
Some Introductory Remarks on
Computer Algebra

Wolfram Decker

Abstract. Computer algebra is a relatively young but rapidly growing field. In
this introductory note to the mini-symposium on computer algebra organized
as part of the third European Congress of Mathematics I will not even attempt
to adress all major streams of research and the many applications of computer
algebra. I will concentrate on a few aspects, mostly from a mathematical point
of view, and I will discuss a few typical applications in mathematics. I will
present a couple of examples which underline the fact that computer algebra
systems provide easy access to powerful computing tools. And, I will quote
from and refer to a couple of survey papers, textbooks and web-pages which
I recommend for further reading.

1. Some Historical Remarks

Most of mathematics is concerned at some level with setting up and solving equa-
tions, for example to model applications in science and engineering. In many cases
this involves tedious computations which are difficult to get right or too extensive
to be carried through by hand. Numerical analysis and, more recently, computer
algebra originated from this problem. That mechanized computing is not restricted
to numerical computation was already evident to Charles Babbage and Lady Ada
Augusta in the 19th century (see [63] for the following quotations and for more
on the story of these pioneers of computer science). Besides working on his Dif-
ference Engines (see [94]) Babbage spent many years of his life with designing a
more universal mechanical machine (Analytical Engine) to be programmed with
punch-cards invented by J.-M. Jacquard for the control of his automatic looms.
Babbage’s earliest ideas on how such a machine could also perform mechanized
algebraic manipulations are documented in his notebook of July 1836 [5]:

“This day I had for the first time a general but very indistinct conception
of the possibility of making an engine work out algebraic developments
—I mean without any reference to the value of the letters. My notion
is that as the cards (Ja[c]quards) of the calc. engine direct a series of
operations and then recommence with the first, so it might perhaps be
possible to cause the same cards to punch others equivalent to any given

2 W. Decker

number of repetitions. But these hole[s] might perhaps be small pieces of
formulae previously made by the first cards. . . ”

In Lady Ada‘s extensive notes accompanying her translation from French into
English of L. F. Menabrea’s 1842 paper on the Analytical Engine [70] we find, for
example, the following passage:

“There are many ways in which it may be desired in special cases to dis-
tribute and keep separate the numerical values of different parts of an
algebraic formula; and the power of effecting such distributions to any ex-
tent is essential to the algebraic character of the Analytical Engine. Many
persons who are not conversant with mathematical studies imagine that
because the business of the engine is to give its results in numerical no-
tation, the nature of its process must consequently be arithmetical rather
than algebraic and analytical. This is an error. The engine can arrange
and combine its numerical quantities exactly as if they were letters or any
other general symbols; and, in fact, it might bring out its results in alge-
braic notation were provisions made accordingly. It might develop three
sets of results simultaneously, viz. symbolic results. . . ; numerical results
(its chief and primary object); and algebraic results in literal notation.”

The Analytical Engine, however, was never built, and symbolic computations were
not carried through in an automated way until electronic computers were available.
The first documented computer algebra programs, written for analytic differentia-
tion, were described in two 1953 master’s theses [53, 73]. According to the historical
account by K. Geddes, S. R. Czapor, and G. Labahn in their introductory text-
book [42] the beginning 1960’s saw increasing activities in the field, in particular,
after the LISP language,

“a major advancement on the road to languages for symbolic computation”

had been developed. It was the period between 1961 and 1971 in which

“the field progressed from birth through adolescence to at least some level
of maturity.”

I would like to mark this progress by some celebrated algorithmic breakthroughs,
by the first releases of some well-known LISP-based general purpose computer
algebra systems (see [42, 99] for some important systems not mentioned here),
and by the beginning organization of researchers in interest groups, most notably
in the Special Interest Group on Symbolic and Algebraic Manipulation (SIGSAM)
of the Association for Computing Machinery (ACM).

1965 B. Buchberger’s algorithm for computing Gröbner bases [16, 17]
1966 SYMSAM’66. First SYMposium on Symbolic and Algebraic Ma-

nipulation by ACM [38]
1967, 1970 E. R. Berlekamp’s algorithm for factoring univariate polynomials

over finite fields [7, 8]
1967 First issue of the SIGSAM Bulletin

Some Introductory Remarks on Computer Algebra 3

1968-1970 R. H. Risch’s algorithm for the indefinite integration of elementary
functions [81, 82, 83, 84]

1969 H. Zassenhaus’ algorithm for factoring univariate polynomials
over the integers [100]

1968, 1970 First releases of REDUCE respectively REDUCE2 (A. C. Hearn)
1970 First release of MACSYMA (J. Moses, W. Martin)
1971 First release of SCRATCHPAD (J. Griesmer, R. Jenks)
1971 SYMSAM’71 [76]

A good impression of the speed with which computer algebra has been evol-
ving since its beginnings can be obtained by checking

• the home-pages of its main interest groups and its leading researchers,
• recent textbooks such as [40, 90] (with extensive bibliographies),
• the Journal of Symbolic Computation and other journals such as Mathe-

matics of Computation and Applicable Algebra in Engineering, Commu-
nication and Computing, and

• the proceedings of the leading conferences of computer algebra.
SYMSAM’66 was followed by several North American and European conferences
which have been amalgamated into the annual International Symposium on Sym-
bolic and Algebraic Computation (ISSAC) since 1988. ISSAC2000, chaired by T.
Recio, is the 25th edition in this series. There are various other series of conferences
either being organized by continental, national or local interest groups, or gathering
together users of one of the computer algebra systems, or being devoted to special
features such as COCOA (COmputational COmmutative Algebra), DISCO (De-
sign and Implementation of Symbolic Computation Systems), MEGA (Effective
Methods in Algebraic Geometry), or PASCO (PArallel Symbolic COmputation).
See [99] for a much larger list.

2. Some Features of Computer Algebra

Calculations in computer algebra are carried through exactly, that is, no appro-
ximation is applied at any step. Infinite precision arithmetic allows to actually
compute in the ring of integers and in the field of rationals, in finite prime fields,
algebraic number fields, and in arbitrary Galois fields. In fact, there is a much larger
variety of algebraic structures in which algebraic algorithms allow to manipulate
algebraic objects or the structures itself. And, exact computer algebra methods
allow to create algorithms that decide, for example, the solvability of systems of
polynomial equations or the solvability of indefinite summation and integration
problems in certain specified classes of functions. Let us look at a few examples
and introduce some computer algebra systems as well (the home-pages of these
and other systems can be easily found on the net).

Example 2.1. GAP (Groups, Algorithms and Programming), until recently deve-
loped under the direction of J. Neubüser, is a system “for computational discrete

4 W. Decker

algebra with particular emphasis on computational group theory.” In the following
GAP4 session we define the Heisenberg group H3 of level 3 in its Schrödinger re-
presentation, check that H3 is a finite group of order 27, and compute its character
table. Here Schrödinger representation means that H3 ⊂ GL(3,Q(ξ)), ξ = e

2πi
3 a

primitive 3rd root of unity, is given as the matrix group generated by

σ =

0 0 1
1 0 0
0 1 0

 and τ =

1 0 0
0 ξ 0
0 0 ξ2

 .

gap> m1:=[[0,0,1],[1,0,0],[0,1,0]];;
gap> m2:=[[1,0,0],[0,E(3),0],[0,0,E(3)^2]];;
gap> G:=Group(m1,m2);;
gap> Size(G);
27
gap> Display(CharacterTable(G));
CT1

3 3 2 2 2 2 2 2 2 2 3 3

1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j

X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 A A A /A /A /A 1 1 1 1
X.3 1 /A /A /A A A A 1 1 1 1
X.4 1 1 /A A 1 /A A /A A 1 1
X.5 1 A 1 /A /A A 1 /A A 1 1
X.6 1 /A A 1 A 1 /A /A A 1 1
X.7 1 1 A /A 1 A /A A /A 1 1
X.8 1 A /A 1 /A 1 A A /A 1 1
X.9 1 /A 1 A A /A 1 A /A 1 1
X.10 3 B /B
X.11 3 /B B

A = E(3)
= (-1+ER(-3))/2 = b3

B = 3*E(3)^2
= (-3-3*ER(-3))/2 = -3-3b3

Via the online GAP user manual we easily find out how to read the output.

Example 2.2. MAGMA, developed under the direction of J. Cannon, is a com-
puter algebra system “for Algebra, Number Theory and Geometry”. In the following
MAGMA session we define again H3 in its Schrödinger representation. Then H3,
as a subgroup of GL(3,Q(ξ)), acts on the polynomial ring Q(ξ)[x1, x2, x3] by linear

Some Introductory Remarks on Computer Algebra 5

substitution. All polynomials which are invariant under this action form the in-
variant ring Q(ξ)[x1, x2, x3]H3 . We compute a corresponding fundamental system
of invariants, that is, a minimal, finite set of homogeneous invariants generating
Q(ξ)[x1, x2, x3]H3 as a ring.

> K<g>:=NumberField(x^2+x+1);
> m1:=[0,0,1,1,0,0,0,1,0];
> m2:=[1,0,0,0,g,0,0,0,g^2];
> G:=MatrixGroup<3,K|m1,m2>;
> R:=InvariantRing(G);
> FundamentalInvariants(R);

[

x1^3 + x2^3 + x3^3,

x1*x2*x3,

x1^6 + x2^6 + x3^6,

x1^6*x3^3 + x1^3*x2^6 + x2^3*x3^6

]

Example 2.3. NTL, by V. Shoup, “is a high-performance, portable C++ library
providing data structures and algorithms for manipulating signed, arbitrary length
integers, and for vectors, matrices, and polynomials over the integers and over
finite fields.” The following is taken from the online Tour of NTL.

“NTL provides extensive support for very fast polynomial arithmetic. In fact, this
was the main motivation for creating NTL in the first place, because existing com-
puter algebra systems and software libraries had very slow polynomial arithmetic.
The class ZZX represents univariate polynomials with integer coefficients. The
following program reads a polynomial, factors it, and prints the factorization.

#include <NTL/ZZXFactoring.h>
main() {

ZZX f;

cin >> f;

vec_pair_ZZX_long factors;
ZZ c;

factor(c, factors, f);

6 W. Decker

cout << c << "\n";
cout << factors << "\n";

}

When this program is compiled and run on input
[2 10 14 6]

which represents the polynomial 2 + 10 ∗X + 14 ∗ x2 + 6 ∗X3, the output is
2
[[[1 3] 1] [[1 1] 2]]

The first line of output is the content of the polynomial, which is 2 in this case
as each coefficient of the input polynomial is divisible by 2. The second line is a
vector of pairs, the first member of each pair is an irreducible factor of the input,
and the second is the exponent to which is appears in the factorization. Thus, all
of the above simply means that

2 + 10*X + 14*x^2 +6*X^3 =2 * (1 + 3*X) * (1 + X)^2

Admittedly, I/O in NTL is not exactly user friendly, but then NTL has no pre-
tensions about being an interactive computer algebra system: it is a library for
programmers.”

Example 2.4. MAPLE, founded by G. Gonnet and K. Geddes and firstly released
in 1983, is a general purpose system with a kernel written in C, and with most
higher level functions or packages written in the MAPLE user language. In the
following MAPLE session we factor a multivariate polynomial over the integers,
namely

p = x2y4z − xy9z2 + xyz3 + 2x− y6z4 − 2y5z ∈ Z[x, y, z]

> p:=x^2*y^4*z - x*y^9*z^2 + x*y*z^3 + 2*x - y^6*z^4 - 2*y^5*z:
> factor(p);

4 3 5
(y z x + y z + 2) (x - y z)

Example 2.5. SCHUBERT, written by S. Katz and S. A. Strømme, is a “MAPLE
package for Intersection Theory.” Intersection rings of algebraic varieties are re-
presented by generators and relations, that is, as residue class rings of polynomial
rings. The following two SCHUBERT sessions, taken from the SCHUBERT man-
ual, compute the number of lines respectively conics on a general quintic hypersur-
face in complex projective 4-space (see also [58]).

Lines on a quintic threefold. This is the top Chern class of the
5th symmetric power of the universal quotient bundle on the
Grassmannian of lines.
>
> grass(2,5,c): # Lines in P^4.

Some Introductory Remarks on Computer Algebra 7

> B:=symm(5,Qc): # Qc is the rank 2 quotient bundle, B its
> # 5th symmetric power.
> c6:=chern(rank(B),B): # the 6th Chern class of this

rank 6 bundle.
> integral(c6);

2875

#--

Conics on a quintic threefold. This is the top Chern class of the
quotient of the 5th symmetric power of the universal quotient on
the Grassmannian of 2 planes in P^5 by the subbundle of quintics
containing the tautological conic over the moduli space of
conics.
>
> grass(3,5,c): # 2-planes in P^4.
> B:=Symm(2,Qc): # The bundle of conics in the 2-plane.
> Proj(X,dual(B),z): # X is the projective bundle of all conics.
> A:=Symm(5,Qc)-Symm(3,Qc)&*o(-z): # The rank 11 bundle of
> # quintics restricted to the

universal conic.
> c11:=chern(rank(A),A): # its top Chern class.
> lowerstar(X,c11): # push down to G(3,5).
> integral(Gc,"); # and integrate there.

609250

Example 2.6. SINGULAR, developed under the direction of G.-M. Greuel, G. Pfis-
ter, and H. Schönemann, “is a Computer Algebra System for polynomial computa-
tions with special emphasize on the needs of commutative algebra, algebraic geom-
etry, and singularity theory.” In the following SINGULAR session we check that
the system of polynomial equations

−x2 + xy − xz + y + 1 = x2 + xy − y2 − 2 = −x3 − x2y + xyz + xz2 − xy − y =

= −x3 + xy2 + x2z + xyz + xz2 − z2 = 0

has no solution over the complex numbers. Indeed, by Hilbert’s Nullstellensatz, it
suffices to compute that the reduced Gröbner basis of the ideal I ⊂ Q[x, y, z] defined
by the polynomials is 1.

> ring r=0,(x,y,z),dp;
> ideal i1=-x2+xy-xz+y+1, x2+xy-y2-2;
> ideal i2=-x3-x2y+xyz+xz2-xy-y, -x3+xy2+x2z+xyz+xz2-z2;
> ideal i=i1+i2;
> std(i);

_[1]=1

8 W. Decker

For the very simple examples considered so far “almost no” computing time
is needed. Just a little bit more involved is the following example.

Example 2.7. LIDIA, developed under the direction of J. Buchmann, is “a C++
Library for Computational Number Theory”. In the following LIDIA session we
factor the 8th Fermat number F8 = 228

+ 1.
lc> factor(2^(2^8)+1);
$0 = [(1238926361552897,1)
(93461639715357977769163558199606896584051237541638188580280321,1)]
>

We will discuss further examples later-on. Now, let us again quote Geddes,
Czapor, and Labahn [42]:

“There are three recognizable, yet interdependent, forces in the devel-
opment of this field. We may classify them under the headings systems,
algorithms, and applications.”

People are concerned with developing (algebraic) algorithms and analyzing the
complexity of algorithms, they provide the necessary surroundings for implemen-
ting algorithms and for allowing users to work with them, they implement algo-
rithms and test their practical performance, and they apply algorithms. A more
detailed impression is obtained by looking at the home-page of ISSAC2000 (which
can be easily found on the net).

“The conference topics include, but are not limited to:
Algorithmic mathematics: Algebraic, symbolic, and symbolic-numeric al-
gorithms including: simplification, polynomial and rational function ma-
nipulations, algebraic equations, summation and recurrence equations, in-
tegration and differential equations, linear algebra, number theory, group
computations, and geometric computing.
Computer science: Theoretical and practical problems in symbolic ma-
thematical manipulation including: computer algebra systems, data struc-
tures, computational complexity, problem solving environments, program-
ming languages and libraries for symbolic-numeric-geometric computation,
user interfaces, visualization, software architectures, parallel or distributed
computing, mapping algorithms to architectures, analysis and benchmark-
ing, automatic differentiation and code generation, automatic theorem
proving, mathematical data exchange protocols.
Applications: Problem treatments incorporating algebraic, symbolic, sym-
bolic-numeric and geometric computation in an essential or novel way,
including engineering, economics and finance, architecture, physical and
biological sciences, computer science, logic, mathematics, statistics, and
use in education.“

Some Introductory Remarks on Computer Algebra 9

Let me add a couple of observations:.

• The different branches of computer algebra are cross-linked in numerous
ways.

• There are increasing efforts of bringing the symbolic and numerical com-
munities together.

• There is an increasing use of computer algebra systems in education.

I would like to illustrate these observations by giving some examples. J. Cannon
and D. Holt are the guest editors of the Special issue on computational algebra
and number theory: Proceedings of the first MAGMA conference of the Journal
of Symbolic Computation. Let me quote from their foreword [20]:

“. . . even if one wanted to, it would no longer be possible to treat a parti-
cular area of computational algebra, such as computational group theory,
as an isolated and self-sufficient branch of mathematics. As the various
different branches of computational algebra mature they are seen to rely
on a common set of fundamental tools. To take a simple example, if we
wish to compute chief factors of a group G, we may perhaps quickly find
elementary abelian sections M/N of G (where M and N are normal in
G). But we then need to refine the section, and to do this, we need to
consider M/N as a module for G over a finite field, and to find a composite
series of the module. Currently, the best method known of achieving this
involves factorizing polynomials over finite fields, which is drawing us much
closer to the realms of traditional symbolic computation. Another example
concerns techniques for the efficient computation of Hermite and Smith
normal forms for integral matrices (and the LLL algorithm) which are key
tools in both computational group theory and algebraic number theory.”

H. M. Möller [72] gives several examples of how to use Gröbner bases in numerical
analysis. In his introduction we also find the following general remarks:

“ In the nineties, there is an increasing interest in combining symbolic and
numerical methods. This can be seen at diverse instances. There are now
international symposia supported by organizations from both sides, and
the number of contributes displaying the symbolic - numerical interplay is
increasing. Other examples are the facilities of using floating point arith-
metics and simple numerical procedures in Computer Algebra Systems on
the one hand and the (eventually partly) integration of Computer Algebra
Systems into numerical packages on the other hand. The most prominent
example is here the migration of the Computer Algebra System Axiom to
NAG, the Numerical Algorithm Group.

Many interesting results have been obtained by combining symbolic
and numerical methods, like in polynomial continuation the avoiding of
solution paths diverging to infinity by means of concepts from toric ideals
or like the numerical solving of systems of polynomial equations using
resultants, see for instance Canny and Manocha (1993) [21].”

10 W. Decker

For more information in this direction I refer to the articles by G. Gonnet [43]
and G.-M. Greuel [48] in these proceedings, to the Special Issues of the Journal
of Symbolic Computation on Validated numerical methods and computer algebra
[59] respectively Symbolic numeric algebra for polynomials [98], and to the home-
page of CASC2000, the Third International Workshop on Computer Algebra in
Scientific Computing.

The Special Issue [62] of the Journal of Symbolic Computation presents a
couple of articles which deal with the use of computer algebra in courses on group
theory, abstract algebra, computational non-associative algebra, differential equa-
tions and interpolation. The paper by B. Amrhein, O. Gloor and R. E. Maeder
[2] in this special issue is concerned with Visualizations for mathematics courses
based on a computer algebra system. Let me quote from the introduction:

“Computer-algebra systems (CAS) provide the necessary algorithms nee-
ded to compute mathematics visualizations. Furthermore, in the last years,
the graphics capabilities of computer-algebra systems have improved con-
siderably and now satisfy the needs of visualization in education.

CAS also give teachers and students another and more direct ap-
proach to using the computer. Applying a CAS, much less effort is needed
to treat a simple practical problem than with the classical approach, learn-
ing a full programming language first. Therefore, the focus moves from
computer handling to the application. This enables the possibility of ap-
plying the computer in education not as a teaching object but as a tool to
solve problems in other disciplines. In addition, CAS became of increasing
importance and are widely used in the industry. Hence, an introduction
to CAS will soon belong to a modern curriculum.”

There are in fact numerous textbooks and tutorials on using computer algebra in
high-school and university courses.

Example 2.8. The book by D. Cox, J. Little, and D. O’Shea [29] gives an introduc-
tion into both Gröbner bases and algebraic geometry, starting from scratch. This
approach allows to work out first examples in algebraic geometry without develop-
ing too much of the abstract theory behind algebraic geometry, that is, it allows to
introduce students into algebraic geometry at a very early stage of their studies.
On the other hand, the geometric point of view nicely motivates the need for a
variety of algorithms manipulating ideals in polynomial rings.

3. Some Remarks on Systems and Algorithms

One reason for the great success of computer algebra is, as indicated several times
above, that modern computer algebra systems (CAS) provide easy access to pow-
erful computing tools. Nowadays there is a large variety of systems suiting different
needs. In addition, a modern CAS comes with a programming language which al-
lows to extend the system (for some systems even the source code is available).
Some of these extensions are publicly available, and, typically, a CAS which has

Some Introductory Remarks on Computer Algebra 11

been around for a little while is supplemented by a variety of user-written packages
or libraries such as the MAPLE package SCHUBERT introduced in example 2.5.

There are general purpose and special purpose CAS. Typically, one has to
pay for a general purpose system whereas many of the special purpose systems
are for free. From a general purpose system we expect that it provides tools for
symbolic computations, for numeric computations, and for visualization, and we
expect that there is a large variety of such tools allowing to attack many different
problems. Information on such systems can be found on the net and in numerous
introductory textbooks. The practical guide [99] contains articles which compare
the capabilities of systems such as REDUCE, MACSYMA, MAPLE, DERIVE,
MATHEMATICA, MUPAD, AXIOM (the successor of SCRATCHPAD) and TI-
92.

For many of the more special and advanced applications general purpose sys-
tems are not powerful enough. Therefore a researcher with a desperate need for
computational power in the context of certain problems actually may decide to
create his own system. Some of todays’ special purpose systems started out in this
way. A pioneering and prominent example is SCHOONSCHIP by M. J. G. Velt-
man which helped to win a Nobel price in physics in 1999 (awarded to Veltman
and G. t’Hooft “for having placed particle physics theory on a firmer mathemati-
cal foundation”, see http://nobelprizes.com/nobel/physics/physics.html). From a
special purpose system we expect highly tuned implementations of the algorithms
needed for the area in which the system is specializing. As pointed out in the last
section this includes special algorithms such as those for computing fundamental
systems of invariants in example 2, and it includes algorithms which are com-
mon ground to every system such as algorithms for polynomial arithmetic. Again,
information on such systems can be found on the net and in recent textbooks.

Most people who want to apply computer algebra are actually not interested
in computer algebra itself. They will find “their” system(s) already on the mar-
ket and they are going to use such a system as a kind of a black box machine
without being forced to understand details of the algorithms or of their implemen-
tations. In some cases, however, information on which variant of an algorithm is
implemented is necessary for understanding the meaning of the output (see the
discussion of Risch’s algorithm below). Unfortunately, detailed information is of-
ten difficult or even impossible to find. Setting a flag might allow to obtain at least
partial information.

Example 3.1. Let us compute∑
0≤k≤m

(−1)k

(
n

k

)
= (−1)m

(
n− 1

m

)
with MAPLE V, Release 5.1.

> infolevel[sum]:=3:
> sum((-1)^k*binomial(n,k), k=0..m);

12 W. Decker

sum/indefnew: indefinite summation
sum/extgosper: applying Gosper algorithm to

a(k):= (-1)^k*binomial(n,k)
sum/gospernew: a(k)/a(k -1):= (-n+k-1)/k
sum/gospernew: Gosper’s algorithm applicable
sum/gospernew: p:= 1
sum/gospernew: q:= -n+k-1
sum/gospernew: r:= k
sum/gospernew: degreebound:= 0
sum/gospernew: solving equations to find f
sum/gospernew: Gosper’s algorithm successful
sum/gospernew: f:= -1/n
sum/indefnew: indefinite summation finished

(m + 1)
(m + 1) (-1) binomial(n, m + 1)

- --------------------------------------
n

Here we understand that there is an algorithm due to Gosper which does
the job. Indeed, R. W. Gosper’s algorithm [46] solves the indefinite summation
problem for hypergeometric functions. This problem and Gosper’s solution to it
can be formulated rigorously by using difference fields (see, for example, [40]).

Differential fields provide the algebraic setting for indefinite symbolic in-
tegration. Symbolic integration has a long history starting with I. Newton and
G. W. Leibniz, including work by J. Bernoulli in the 18th century, by J. Liouville,
M. W. Ostrogradsky and E. Hermite in the 19th century, by J. F. Ritt in the
middle of the 20th century, and stunning modern work subsumed under the name
Risch’s algorithm (see M. F. Singer’s survey article [91] and M. Bronstein’s book
[14] for details and references). As is Gosper’s algorithm for the summation of
hypergeometric functions, Risch’s algorithm is a decision algorithm for integrating
elementary functions. Given such a function f , the algorithm computes an elemen-
tary function which is an anti-derivative of f or decides that no such anti-derivative
exists. An algorithm for the case of transcendental elementary functions was given
by R. H. Risch in [83]. Subsequent improvements are due to many people (see
again [91]). An algorithm for the general case, which is much more involved than
the algorithm for transcendental functions, was outlined by Risch in [81, 82, 84].
New ideas and improvements in the case of algebraic elementary functions are due
to J. H. Davenport [30] and B. Trager [97]. M. Bronstein [13] generalized partic-
ularly Trager’s ideas to give an algorithm for the general case. He implemented
a great part of this algorithm in AXIOM, but to the best of my knowledge, no
complete implementation exists (I refer to [13] and [24] for a discussion of some of
the problems in this direction). As a consequence, if a CAS can’t integrate a given

Some Introductory Remarks on Computer Algebra 13

elementary function, this might mean that no elementary anti-derivative exists,
or that the variant of Risch’s algorithm which is implemented can’t handle the
particular case (but this might not be evident for the user).

Example 3.2. Bronstein’s ISSAC’98 tutorial [15] outlines Risch’s algorithm for
various classes of elementary functions and gives corresponding examples such as∫

(x2 + 2x + 1)
√

x + log x + (3x + 1) log x + 3x2 + x

(x2 + x log x)
√

x + log x + x2 log x + x3
dx

= 2
√

x + log x + 2 log(x +
√

x + log x)

in the algebraic logarithmic case. From among the systems which I tested with this
example only AXIOM 2.2 gave an honest answer:

>> Error detected within library code:
integrate: implementation incomplete (constant residues)

The interested reader is invited to test his favorite CAS more systematically.

A central area of computer algebra, whose history also started in classical
papers, and which saw dramatic modern developments with numerous research
papers, is polynomial factorization.

There is a classical algorithm for factoring univariate polynomials over the
integers due to F. T. von Schubert [89] who generalized ideas of I. Newton. This
algorithm was rediscovered by L. Kronecker [60] and implemented in early com-
puter algebra programs. Modern, highly practical algorithms rely on ideas of
E. R. Berlekamp [7, 8] and D. G. Cantor and H. Zassenhaus [22] for factor-
ing univariate polynomials over finite fields, and of Zassenhaus [100], who used
Hensel-lifting for rediscovering the factors of a (squarefree and primitive) poly-
nomial f ∈ Z[x] from those of f reduced modulo a suitable prime p. During the
last three decades enormous progress has been made, with new ideas and improve-
ments of the basic algorithms. Now one can handle problems of a size which was
inconceivable a couple of years ago.

Example 3.3. P. Roelse [86] reports on an implementation of Niederreiter‘s algo-
rithm for factoring univariate polynomials over F2. With this implementation he
is able to factor a pseudo-randomly chosen polynomial of degree 300 000.

Factoring univariate integer polynomials as described above works well “on
the average example in praxis”. It has, however, exponential running time in the
worst case (see, for example, [40]). A polynomial-time algorithm was given by
A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovász [66] who replaced the factor
combination step at the very end of Zassenhaus’ algorithm by a step involving
their celebrated LLL-algorithm for lattice basis reduction. The LLL-algorithm to-
gether with its more recent variants has many applications, for example, to integer
programming (see H. W. Lenstra’s paper in these proceedings [68]).

14 W. Decker

Kronecker [60] also showed how to reduce multivariate factorization to the
univariate case. Again, there are more practical, modern algorithms (for diffe-
rent representations of the multivariate polynomials). A polynomial-time reduction
from dense multivariate to univariate integer polynomial factorization is due to
E. Kaltofen [54]. Kaltofen is also one of the protagonists of the further development.
I refer to his three survey papers [55, 56, 57] for the history of univariate and
multivariate polynomial factorization over various coefficient domains until 1991.
Further remarks can be found in [40, 90] (according to the notes on univariate
factorization in [40] some of the basic ideas of the modern algorithms can actually
be traced back to classical work, most notably to work of Gauss).

4. Some Remarks on Applications and Algorithms

Some of the fields in which computer algebra has applications are mentioned above
(see also the home-page of ACA2000, the 6th conference on Applications of Com-
puter Algebra by IMACS (International Association for Mathematics and Com-
puters in Simulation)). Some examples for industrial applications are given in the
paper by L. Gonzalez-Vega and T. Recio in these proceedings [44]. I will not com-
ment further on applications outside of mathematics. Instead I will illustrate the
impact of computer algebra on mathematical research by giving some examples,
mostly from group theory, number theory, and algebraic geometry. Needless to say
that there are applications in other areas of mathematics as well. Exact computer
algebra methods may help

• to correct and supplement old mathematical tables or to create new tables
(databases),

• to revive classical problems,
• to solve enumerative problems,
• to verify theorems whose proof has been reduced to straightforward but

tedious calculations,
• to construct interesting examples such as counterexamples to conjectures,
• to find mathematical evidence by experiments.

Example 4.1. The GAP Data Library contains “a number of databases with GAP
language interfaces allowing them to be searched and studied efficiently“, see
http://www-history.mcs.st-and.ac.uk/∼gap/. Among others one can find, “in var-
ious databases, all groups of order up to 1, 000, excluding 512 and 768′′ (see the
papers by H. U. Besche and B. Eick [9, 10], who also announced a solution for the
order 768 case). The case of order 512 is dealt with in [35]. Whereas all groups of
order 512 with p-class at least three can be explicitly generated, the computations
in the case of p-class 2 are extremely large. Therefore the authors decided to only
enumerate these groups. In fact, they showed that there are 8 785 772 such groups.
Altogether there exist 10 494 213 groups of order 512.

Some Introductory Remarks on Computer Algebra 15

Example 4.2. In a tour de force of enumerative geometry G. Ellingsrud and
S.-A. Strømme [37] computed that the number of twisted cubic curves on a general
quintic hypersurface in complex projective 4-space is 317 206 375 (this was one of
the motivations for creating the package SCHUBERT). The number 317 206 375
had been predicted by theoretical physicists [19] with a method originating from
string theory (this method allows, in fact, to predict the number of rational curves
on a general quintic of any degree).

Example 4.3. The Number Theory Website, maintained by Keith Matthews at
http://www.maths.uq.edu.au/∼krm/web.html, provides plenty of information on
number theory including links to the home-pages of CAS and to tables and databa-
ses (numbers, elliptic curves, number fields, modular forms). In particular, there
is a link to the Primes Pages by C. K. Caldwell with tables such as Mersenne
primes, or largest primes, and with recent records such as

“On 1 June 1999, the team of Nayan Hajratwala, George Woltman, Scott
Kurowski et. al. discovered a new record prime: 26972593 − 1. This is the
38th known Mersenne prime. . . ”

(see http://www.utm.edu/research/primes/index.html). On the page on Fermat
numbers (see http://vamri.xray.ufl.edu/proths/fermat.html) compiled by W. Keller
one can find, for example, the following:

“On May 9, 2000, Ray Ballinger discovered a new factor of a Fermat
number using Yves Gallot’s program Proth.exe: 591909 · 22063 + 1 divides
F2059. This is the eighth factor found with Gallot’s program.“

H. W. Lenstra, Jr. and A. K. Lenstra [64] give a theoretical and a practical
reason for the renewed interest in primality testing and factoring integers in recent
years: the introduction of complexity theory, which

“enabled workers in the field to phrase the fruits of their intellectual labors
in terms of theorems that apply to more than a finite number of cases“,

and
“the discovery, by Rivest, Shamir and Adleman [85], that the difficulty of
factorization can be applied for cryptographical purposes . . . we note that
for the construction of the cryptographic scheme that they proposed it is
important that primality testing is easy, and that for the unbreakability
of the scheme it is essential that factorization is hard. Thus, as far as
factorization is concerned, this is a negative application. . . ”

We refer to [64] for a discussion of modern algorithms for primality testing and
factoring including, for factoring, the quadratic sieve by C. Pomerance [77, 78]
and the elliptic curve method by H. W. Lenstra, Jr. [67]. Various articles on the
number field sieve can be found in [65]. An introduction to computational number
theory in general is given in H. Cohen’s books [25, 26]. These books also con-
tain a short discussion of some of the CAS suitable for number theory including
MAGMA, PARI-GP, developed under the direction of H. Cohen, KANT/KASH,

16 W. Decker

developed under the direction of M. Pohst, LIDIA, and SIMATH, developed under
the direction of H. G. Zimmer.

Classical invariant theory (see [71] and [47]) is a 19th century field involving
tedious calculations (see, for example, the many pages of extensive explicit tables
in A. Cayley’s collected works [23]). Invariants such as the discriminant b2 − ac
of a quadratic binary form ax2 + 2bxy + cy2 come into play when one asks for
properties of sets of solutions of polynomial equations which are invariant under
certain classes of transformations.

Example 4.4. J. J. Sylvester [95, 96] enumerated the fundamental invariants (more
generally covariants) of binary forms of some low degrees. Together with Franklin
[39] he arrived at his figures by manipulating the generating functions of the rings
of covariants under consideration following ideas of Cayley and Sylvester. In fact,
this approach yields for each given degree only a lower bound on the number of
fundamental covariants. In order to conclude that this lower bound is actually the
correct number a

“. . . fundamental postulate still awaiting demonstration is necessary. . . .
The validity of the fundamental postulate. . . is verified by its conducting to
results which have been proved to be accurate for single binary quantics up
to sixth order inclusive. . . ”

Unfortunately, the fundamental postulate proved to be wrong in the next case, that
is, in degree 7 [49]. That there are indeed four more fundamental invariants in this
degree than those enumerated by Sylvester was computed by Dixmier and Lazard
[34] in 1986 with the help of computer algebra. The correct number of fundamental
covariants, however, seems to be still unknown. Whereas nowadays every reader
can easily recheck Sylvester’s manipulations with his favorite computer algebra
system, the contemporaries of Sylvester had to travel to Baltimore:

“The manuscript sheets containing the original calculations. . . are deposi-
ted in the iron safe of the John Hopkins University Baltimore, where they
can be seen and examined. . . ”

Classical invariant theory culminated in two papers of Hilbert [50, 51] which
contain several “lemmas” which deeply influenced the development of modern ab-
stract algebra and algebraic geometry. The first paper, for example, contains the
basis theorem, the syzygy theorem and the theorem on the structure of generating
functions (Hilbert functions). In our context these results play a crucial role in the
theory of Gröbner bases. An interesting side remark is that the concepts of mono-
mial orders, normal-form reductions and Gröbner bases were already introduced
in 1899 by P. Gordan [45] in order to give another proof of Hilbert’s basis theorem.
Gordan’s paper does not contain, however, Buchberger’s celebrated algorithm for
computing Gröbner bases [16, 17]. This algorithm contributes as one of its numer-
ous applications (see [18]) to nowadays’ revival of computational invariant theory
(see [93, 32]) which in turn has many new applications ranging from topology

Some Introductory Remarks on Computer Algebra 17

and geometry, to physics, continuum mechanics, and computer vision (see also
[75, 41, 92]). Let us quote J. P. S. Kung and G.-C. Rota [61]:

“Like the Arabian phoenix rising out of its ashes, the theory of invariants,
pronounced dead at the turn of the century, is once again at the forefront
of mathematics. During its long eclipse, the language of modern algebra
was developed, a sharp tool now at last being applied to the very purpose
for which it was invented.”

Let me quickly mention some further examples. A classical example of fi-
nishing a proof with the help of computers is the solution of the four-color problem
by K. Appel and W. Haken [3]. The celebrated conjectures of B. J. Birch and
H. P. F. Swinnerton-Dyer [11, 12] are based on extensive computer calculations.
The same holds for the heuristics on class groups by H. Cohen and H. W. Lenstra,
Jr. [27, 28]. An example from algebraic geometry is the systematic treatment
by D. Eisenbud and S. Popescu [36] of some counterexamples to the minimal
resolution conjecture [69]. The authors are grateful to D. Bayer and M. Stillman
respectively D. Grayson and M. Stillman for the systems MACAULAY respectively
MACAULAY2

“which have been extremely useful for us; without them we would probably
never have been bold enough to guess the existence of the structure that
we explain here.”

The first counterexamples to the minimal resolution conjecture had been found by
F.-O. Schreyer (unpublished, compare [52]) with a sophisticated random search
using MACAULAY. Schreyer’s approach also yielded some interesting examples of
projective varieties of low codimension [87, 88]. The construction method
of W. Decker, L. Ein and F.-O. Schreyer combines syzygy theory, the theorem
of Beilinson [6] and various computational techniques to construct smooth sur-
faces in projective 4-space and to find out where these surfaces stand in the
Enriques-Kodaira classification (see [33, 31, 4, 80, 79, 1]). These authors also used
MACAULAY. For some applications in algebraic geometry and singularity the-
ory obtained with the help of the more recent system SINGULAR we refer to
G.-M. Greuel’s article in these proceedings [48].

Finally, let me come back to number theory and mention the indirect disproof
of Merten’s conjecture by A. M. Odlyzko and H. J. J. Riele [74] for which the LLL-
algorithm

“was the main new ingredient that allowed us to obtain much stronger
results than those of previous authors.”

References

[1] H. Abo, W. Decker, N. Sasakura, An elliptic conic bundle in P4 arising from a stable
rank-3 vector bundle, Math. Z. 229 (1998), 725–741.

[2] B. Amrhein, O. Gloor, R. E. Maeder, Visualizations for mathematics based on a
computer algebra system, J. Symbolic Computation 23 (1997), 447–452.

18 W. Decker

[3] K. Appel, W. Haken, Every planar map is four colorable, AMS, Providence, 1989.

[4] A. Aure, W. Decker, K. Hulek, S. Popescu, K. Ranestad, Syzygies of abelian and
bielliptic surfaces in P4, International J. Math. 8 (1997), 849–919.

[5] C. Babbage, Scribbling books, volume 2 (1836), Science Museum Library, London.

[6] A. Beilinson, Coherent sheaves on PN and problems of linear algebra, Funkt. Anal.
Appl. 12 (1978), 214–216.

[7] E. R. Berlekamp, Factoring polynomials over finite fields, Bell System Tech. J. 46
(1967), 1853–1859.

[8] E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24
(1970), 713–735.

[9] H. U. Besche, B. Eick, Construction of finite groups, J. Symbolic Computation 27
(1999), 387–404.

[10] H. U. Besche, B. Eick, The groups of order at most 1000 except 512 and 768, J.
Symbolic Computation 27 (1999), 405–413.

[11] B. J. Birch, H. P. F. Swinnerton-Dyer, Notes on elliptic curves. I, J. Reine Angew.
Math. 212 (1963), 7–25.

[12] B. J. Birch, H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew.
Math. 218 (1965), 79–108.

[13] M. Bronstein, Integration of elementary functions, J. Symbolic Computation 9
(1990), 117–173.

[14] M. Bronstein, Symbolic integration I – transcendental functions, Springer, Berlin,
1997.

[15] M. Bronstein, Symbolic integration tutorial, ISSAC’98, downloadable from
http://www-sop.inria.fr/cafe/Manuel.Bronstein/bronstein-eng.html

[16] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
rings nach einem nulldimensionalen Polynomideal, PdH thesis, Lepold-Franzens-
Universität, Innsbruck, 1965.

[17] B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen
Gleichungssystems, Aequationes mathematicae 4 (1970), 374–383, English transla-
tion by M. Ambramson and R. Lumbert in [18], 535–545.

[18] B. Buchberger, F. Winkler (eds.), Gröbner bases and applications, Linz 1999, Cam-
bridge University Press, Cambridge, 1999.

[19] P. Candelas, X. C. de la Ossa, P. S. Green, L. Parkes, A pair of Calabi-Yau manifolds
as an exactly soluble superconformal theory, Nuclear Phys. B. 359 (1991), 21–74.

[20] J. Cannon, D. Holt, Foreword of the guest editors to the Special issue on computa-
tional algebra and number theory: Proceedings of the first MAGMA conference, J.
Symbolic Computation 24 (1997), 233–234.

[21] J. F. Canny, D. Manocha, Multipolynomial resultant algorithms, J. Symbolic Com-
putation 15 (1997), 99–122.

[22] D. G. Cantor, H. Zassenhaus, A new algorithm for factoring polynomials over finite
fields, Math. Comp. 36 (1981), 587–592.

[23] A. Cayley, The collected mathematical papers, vols 1–12, Cambridge University Press,
Cambridge, 1889.

Some Introductory Remarks on Computer Algebra 19

[24] A. M. Cohen, J. H. Davenport, J. P. Heck, An overview of computer algebra, in A.M.
Cohen (ed.), Computer algebra in industry, Wiley, Chichester, 1993.

[25] H. Cohen, A course in computational algebraic number theory (3rd corrected prin-
ting), Springer, New York, 1996.

[26] H. Cohen, Advanced topics in computational number theory, Springer, New York,
2000.

[27] H. Cohen, H. W. Lenstra, Jr., Heuristics on class groups, in D.V. Chudnovsky et al.
(eds.), Number theory, New York 1982, Springer, Berlin, 1984.

[28] H. Cohen, H. W. Lenstra, Jr., Heuristics on class groups of number fields, in H.
Jager (ed.), Number theory, Noordwijkerhout, 1983, Springer, Berlin, 1984.

[29] D. Cox, J. Little, D. O’Shea, Ideals, varieties, and algorithms, second edition,
Springer, New York, 1997.

[30] J. H. Davenport, On the integration of algebraic functions, Springer, New York, 1981.

[31] W. Decker, L. Ein, F.-O. Schreyer, Construction of surfaces in P4, J. Algebraic
Geometry 2 (1993), 185–237.

[32] W. Decker, T. de Jong, Gröbner bases and invariant theory, in [18], 61–89.

[33] W. Decker, F.-O. Schreyer, Non-general type surfaces in P4: some remarks on bounds
and constructions, J. Symbolic Computation 29 (2000), 545–582.

[34] J. Dixmier, D. Lazard, Minimum number of fundamental invariants for the binary
form of degree 7, J. Symbolic Computation 6 (1988), 113–115.

[35] B. Eick, E. A. O’Brien, The groups of order 512, in B.H. Matzat et al. (eds.), Algo-
rithmic algebra and number theory, 379–380, Springer, Berlin, 1999.

[36] D. Eisenbud, S. Popescu, Gale duality and free resolutions of ideals of points, Invent.
Math. 136 (1999), 419–449.

[37] G. Ellingsrud, S.-A. Strømme, The number of twisted cubic curves on the general
quintic threefold, Math. Scand. 76 (1995), 5–34.

[38] R. W. Floyd (ed.), Proc. of ACM Symposium on Symbolic and Algebraic Mani-
pulation (SYMSAM’66), Washington D.C., Comm. ACM 9 (1966), 574–643.

[39] F. Franklin, On the calculation of the generating functions and tables of groundforms
for binary quantics, Amer. J. of Math. 3 (1883), 128–153.

[40] J. von zur Gathen, J. Gerhard, Modern computer algebra, Cambridge University
Press, Cambridge, 1999.

[41] K. Gatermann, Computer algebra methods for equivariant dynamical systems,
Springer, Berlin, 2000.

[42] K. Geddes, S. R. Czapor, G. Labahn, Algorithms for computer algebra, Kluwer Aca-
demic Publishers, Boston, 1992.

[43] G. Gonnet, A study of iteration formulas for root finding, where mathematics, com-
puter algebra and software engineering meet, in these proceedings.

[44] L. Gonzalez-Vega, T. Recio, Industrial applications of computer algebra: climbing up
a mountain, going down a hill, in these proceedings.

[45] P. Gordan, Neuer Beweis des Hilbertschen Satzes über homogene Funktionen,
Nachrichten König. Ges. der Wiss. zu Gött., 1899, 240–242, English translation by
M. Abramson in SIGSAM Bulletin 32, Number 2 (1998), 47–48.

20 W. Decker

[46] R. W. Gosper, Jr., Decision procedure for indefinite hypergeometric summation, Proc.
Nat. Acad. Sci. USA 75 (1978), 40–42.

[47] J. H. Grace, A. Young, The algebra of invariants, Cambridge University Press, Cam-
bridge, 1903.

[48] G.-M. Greuel, Applications of computer algebra to algebraic geometry, singularity
theory and symbolic-numerical solving, in these proceedings.

[49] J. Hammond, On the solution of the differential equation of sources, Amer. J. of
Math. 5 (1883), 218–227.

[50] D. Hilbert, Über die Theorie der algebraischen Formen, Math. Ann. 36 (1890),
473–534.

[51] D. Hilbert, Über die vollen Invariantensysteme, Math. Ann. 42 (1893), 313–373.

[52] A. Hirschowitz, C. Simpson, La resolution minimale de l’ideal d’un arrangement
general d’un grand nombre de points dans Pn, Invent. Math. 126 (1996), 467–503.

[53] H. G. Kahrimanian, Analytical differentiation by a digital computer, Master’s thesis,
Temple University, Philadelphia, 1953.

[54] E. Kaltofen, Polynomial-time reductions from multivariate to bi- and univariate in-
tegral polynomial factorization, SIAM J. Comp. 14 (1985), 469–489.

[55] E. Kaltofen, Polynomial factorization, in B. Buchberger et al. (eds.), Computer al-
gebra, 95–113, Springer, Wien, 1982.

[56] E. Kaltofen, Polynomial factorization 1982-1986, in I. Simon (ed.), Computers in
mathematics, 285–309, Marcel Dekker, New York, 1990.

[57] E. Kaltofen, Polynomial factorization 1987–1991, in D.V. Chudnovsky, R.D. Jenks
(eds.), Proceedings of LATIN’92, Sao Paulo, 294–313, Springer, New York, 1992.

[58] S. Katz, On the finiteness of rational curves on quintic threefolds, Composito Math.
60 (1986), 151–162.

[59] W. Krandick, S. Rump (eds.), Special issue on Validated numerical methods and
computer algebra, J. Symbolic Computation 24 (1997), 649–803.

[60] L. Kronecker, Grundzüge einer arithmetischen Theorie algebraischer Grössen, J.
Reine Angew. Math. 92 (1882), 1–122.

[61] J. P. S. Kung, G.-C. Rota, The Invariant Theory of Binary Forms, Bull. Am. Math.
Soc. 10 (1984), 27–85.

[62] L. A. Lambe (ed.), Special issue, J. Symbolic Computation 23 (1997), 445–623.

[63] P. L. Larcombe, On Lovelace, Babbage and the origins of computer algebra, in [99].

[64] A. K. Lenstra, H. W. Lenstra, Jr., Algorithms in number theory, in J. van Leeuwen
(ed.), Algorithms and complexity,, Volume A, 673–716, Elsevier, Amsterdam, 1990.

[65] A. K. Lenstra, H. W. Lenstra, Jr. (eds), The development of the number field sieve,
Springer, Berlin, 1993.

[66] A. K. Lenstra, H. W. Lenstra, Jr., L. Lovász, Factoring polynomials with rational
coefficients, Math. Ann. 261 (1982), 515–534.

[67] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. 126 (1987),
649–673.

[68] H. W. Lenstra, Jr., Flags and lattice basis reduction, in these proceedings.

[69] A. Lorenzini, The minimal resolution conjecture, J. Algebra 156 (1993), 5–35.

Some Introductory Remarks on Computer Algebra 21

[70] L. F. Menabrea, Sketch of the analytical engine invented by Charles Babbage. With
notes upon the memoir by the translator, Ada Augusta, Countess of Lovelace, in P.
Morrison and E. Morrison (eds.), Charles Babbage and his calculating engines, part
II, Dover Publications, New York, 1961.

[71] W. F. Meyer, Invariantentheorie, in Encyklopädie der mathematischen Wis-
senschaften, Erster Band, Teubner, Leipzig, 1898–1904.

[72] H. M. Möller, Gröbner bases and numerical analysis, in [18], 159–178.

[73] J. F. Nolan, Analytical differentiation on a digital computer, Master’s thesis, MIT,
Cambridge, 1953.

[74] A. M. Odlyzko, H. J. J. te Riele, Disproof of the Mertens conjecture, J. Reine Angew.
Math. 357 (1985), 138–160.

[75] P. J. Olver, Classical invariant theory, Cambridge University Press, Cambridge, 1999.

[76] S. R. Petrick (ed.), Proc. of the Second Symposium on Symbolic and Algebraic Ma-
nipulation (SYMSAM’71), Los Angeles, ACM Press, New York, 1971.

[77] C. Pomerance, Analysis and comparism of some factoring algorithms, in H.W.
Lenstra, Jr., R. Tijdeman (eds.), Computational methods in number theory, 89–139,
Mathematical Centre Tracts 154/155, Math. Centrum, Amsterdam, 1982.

[78] C. Pomerance, The quadratic sieve factoring algorithm, in T. Beth et al. (eds.),
Advances in cryptology, Springer, Berlin, 1985.

[79] S. Popescu, On smooth surfaces of degree ≥ 11 in P4, PhD thesis, Universität des
Saarlandes, Saarbrücken, 1993.

[80] S. Popescu, K. Ranestad, Surfaces of degree 10 in the projective fourspace via linear
systems and linkage, J. Algebraic Geometry 5 (1996), 13–76.

[81] R. Risch, On the integration of elementary functions which are built up using alge-
braic operations, Report SP-2801/002/00, System Development Corp., Santa Mo-
nica, 1968.

[82] R. Risch, Further results on elementary functions, Report RC-2402, IBM Corp.,
Yorktown Heights, 1969.

[83] R. Risch, The problem of integration in finite terms, Trans. A. M. S. 139 (1969),
167–189.

[84] R. Risch, The solution of the problem of integration in finite terms, Bull. A. M. S.
76 (1970), 605–608.

[85] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and
public-key cryptosystems, Comm. ACM 21 (1978), 120–126.

[86] P. Roelse, Factoring high-degree polynomials over F2 with Niederreiter’s algorithm
on the IBM SP2, Math. Comp. 68 (1999), 869–880.

[87] F.-O. Schreyer, Small fields in constructive algebraic geometry, 221–228, in Moduli
of vector bundles, Sanda 1994, 221–228, Dekker, New York, 1996.

[88] F.-O. Schreyer, F. Tognoli, Constructions and investigations with small finite fields,
to appear in D. Eisenbud et al. (eds.), Mathematical computations with Macaulay2,
Springer, New York.

[89] F. T. von Schubert, De inventione divisorum, Nova Acta Academiae Scientiarum
Imperalis Petropolitanae 11 (1793), 172–182.

22 W. Decker

[90] I. E. Shparlinski, Finite fields: theory and computations, Kluwer Academic Publish-
ers, Dordrecht, 1999.

[91] M. F. Singer, Formal solutions of differential equations, J. Symbolic Computation
10 (1990), 59–94.

[92] L. Smith, Polynomial Invariants of Finite Groups, A.K. Peters, Wellesley, 1995.

[93] B. Sturmfels, Algorithms in invariant theory, Springer, Wien, 1993.

[94] D. D. Swade, Der mechanische Computer des Charles Babbage, Spektrum der Wis-
senschaft, April 1993.

[95] J. J. Sylvester, Tables of the generating functions and groundforms for the binary
quantics of the first ten orders, Amer. J. Math. 2 (1879), 223–251.

[96] J. J. Sylvester, Tables of the generating functions and groundforms for the binary
duodecimic, with some general remarks, and tables of the irreducible syzygies of cer-
tain quantics, Amer. J. Math. 4 (1881), 41–61.

[97] B. Trager, Integration of algebraic functions, PhD thesis, MIT, Boston, 1984.

[98] S. M. Watt, H. Stetter (eds.), Special issue on Symbolic numeric algebra for polyno-
mials, J. Symbolic Computation 26 (1998), 649–652.

[99] M. Wester (ed.), Computer algebra systems. A practical guide, Wiley, Chichester,
1999.

[100] H. Zassenhaus, On Hensel factorization, J. Number Theory 1 (1969), 291–311.

Department of Mathematics,
Universität des Saarlandes,
D-66041 Saarbrücken, Germany
E-mail address: decker@math.uni-sb.de

