (H.5) and (H.6) below:

(H.5) the classical dynamics on Zu 18 sufficiently mizing, in the sense that

+oo
/ dt|C,,(1)] < oo

— 00

(assuming A has been adjusted so that (A), =0).
+oo
(H.6) > eyl < oo (anyy so that |T,| < 7).
k=—oc0
Then x-(w) admits, as a distribution, a complete asymptotic expansion of the
form:

_whl—n/dtc ZWt—‘rZhj n

j=2

etS v/ h+ioym/2 7TT,Y/O' ok
+w 0 R
Z A= P s aly /o Z Crk ( )+Z Vi

k=— j>1

where p; and v; are distributions.
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