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Abstract. The discrete wavelet transform (DWT) approximately decorrelates
a fractionally differenced (FD) process, allowing for simple maximum like-
lihood estimation of the FD process parameters using the wavelet coeffi-
cients. In previous work we have established limit theorems for the parameters
based on a model where scales are uncorrelated and two simple models for
within-scale correlation, namely, white noise and a first order autoregressive
(AR) process. Here we assess the adequacy of these simple models for handling
between- and within-scale correlations. We compare the performance of these
simple models for estimating the FD process parameters against procedures
that use longer wavelet filters (to reduce between-scale correlations) and use
AR models of higher order (to more precisely model within-scale correlations).

1. Introduction

Time series collected in areas such as atmospheric sciences, geosciences and hydrol-
ogy often exhibit a long range dependence, i.e., slowly decaying auto-correlations
or, equivalently, a spectral density function (SDF) that is proportional to |f |α at
low frequencies for some α < 0. A convenient model for such series is a fractionally
differenced (FD) process [5, 6]. Specifically, for d ∈ [− 1

2 , 1
2 ) and σ2

ε > 0, {Xt}t∈Z
is an FD(d, σ2

ε ) process if its SDF is given by

SX(f) = σ2
ε |2 sin(πf)|−2d f ∈ [− 1

2 , 1
2 ] . (1)

d is known as the difference parameter and σ2
ε is the innovation variance. When

d = 0, {Xt} is a white noise (i.e. uncorrelated) process. Extending this model by
letting d ≥ 1

2 in equation (1), we obtain a class of non-stationary FD processes
that are stationary if we difference bd + 1

2c times.
Given a time series that is a realisation of a portion {Xt}N−1

t=0 of a stationary
FD process, McCoy and Walden [9] extended earlier work by Wornell [13] to obtain
effective approximate maximum likelihood (ML) estimators of the FD parameters
d and σ2

ε . The basis of their scheme was to formulate the likelihood function in
terms of the discrete wavelet transform (DWT) of {Xt} by making use of the



2 P. F. Craigmile, D. B. Percival and P. Guttorp

assumption that the DWT of a Gaussian FD process yields approximately inde-
pendent deviates. In previous work [10, 3], we extended the McCoy and Walden
estimator to handle both stationary and non-stationary FD processes observed in
the presence of a trend; i.e., the observed time series is taken to be a realisation of

Yt = Tt + Xt t = 0, . . . , N − 1 . (2)

Here {Tt} is a deterministic polynomial trend of order K, and {Xt} is a realisa-
tion of a Gaussian FD(d, σ2

ε ) process. As with the McCoy and Walden scheme, the
key assumption behind this extension is the independence of certain wavelet co-
efficients across and between scales. In this paper we re-examine this assumption.
After a review of background material in section 2, we argue in section 3 that the
correlation between scales can be made arbitrarily small by increasing the length
of the wavelet filter. This increase in filter length, however, does not help reduce
the correlation within scales, so we consider in section 4 modelling this correlation
using autoregressive (AR) models whose coefficients are scale-dependent but are
solely determined by d. We conclude that a first order AR model is adequate for
modelling the correlation structure within scales.

2. Definitions and Background on Wavelet Coefficients

For an even integer L, let {hl}L−1
l=0 denote a Daubechies [4] wavelet filter. By

definition this filter has squared gain function

H1,L(f) ≡ 2 sinL(πf)
∑L/2−1

l=0

(L/2−1+l
l

)

cos2l(πf). (3)

Associated with the wavelet filter we define the scaling filter by gl ≡ (−1)l+1hL−1−l

(with a squared gain function of G1,L(f) = H1,L( 1
2 − f)). Assume for convenience

that N = 2J for some integer J , and let Nj ≡ N2−j . The level j wavelet coefficients
can be computed using the level j wavelet filter {hj,l}

Lj−1
l=0 :

Wj,k =
∑Lj−1

l=0 hj,lX2j(k+1)−l−l mod Nj−1
j = 1, . . . , J, k = 0, . . . , Nj − 1

where Lj ≡ (2j − 1)(L− 1) + 1 and {hj,l} has squared gain function

Hj,L(f) ≡ H1,L(2j−1f)
∏j−2

k=0 G1,L(2kf) . (4)

These coefficients are associated with changes in averages on scale τj ≡ 2j−1

and with times spaced λj ≡ 2j units apart. In practice we use the pyramid al-
gorithm (Mallat [8]) to calculate these DWT coefficients efficiently (see Percival
and Walden [11]). Since the DWT handles filtering operations periodically, the first
Bj ≡ d(L−2)(1−2−j)e wavelet coefficients are explicitly affected by the circularity
assumption. We call these coefficients the boundary dependent (BD) coefficients.
We call the remaining Mj ≡ Nj − Bj which are unaffected by boundaries the
boundary independent (BI) coefficients. Let M ≡

∑J
j=1 Mj .
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In Craigmile et al. [3] we noted that the BI wavelet coefficients are unaffected
by the polynomial trend if K ≤ L

2 , and thus we can estimate the parameters of
{Xt} via Gaussian likelihood using these coefficients (if L

2 ≥ bd− 1
2c). We further

assumed that the BI wavelet coefficients are uncorrelated between scales, and either
a white noise or AR(1) model was a good fit for these coefficients on each level.
We now investigate this further.

3. Between-Scale Decorrelation

Let (Ww)j,k denote the BI wavelet coefficients (j = 1, . . . , J, k = 0, . . . , Mj). From
chapter 9 of Percival and Walden [11] we have that

Cov((Ww)j,k, (Ww)j′,k′) = 21−2dσ2
ε

∫ 1
2

0 cos(2πf(2j(k + 1)− 2j′(k′ + 1)))

×Hj,L(f)H∗
j′,L(f) sin−2d(πf) df ,

where Hj,L(f) is the Fourier transform of {hj,l} and denotes ∗ the complex conju-
gation operator. An extension of Theorem 3.2 in Craigmile et al. [3] shows that this
integral is finite for d < L+1

2 . Hj,L(f) corresponds to an approximate band-pass
filter with pass-band [2−(j+1), 2−j ] (see, e.g., Daubechies [4]). This approximate
filter has a squared gain function given by H1,bp(f) ≡ 2j1[2−(j+1),2−j ](f). Lai [7]
defines the following squared gain function

H1,I(f) ≡











0, f ∈ [0, 1
4 ) ;

1, f = 1
4 ;

2, f ∈ ( 1
4 , 1

2 ] ,

and shows that H1,L(f) → H1,I(f) as L →∞ for all f ∈ [0, 1
2 ]. Thus if we define

Hj,I(f) ≡ H1,I(2j−1f)
∏j−2

k=0H1,I( 1
2−2kf), we have Hj,L(f) → Hj,I(f) as L →∞

for all f ∈ [0, 1
2 ] and j ≥ 1. Hj,I(f) differs from H1,bp(f) on a countable set of

points and thus an integral involving either of these two squared gain functions
will be the same. By the spectral representation theorem we can therefore see that
the BI wavelet coefficients at different scales are asymptotically uncorrelated for
large L, since the pass-bands of these squared gain functions do not intersect. (see
Craigmile [2] for additional details).

Lai [7] also proves that convergence of H1,L(f) is monotone in the following
sense. For all even L, H1,L( 1

4 ) = 1,

H1,L(f) ≥ H1,L+2(f) ≥ H1,I(f) , f ∈ [0, 1
4 ) ;

H1,L(f) ≤ H1,L+2(f) ≤ H1,I(f) , f ∈ ( 1
4 , 1

2 ] .

For j > 1 this translates into

Hj,L(f) ≥ Hj,L+2(f) ≥ Hj,I(f) , f ∈ [2−j , 1
2 ]

meaning that the side lobe behaviour ofHj,L(f) reduces with increasing L. Also the
decorrelation between higher and lower scales is rapid with increasing L because
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Figure 1. Squared gain functions for various filter lengths, L,
and j = 1, . . . , 4 (L = ∞ denotes the ideal wavelet filter). For
example, with j = 3 the side-lobes for f > 1

4 decrease with in-
creasing L.

there is less intersection of the squared gain functions. Figure 1 illustrates this
decay for a number of wavelet filter lengths and j = 1, . . . , 4.

See Tewfik and Kim [12] for a related discussion on the correlation structure
of a DWT of fractional Brownian motion.

4. An AR(p) Wavelet Model

We now consider the within-scale dependence. On level j we can write the lag τ
auto-covariance as

σ2
ε σj,τ (d) ≡

∫ 1
2

− 1
2

ei2πfτSj(f) df , (5)

where we define the SDF of the level j BI wavelet coefficients by

Sj(f) ≡ σ2
ε 2−j−2d ∑2j−1

k=0 Hj,L(2−j(f + k)) sin−2d(2−j(f + k)) . (6)
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Figure 2. Going from left to right, top to bottom, plots show
the SDF of a FD(0.25,1) process (dotted vertical lines indicate the
approximate bandpasses for the first five wavelet levels), the SDF
of the BI wavelet coefficients with L = 8, and the SDF assumed
in the white noise and AR(p) models for p = 1, 2, 5.

In Craigmile et al. [3] we showed that, if we assume that the BI wavelet coefficients
are either a portion of a white noise or AR(1) process, then the estimate of d is
asymptotically normal, and the estimate of σ2

ε follows a scaled chi-squared distri-
bution. Both estimates are consistent. Since we can approximate any continuous
SDF by an AR(p) SDF for large enough p (Anderson [1]), a better approximation
is given by supposing that the BI wavelet coefficients {(Ww)j,k : k = 0, . . . , Mj−1}
are a portion of an AR(p) process, i.e.,

(Ww)j,k =
∑p

r=1 φr,p(j, d)(Ww)j,k−r + Zj,k (k = p, . . . , Mj − 1) (7)

where {Zj,k ∼ i.i.d. N(0, η(j, d)σ2
ε ) : j = 1 . . . J, k = 0, . . . , Mj − 1}. Figure 2

illustrates this for an FD(0.25,1) process analysed using an wavelet filter with
L = 8. The top left panel shows the SDF of the process along with the approximate
band-passes that correspond to the first five wavelet levels. The top middle panel
shows the actual SDF of the BI wavelet coefficients (equation 6) and the right-hand
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panel is the SDF if we assume that that the BI coefficients are uncorrelated per
each wavelet level. If we assume the AR(p) model as above for p = 1, 2, 5 we have
an SDF given in the lower panels of figure 2. The SDF looks better for higher p, but
not by too much (the AR(1) approximation is very good as it stands). We now
employ the Levinson-Durbin (LD) recursions. Let φ1,1(j, d) ≡ σ1(j, d)/σ0(j, d),
P0(j, d) ≡ σ0(j, d) and P1(j, d) ≡ σ0(j, d)(1− φ2

1,1(j, d)). Then for s > 1

φs,s(j, d) = P−1
s−1(j, d)

(

σs(j, d)−
∑s−1

r=1 φr,s−1(j, d) σs−r(j, d)
)

;

φr,s(j, d) = φr,s−1(j, d)− φs,s(j, d)φs−r,s−1(j, d) (r = 1, . . . , s− 1) ;

Ps(j, d) = σ0(j, d)−
∑s

r=1 φr,s(j, d)σr(j, d) = Ps−1(j, d)(1− φ2
s,s(j, d)) .

The Yule-Walker equations show that Pp(j, d) = η(j, d). Letting Mjp ≡ Mj − p,
the likelihood for one wavelet level (j = 1 . . . J) is

l(j, d, σ2
ε ) ≡ −Mj

2

[

log(2πσ2
ε )

]

− 1
2 [Mjp log(Pp(j, d)) +

∑p−1
k=0 log(Pk(j, d))]

− 1
2σ2

ε

[

∑p−1
k=0

(~Z(k)
j,k (d))2

Pk(j,d) +
∑Mj−1

k=p
Z2

j,k

Pp(j,d)

]

where

~Z(k)
j,k (d) ≡

{

(Ww)j,0, k = 0;
(Ww)j,k −

∑k
r=1 φr,k(j, d) (Ww)j,k−r, k = 1 . . . p− 1 ,

and hence assuming that wavelet levels are uncorrelated

lN (d, σ2
ε ) ≡

∑J
j=1 l(j, d, σ2

ε ) . (8)

Maximising with respect to σ2
ε yields the ML estimate

σ̂2
ε,N,p(d) = 1

M

∑J
j=1

[

∑p−1
k=0

(~Z(k)
j,k (d))2

Pk(j,d) +
∑Mj−1

k=p
Z2

j,k

Pp(j,d)

]

. (9)

The profile likelihood with respect to d is

lN (d, σ̂2
ε,N,p(d)) ≡ −M

2

[

log(2πσ̂2
ε,N,p(d)) + 1

]

− 1
2

∑J
j=1

[

Mjp log(Pp(j, d)) +
∑p−1

k=0 log(Pk(j, d))
]

.(10)

We maximise this expression to obtain d̂N,p. Now let θ̂T ≡ (d̂N,p, σ̂2
ε,N,p(d)) denote

the vector of estimates. We can extend the results of Craigmile et al. [3] as follows
(see [2] for a proof).

Theorem 4.1. For a differentiable function g(·), let ∆1(g(x)) ≡ [ ∂
∂y g(y)|y=x]/g(x).

Suppose that equation (7) holds. For d < L+1
2 , as N →∞

(a) (θ̂ − θ) →p 0;
(b)

√
N(θ̂ − θ) →d N(0, Γ−1(θ));

(c)
√

N(d̂N,p − d) →d N(0, σ2
d,p),
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d
L p 0 0.25 0.50 0.75 1.00
2 0 1.260 1.036 0.896 0.781 0.664
2 1 1.260 1.052 0.906 0.767 0.664
2 2 1.260 1.055 0.908 0.762 0.664
2 5 1.260 1.056 0.912 0.754 0.664
4 0 1.060 0.982 0.921 0.867 0.816
4 1 1.060 1.005 0.960 0.909 0.839
4 2 1.060 1.004 0.963 0.916 0.836
4 5 1.060 1.004 0.963 0.917 0.829
8 0 0.991 0.956 0.923 0.893 0.864
8 1 0.991 0.977 0.965 0.952 0.934
8 2 0.991 0.975 0.963 0.953 0.937
8 5 0.991 0.975 0.964 0.953 0.937
∞ 0 0.944 0.931 0.919 0.906 0.894
∞ 1 0.944 0.944 0.945 0.944 0.944
∞ 2 0.944 0.944 0.944 0.944 0.944
∞ 5 0.944 0.944 0.945 0.945 0.945

Table 1. Calculation of σ2
d,p for various filter lengths, L, (L = ∞

refers to using the ideal wavelet filter Hj,I(f)), AR(p) wavelet
model (p = 0 refers to the white noise model of Craigmile et al.
[3]) and difference parameter d.

where

2Γ(θ) ≡
[ ∑

j ∆2
1(Pp(j, d)) 2−j σ−2

ε
∑

j ∆1(Pp(j, d)) 2−j

σ−2
ε

∑

j ∆1(Pp(j, d)) 2−j σ−4
ε

]

,

and σ2
d,p ≡ 2[

∑

j ∆2
1(Pp(j, d)) 2−j − (

∑

j ∆1(Pp(j, d)) 2−j)2]−1.
For the same range of d and any N , σ̂2

ε,N,p(d) =d M−1σ2
ε χ2

M .

Table 1 shows σ2
d,p for various values of filter length L (L = ∞ refers to using

the ideal wavelet filter Hj,I(f)) and difference parameter d under different AR(p)
wavelet models (p = 0 refers to the white noise wavelet model of Craigmile et
al. [3]). We analyse to J=6. In general, keeping L fixed, the asymptotic variance
decreases with increasing d (especially for shorter values of L). It also decreases
with increasing L for stationary d < 1

2 , but increases with L for non-stationary
d ≥ 1

2 . The limit variance only changes slightly for L = 2 as we increase p. For
L > 2 there is little change in the asymptotic variance with p ≥ 1. In fact Monte
Carlo studies to estimate d for various samples sizes, filter lengths and values of
the difference parameter showed that an AR(1) model in this case was sufficient.
An AR(p) (p > 1) gave no improvement to estimation.
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5. Conclusions

In this paper we have further examined the estimation of the parameters of a
trend contaminated FD process using the DWT. We have demonstrated that as
we increase the filter length we can decorrelate between wavelet scales and decrease
side-lobe behaviour. By extending the white noise and AR(1) wavelet models to
the AR(p) (p > 1) case, we do not improve the estimation of d from that of the
AR(1) model. Clearly these results give an attractive framework in which to model
other short and long dependent processes.
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