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Abstract. We consider a phase-field model for diffusion-induced grain bound-
ary motion. This model couples a parabolic variational inequality to a de-
generate diffusion equation. We summarize recent results on existence and
uniqueness, sharp interface limits and numerical discretization.

1. Introduction

The aim of this note is to review recent work on the mathematical study of dif-
fusion-induced grain boundary motion. This kind of motion is observed when a
thin polycrystalline film of metal is exposed to vapor consisting of another metal.
Atoms from the vapor diffuse into the film along the grain boundaries that sep-
arate the crystals inducing the migration of the boundary. As it advances, the
solute atoms are left behind the boundary, which changes the concentration of the
growing crystal (see [6] and the references in [2]). The following thermodynami-
cally consistent phase-field system was suggested in [2] (see also [5]) in order to
describe this phenomenon:

ρεφt − ε∆φ− 1
ε
φ + β(φ) + pφ(φ, u) 3 0 (1)

εut −∇ ·
(
D(φ)∇w

)
= 0 . (2)

The system (1), (2) is in nondimensionalized form, with the constants ρ and ε
satisfying

0 < ρ ≤ 1, 0 < ε � 1 .

Furthermore, φ is an order parameter, which has the value +1 in one crystal and
-1 in the other. Within the grain boundary we have |φ| < 1. The constraint |φ| ≤ 1
is realized in (1) by the use of the subdifferential β of

I[−1,1](s) :=
{

0 if s ∈ [−1, 1] ,
+∞ otherwise .

Thus,

β(s) = ∂I[−1,1](s) =

 (−∞, 0] if s = −1 ,
0 if |s| < 1 ,

[0,∞) if s = 1 .
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The function Ψ(s) := I[−1,1](s) + 1
2 (1 − s2) is the well-known double obstacle

potential (see [1]).
The variable u denotes the concentration of the solute atoms, while

w = u +
ε̂

π
pu(φ, u) (0 < ε̂ � 1) .

The coupling term p is given by

p(φ, u) =
π

8
(1 + φ)2u2

and models elastic interaction. Finally, the diffusivity is much larger in the grain
boundary than in the crystals, so that a reasonable ansatz for D is

D(φ) =
2
π

(1− φ2) .

Note that D(φ) vanishes within the grains. Thus, (1), (2) couples a parabolic
variational inequality to a degenerate diffusion equation leading to challenging
mathematical problems.

Let us briefly outline the plan of this note: in § 2 we shall review an existence
and uniqueness result for the above system in a two-dimensional slab. § 3 is con-
cerned with results on the sharp-interface limit ε → 0. Finally, in § 4 we briefly
introduce a numerical method for the problem studied in § 2 and present some
computations.

2. Existence and Uniqueness for the Phase-Field System

We consider the following two-dimensional geometry, which models a metal plate
that is surrounded by vapor: for H > 0 let Ω = R×(−H,H), where we think of the
vapor as being above x2 = H and below x2 = −H. Instead of (1), (2) we consider
the following slightly modified system (which still retains all the mathematical
difficulties):

εφt − ε∆φ− 1
ε
φ + β(φ) +

π

4
u2 3 0 (3)

εut −∇ ·
(
D(φ)∇u

)
= 0 (4)

together with the boundary and initial conditions
∂φ

∂n
= 0 on ∂Ω× (0, T ), (5)

D(φ)
∂u

∂n
+ αD(φ)2(u− 1) = 0 on ∂Ω× (0, T ), (6)

φ(., 0) = φ0, u(., 0) = u0 in Ω . (7)

The fact that D(φ)2 (rather than D(φ)) appears in (6) has a technical reason,
namely to ensure an a-priori estimate needed for the existence proof. Nevertheless,
(6) approximates for large α the condition u = 1 on {(x1, x2) | D(φ) 6= 0, x2 =
±H} which is used in [2].
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We assume that the initial functions (φ0, u0) satisfy

φ0 ∈ W 2,2

loc(Ω̄) , −1 ≤ φ0 ≤ 1 in Ω ,
∂φ0

∂n
= 0 on ∂Ω ,

u0 ∈ H1
loc(Ω̄) , 0 ≤ u0 ≤ 1 in Ω

and that there exists R0 > 0 such that

φ0(x) = 1 for x1 ≥ R0, φ0(x) = −1 for x1 ≤ −R0 ,

u0(x) = 0 for |x1| ≥ R0 .

Furthermore, we define

K := {v ∈ H1
loc(Ω̄) | |v| ≤ 1 a.e. in Ω, ∃R = R(v) v(x) = ±1, ±x1 ≥ R}

as well as the space-time function spaces

X1 := {φ ∈ L∞(ΩT )|∇φ ∈ L2(0, T ;H1(Ω) ∩ L∞(Ω)), φt ∈ L2(0, T ;H1(Ω))} ,

X2 := L2(0, T ;H1(Ω)) ∩W 1,2(0, T ;L2(Ω)) .

Definition 2.1. The pair (φ, u) ∈ X1 ×X2 is called a solution of (3)–(7) provided
that

φ(0) = φ0 , u(0) = u0 in Ω,

φ(t) ∈ K for t ∈ (0, T ) and
∂φ

∂n
= 0 on ∂Ω× (0, T ) ,

ε

∫
Ω

φt(ζ − φ) + ε

∫
Ω

∇φ · ∇(ζ − φ)− 1
ε

∫
Ω

φ(ζ − φ) +
π

4

∫
Ω

u2(ζ − φ) ≥ 0 ,

ε

∫
Ω

utη +
∫

Ω

D(φ)∇u · ∇η + α

∫
∂Ω

D(φ)2(u− 1)η = 0 ,

for all ζ ∈ K, all η ∈ H1(Ω) and for almost all t ∈ (0, T ).

Theorem 2.2. Under the above assumptions there exists a solution of (3)–(7) in
the sense of definition 2.1.

Proof. We briefly outline the main ideas and difficulties refering the reader to [3]
for a detailed proof.

1. One introduces a regularized strictly parabolic system, in which the subdiffer-
ential β and the diffusivity D are replaced by functions βδ and Dδ in such a
way that βδ → β, Dδ → D as δ → 0 in a suitable sense. In order to avoid
difficulties related to the unboundedness of Ω, the system is initially considered
on (−L,L) × (−H,H) × (0, T ), where L is chosen sufficiently large depending
on ε, R0 and T .

2. The procedure in step 1 yields a family (φδ, uδ) of approximate solutions, for
which 0 ≤ uδ ≤ 1 and higher norms of φδ can be estimated independently of δ
(by the maximum principle and parabolic regularity theory respectively). The
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main difficulty consists in obtaining uniform bounds on derivatives of uδ. Note
that the usual energy estimate for (2) formally reads

sup
0≤t≤T

‖u(t)‖2
L2 +

∫ T

0

∫
Ω

D(φ)|∇u|2 + α

∫ T

0

∫
∂Ω

D(φ)2|u|2 ≤ C ,

which only provides information on ∇u in the interior of the boundary layer. To
obtain a bound on ∇uδ it is therefore natural —although rather complicated—
to work with the evolution equations for uδ,xk

, k = 1, 2.
3. Using the a-priori estimates of step 2 and standard compactness results one

obtains a subsequence (φδk
, uδk

), (δk → 0), which converges to a pair (φ, u) sat-
isfying the variational identities of definition 2.1 for (−L,L)× (−H,H) instead
of Ω. A comparison argument shows that

φ(x, t) = ±1, u(x, t) = 0 for ± x1 >
L

2
, 0 < t < T ,

provided that L is chosen large enough. By extending (φ, u) appropriately for
|x1| ≥ L one obtains a solution in the sense of definition 2.1.

�

Unfortunately we are not able to show that the above solution is unique
within the class X1 ×X2. However, if we assume slightly more regularity we can
prove a uniqueness result, which relies on a duality argument applied to the diffu-
sion equation. Details can again be found in [3].

Theorem 2.3. Let (φ1, u1), (φ2, u2) ∈ X1 × X2 be two solutions in the sense of
definition 2.1 which in addition satisfy

∆φi ∈ L1(0, T ;L∞(Ω)), ∇ui ∈ L2(0, T ;Lp(Ω)), i = 1, 2

for some p > 2. Then (φ1, u1) ≡ (φ2, u2).

3. Sharp-Interface Limits

In [5] formal asymptotics are used to derive the following moving free boundary
problem for the sharp interface Γ(t) as ε → 0:

ρv = κ + u2 on Γ(t)
uss = vu on Γ(t) .

(8)

Here, v is the normal velocity of Γ(t), κ is its curvature and s denotes arclength.
The system (8) couples forced curve shortening flow to an elliptic equation on
Γ(t). If one considers the limit problem for the geometry treated in § 2, boundary
conditions have to be added to (8), namely that the curve Γ(t) meets the lines
R× {±H} orthogonally and that u = 1 at these contact points. At t = 0, Γ(0) is
prescribed, while the values u0 = u(., 0) have to satisfy the compatibility condition

u0,ss −
1
ρ

(
κ(., 0) + u2

0

)
u0 = 0 on Γ(0) .
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Apart from deriving the sharp interface limit, [5] also investigates the existence
of traveling wave solutions to (8) for the infinite slab. Two types of waves are
considered: the first type of solution connects the two faces x2 = H and x2 = −H,
while the second type does not reach the other side of the plate and trails behind.

Including terms of order O(ε) in the derivation of the sharp interface limit,
one obtains the following more accurate system for Γ(t) (see again [5]):

ρv = κ(1 + εC) + u2
(
1 + ε(B + Au2)

)
on Γ(t)

ε∗
du

dt
=

(
us(1 + εαu2)

)
s
− vu− ε∗uvκ on Γ(t)

(9)

for certain constants A,B,C, α, g1 and ε∗ = επ
1+εg1

. The symbol du
dt denotes dif-

ferentiation along flow lines that are perpendicular to Γ(t) (see [7] for a precise
definition). Due to the presence of ε∗uvκ in the second equation of (9), the system
is fully nonlinear. In [7], [8] local existence and uniqueness of classical solutions to
(9) is proved for a geometry, in which the grain boundary is modeled by a closed
curve in the plane (with vapor in the third dimension).

4. Numerical Discretization

In this final section we briefly present a numerical method, which was used in
[4] to calculate solutions of (3)–(7). We consider the problem on the rectangle
ΩL = (−L,L)× (−H,H) (cf. step 1 of the Proof of theorem 2.2) and introduce a
triangulation Th of ΩL as well as the corresponding space of linear finite elements

Xh := {vh ∈ C0(Ω̄L) | vh ∈ P1(T ) for all T ∈ Th} .

Furthermore, let

Kh := {vh ∈ Xh | |vh(x)| ≤ 1 for all x ∈ ΩL}

and ∆t > 0 the timestep. Denoting by φ0
h = Ih(φ0) and u0

h = Ih(u0) the Lagrange
interpolants of φ0 and u0 the numerical algorithm reads as follows: for 0 ≤ n ≤ [ T

∆t ]
find (φn

h, un
h) ∈ Kh ×Xh such that

ρε

∆t

∫
ΩL

(
φn+1

h − φn
h

)(
ζh − φn+1

h

)
+ ε

∫
ΩL

∇φn
h · ∇

(
ζh − φn+1

h

)
− 1

ε

∫
ΩL

φn
h

(
ζh − φn+1

h

)
+

π

4

∫
ΩL

(un
h)2

(
ζh − φn+1

h

)
≥ 0

ε

∆t
〈un+1

h − un
h, ηh〉hΩL

+
∫

ΩL

D(φn
h)∇un+1

h · ∇ηh + α〈D(φn
h)(un+1

h − 1), ηh〉h∂ΩL
= 0

for all ζh ∈ Kh and all ηh ∈ Xh. Here, the discrete inner products are defined by

〈f, g〉hΩL
=

∫
ΩL

Ih

(
fg

)
, 〈f, g〉h∂ΩL

=
∫

∂ΩL

Ih

(
fg

)
.
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If we assume in addition, that the triangulation is weakly acute, then the use
of numerical integration in the second equation combined with the fact that
0 ≤ u0 ≤ 1 ensures that 0 ≤ un

h ≤ 1 for all 0 ≤ n ≤ [ T
∆t ].

Figures 1 and 2 show examples of calculated solutions φh and uh. The initial
conditions were chosen as

φ0(x) :=


−1 , x1 ≤ −επ

2
sin(

x1

ε
) , −επ

2
< x1 <

επ

2
+1 , x1 ≥

επ

2
and u0 ≡ 0. The computations were carried out on a uniform grid with H = 2,
h = 1

100 , ∆t = h2

100 , ε = 20h, ρ = 0.8 and the numerical solutions are shown at
t = 0.2. While the function φh keeps its sinusoidal shape, the interfacial region has
width ≈ 0.6 ≈ πε and is moving in the positive x1-direction. The concentration uh,
which initially was identically zero, now has non-zero values in the region through
which the interface has passed. Once a point has been left behind the interfacial
region, the values of uh at this point do not change at later times. We remark
that it is sufficient to carry out the computations in a small neighborhood of the
discrete free boundary |φh| < 1.

Figure 1. φh(x, t)

Apart from presenting calculations for the phase-field model, [4] also investi-
gates the convergence as ε → 0 to the sharp interface limit (8) from a numerical
point of view. Furthermore, convergence to traveling wave solutions as t → ∞ is
studied.
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Figure 2. uh(x, t)
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